NEW AGI

THEORY OF AUTOMATA,

FORMAL LANGUAGES
7=~ AND
/ gCOMPUTATION

‘}

@ NEW AGE INTERNATIONAL PUBLISHERS

Theory of
AUTOMATA, FORMAL LANGUAGES
and
COMPUTATION

S.P. Eugene Xavier

A

PUBLISHING FOR ONE WORLD

NEW AGE INTERNATIONAL (P) LIMITED, PUBLISHERS

New Delhi « Bangalore * Chennai ¢ Cochin * Guwahati « Hyderabad
Jalandhar « Kolkata « Lucknow * Mumbai ¢ Ranchi

Visit us at www.newagepublishers.com

Copyright © 2005 New Age International (P) Ltd., Publishers
Published by New Age International (P) Ltd., Publishers

All rights reserved.

No part of this ebook may be reproduced in any form, by photostat, microfilm,
xerography, or any other means, or incorporated into any information retrieval
system, electronic or mechanical, without the written permission of the publisher.
All inquiries should be emailed to rights@newagepublishers.com

ISBN (10) : 81-224-2334-5
ISBN (13) : 978-81-224-2334-1

PUBLISHING FOR ONE WORLD
NEW AGE INTERNATIONAL (P)LIMITED, PUBLISHERS

4835/24, Ansari Road, Daryaganj, New Delhi - 110002
Visit usat www.newagepublisher s.com

CHhis book és dedicated to
My Botoed Frathon, Mather, Wit and Daughter —
e Fountain c/ O]Wyi(/ica&o/n Foreror

THIS PAGE IS
BLANK

Preface

This book deals with a fascinating and important subject which has the
fundamentals of computer hardware, software and some of their applications.
This book is intended as an introductory graduate text in computer science
theory. | havetaken careto present the material very clearly and interestingly.

Asanintroductory subject to computer science, thisbook has been written
with mgjor stress on worked examples. Chapter O covers the basics required
for this subject viz., sets, relations, functions, graphs, trees, languages, and
fundamental proof techniques.

Chapter 1 deals with the different aspects of Deterministic Finite
Automata (DFA) and Non-Deterministic Finite Automata (NFA). A brief
introduction to pumping lemma and some theorems relating to Regular Sets
have a so been given.

Chapter 2 covers the concepts relating to context free grammar viz.,
derivation trees, parsing, ambiguity, and normal forms. Chapter 3 dealswith
Pushdown Automata and their relation to Context-Free Grammar with some
introduction to decision algorithms.

Chapter 4 deals with the Turing Machine model and the variations of
Turing Machines with introduction to Church-Turing Thesis and the concept
of undecidability. Chapter 5 explains the concepts viz., regular grammars,
unrestricted grammars and Chomsky hierarchy of languages.

Chapter 6 deals with the different aspects of computability with an
introduction to formal systems, recursive functions, primitive recursive
functions, and recursion. Chapter 7 covers the various aspect of complexity
theory such as polynomial time agorithms, non-polynomial time algorithm
class P and NP problems.

Chapter 8 covers propositions and predicates with lot of illustrative
examples.

| wish to thank my teachers who helped me to get a good grasp of the
subject and for having motivated me to write this book.

| want to place on record my sincere thanks to my family—Shri. Papu
Antony, my father; Mrs. MariaDaisy, my mother; Mrs. Assumpta Eugene, my
wife; and Ms. E. Catherine Praveena, my only daughter, for their great
patience and prayers while | was writing this book.

Vi Preface

My heartfelt thanks to my friends—Rajeevan La, Mohana Sundar,
Gayathri Suresh, Lakshmi Menon, Ragjagopal Raman, Dr. A. Kannan and
[lamadhi for their prayers and great encouragement.

| wish to thank M/s. New Age International (P) Ltd., Publishers, for
publishing this book in avery short span of time.

Suggestions are most welcome from the readers of this book.

Happy Learning!

S.P. EUGENE XAVIER

Notations

Symbol Meaning

U Empty set

| S| Cardinality of set S.

O Set Union

n Set Intersection

allA a belongsto the set A

AOB Aisasubset of B

— Set Difference

A° Complement of A

2 Powerset of A

AxB Cartesian products of A and B
UL A Union of sets A, A, A,

L Complement of L

LR L anguage Reversal

L Kleene Star

L Kleene Plus

2 All finite strings over the alphabet >
3" All strings over the alphabet = of length exactly n.
A Empty string

[x| Length of string x.

O The OR function

O The AND function

xdy xisrelated toy under relation O
R* Transitive closure of R

R, R, Composite of relations R, and R,
fixoy Function from xtoy.

f ()

Image of x under f.

Viii Notations

Symbol Meaning

R Ceiling function of x (least integer not less than x)
X0 Floor function of x (greatest integer not exceeding X)
O Logica connective— If then

B For every

O There exists

= Equivaence of predicate formulae

Xa Characteristic function of set A

Z(X) Zero function

S(x) Successor function

p" (x) Projector Function

(Q,%,9,q9,.F) Finite automaton

(Q,Z,A,0,A, 1) Moore-Mealey Machine

V.2 P,S) Grammar

(Q Z,r,d,qy,bF) Turing machine

O(f (n) Set of functions whose growth r is order f(n).
N Set of Natural numbers

Z Set of Integers

Q Set of Rational Numbers

R Set of Real Numbers

Preface

Notations

Contents

Chapter 0 Introduction

0.1 Basics

011
0.1.2
0.1.3
014
0.1.5
0.1.6
0.1.7

Sets

Relations and Functions
Graphs and Trees

Strings and Languages
Boolean Logic

Fundamental Proof Techniques
Introduction to Grammar
Glossary

Review Questions

Exercises

Short Questions and Answers

Chapter 1 DFA and NFA

1.1 Deterministic Finite Automata (DFA)
111 Automata—What isit?

12
13
14

15
16

112
113

Types of Automaton
Definition of Deterministic Finite Automaton

Non-Deterministic Finite Automata (NFA)
Equivalence of NFA and DFA
Regular Expression

141
142
143
144
145
146

Regular Languages

Regular Expressions

Building Regular Expressions

Languages Defined by Regular Expressions
Regular Expressionsto NFA

NFAs to Regular Expression

Two-way Finite Automata
Finite Automata with Output

15
18
27
28

S5R&4

51

58

58
58
58
59
70
75
80
80
81
81
82
82
83
88

89

X Contents

1.6.1 Definition 89
1.6.2 Mealey Machine 89
1.6.3 Moore Machine 20
1.7 Properties of Regular Sets (Languages) 91
171 Closure 91

1.7.2 Union, Concatenation, Negation, Kleene Star,
Reverse 92
1.7.3 Intersection and Set Difference 92
1.8 Pumping Lemma 93
1.8.1 Principle of Pumping Lemma 93
1.8.2 Applying the Pumping Lemma 94
1.9 Closure Properties of Regular Languages 96
1.10 Myhill-Nerode Theorem 97
1.10.1 Myhill-Nerode Relations 97
1.10.2 Myhill-Nerode Theorem 98
Glossary 99
Review Questions 99
Exercises 100
Short Questions and Answers 108
Chapter 2 Context-FreeGrammars 115
2.1 Introduction 115
2.1.1 Definition of CFG 115
2.1.2 Exampleof CFG 115
2.1.3 Right-Linear Grammar 115
2.1.4 Right-Linear Grammars and NFAS 116
215 Left-Linear Grammar 116

216 Conversion of Left-linear Grammar into

Right-Linear Grammar 117
2.2 Derivation Trees 118
2.2.1 Definition of aDerivation Tree 118
2.2.2 Sentential Form 119
2.2.3 Partia Derivation Tree 119
2.2.4 Right Most/Left Most/Mixed Derivation 119
2.3 Parsing and Ambiguity 127
231 Parsing 127
2.3.2 Exhaustive Search Parsing 128
2.3.3 Topdown/Bottomup Parsing 128
2.3.4 Ambiguity 129
235 Ambiguous Grammars/Ambiguous L anguages 130
24 Simplification of CFG 131
2.4.1 Simplification of CFG-Introduction 131
2.4.2 Abolishing Useless Productions 132
2.5 Norma Forms 142

Contents Xi

251 Chomsky Norma Form (CNF) 142

252 Greibach Normal Form (GNF) 148
Glossary 149

Review Questions 149

Exercises 150
Short-Questions and Answers 153

Chapter 3 Pushdown Automata 159
3.1 Definitions 159
3.1.1 Nondeterministic PDA (Definition) 159

3.1.2 Transition Functionsfor NPDA 160

3.1.3 Drawing NPDAs 161

3.1.4 Execution of NPDA 162

3.1.5 Accepting Strings with an NPDA 162

3.1.6 AnExample of NPDA Execution 163

3.1.7 Accepting Stringswith NPDA (Formal Version) 164
3.2 Relationship between PDA and Context Free

Languages 166
3.21 Simplifying CFGs 166
3.22 Normal Forms of Context-Free Grammars 167
3.2.3 CFGtoNPDA 167
3.24 NPDA to CFG 169
3.25 Deterministic Pushdown Automata 170
3.3 Properties of Context Free Languages 170
3.3.1 Pumping Lemmafor CFG 170
3.3.2 Definitions 171
3.3.3 Proof of Pumping Lemma 171
3.3.4 Usage of Pumping Lemma 173
3.4 Decision Algorithms 176
Glossary 179
Review Questions 180
Exercise 181
Short Questions and Answers 182
Chapter 4 TuringMachines 186
4.1 Turing Machine Model 186
411 WhatisaTuring Machine? 186
4.1.2 Definition of Turing Machines 186
4.1.3 Transition Function, Instantaneous Description
and Moves 187
4.1.4 Programming a Turing Machine 188
415 Turing Machines as Acceptors 188
4.1.6 How to Recognize aLanguage 188

4.1.7 Turing Machines as Transducers 189

Xii Contents

4.2 Complete Languages and Functions 192
4.3 Modification of Turing Machines 195
4.3.1 N-Track Turing Machine 195

4.3.2 Semi-infinite Tape/Offline/Multitape/
ND Turing Machines 196
4.3.3 Multidimensional/Two-state Turing Machine 196
4.4 Church-Turing's Thesis 196
44.1 Counting 197
4.4.2 Recursive and Recursively Enumerable Language 197
443 Enumerating Stringsin a Language 198
4.4.4 Non-recursively Enumerable Languages 199
4.5 Undecidability 199
451 Halting Problem 199
45.2 Implications of Halting Problem 201
45.3 Reduction to Halting Problem 201
45.4 Post’'s Correspondence Problem 202
4.6 Rice sTheorem 203
Glossary 203
Review Questions 204
Exercises 205
Short Questions and Answers 206
Chapter 5 Chomsky Hierar chy 210
5.1 Context Sensitive Grammars and Languages 210
5.2 Linear Bounded Automata 211
5.3 Relationship of other Grammars 211
5.4 The Chomsky Hierarchy 212
5.5 Extending the Chomsky Hierarchy 213
5.6 Unrestricted Grammar 213
5.7 Random-Access Machine 214
Glossary 214
Review Questions 215
Exercises 215
Short Questions and Answers 216
Chapter 6 Computability 218
6.1 Forma Systems 218
6.2 Recursive Function Theory 219
6.3 Primitive Recursive Functions 219
6.4 Composition and Recursion 222
6.5 Ackermann’'s Function 229

Contents Xiii

Glossary 230

Review Questions 231

Exercises 231

Short Questions and Answers 232

Chapter 7 Complexity Theory 235
7.1 Introduction 235

7.2 Polynomial-Time Algorithms 236

7.3 Non-deterministic Polynomial Time Algorithms 237

7.4 Integer Bin Packing 237

7.5 Boolean Satisfiability 238

7.6 Additional NP Problems 239

7.7 NP-Complete Problems 239

Glossary 240

Review Questions 240

Exercises 241

Short Questions and Answers 242

Chapter 8 Propositionsand Predicates 245
8.1 Propositions 245

8.1.1 Connectives 246

8.1.2 Tautology, Contradiction and Contingency 255

8.1.3 Logical Identities 258

8.2 Logical Inference 265

8.3 Predicates and Quantifiers 276

8.4 Quantifiersand Logica Operators 281

8.5 Norma Forms 289

Glossary 292

Review Questions 293

Exercises 294

Short Questions and Answers 299

Answersto Exercises 304
University Question Papers 320
Bibliography 341
I ndex 343

THIS PAGE IS
BLANK

Chapter 0

Introduction

0.1 BASICS
0.1.1 Sets

A “set” isacollection of objects. For example, the collection of four lettersa,
b, cand d is aset, which iswritten as

L={abcd}

The objects comprising a set are called its “ elements’ or “members’.

A set having only one element is called a “singleton”. A set with no
element at all is called the “empty set”, which is denoted by O.

It is essentia to have a criterion for determining, for any given thing,
whether it is or is not a member of the given set. This criterion is called the
“Membership criterion” of the set.

There are two common ways to indicate the members of a set:

(i) Listaltheeements eg, {a &i,o0,u}.
(if) Provide some kind of an agorithm or arule, such as agrammar.

Let us now take alook at the notation that is being used to denote sets.

(& Toindicatethat xisamember of theset S wewritex 0 S

(b) If every element of set Aisalso an element of set B, we say that A
isa“subset” of B, and write A0 B.

(c) If every element of set Aisalso an element of set B, but B also has
some elements not contained in A, we say that A is a “proper
subset” of B and write A [0 B.

(d) Wedenotethe “empty set” as{ } or 0.

The set operations are as described below.

(@) Union

The “union” of two setsisthe set that has objects that are elements of at least
one of the two given sets, and possibly both.

Introduction

2 Theory of Automata, Formal Languages and Computation

That is, the union of sets A and B, written A O B, is a set that contains
everythingin A, or in B, or in both.

AOB={x:xOA or xOB}
Example: A={1, 3, 9} B={3,5}
Therefore, AOB={, 359

(b) Intersection

The“intersection” of setsA and B, written A n B, isaset that contains exactly
those elements that are in both A and B.

AnB={x:xOA and x0OB}
Example: GivenA={1,3,9},B={3,5},C={a, b, c}
AnB={3}
AnC={}
(c) Set Difference

The “set difference” of set A and set B, written as A-B, isthe set that contains
everything that isin A but not in B.

A-B={x:xOA and x0OB}
Given A={1,39, B={35
A-B={19

(d) Complement

The* complement” of set A, written as A isthe set containing everything that is
not in A.

Properties of set operations

Some of the properties of the set operations follow from their definitions. The
following laws hold for the three given sets A, Band C.

|dempotency . AOA=A
An A=A
Commutativity . AOB=BOA
AnB=BnA
Associativity : (AOB)OC=A0(BOC)

(AnB)nC=An(BnC)

Introduction 3

Distributivity - (AOB)nC=(AnC)I(BnC)
(AnB)OC=(AOC)n (BOC)

Absorption . (AOB)n A=A
(AnB)OA=A

DeMorgan’s Laws . A-(BOC)=(A-B)n(A-C)

A-(BnC)=(A-B)O(A-C)

Example 0.1.1: Showthat A-(BOC)=(A-B)n (A-C).

Eolution

xOA-(BOC)O xOA and xOBOC
0 xOA and xOB and xOC
O (xOA and xOB) and (xOA and xOC)
0 xOA-B and xOA-C
O xdO(A-B)n (A-C)

Therefore A-(BOC)O(A-B)n (A-C) (@)
Conversdly,

xO(A-B)n (A-C)0O xOA-B and xOA-C
O (xOA and xOB) and (xOA and xOC)
O xOA and (xOB and xOC)
0O xOA and xOBOC
0O xOA-(BOC)

Therefore, (A-B) n (A-C)OA-(BOC).
Hence A-(BOC)=(A-B)n (A-C).

Example 0.1.2: Given setsA and B are the subsets of auniversal set U,
prove that

(@ A-B=AnB
(b) A-B=A ifandonlyif AnB=0
(o A-B=0, ifandonlyif AOB.

Eolution

(@ LetxOA-B.Then

xOA-BO xOA and xOB
O xOA and xOB
O xOANn B

A-BOANB 1)

4 Theory of Automata, Formal Languages and Computation

Conversely, Let x O A n B'. Then

xOANnB O xOA and xOB
O xOA and xOB 2
0 xOA-B

Hence from (1) and (2)
A-B=AnPB
(b) Wehave An B=0.Then

A=(A-B)O(AnB)
O A=A-BOO since AnB=0
0O A= A-B.
Againwehave A—B = A Then
A=(A-B)O(AnB)
OAnB=A-ASince A-B=A
O AnB=0.

(c) Wehave AOB.Then
AnB=A
A-B=A-(AnB)

0 A-B=A-ASnce AnB=A
0O A-B=0.

If A-B =0, then
AnB=A-(A-B)
OAnB=A-0O
O AnB=A
0 AOB.

Example 0.1.3: Giventhree sets A, B and C, prove that
AO(BOC)=(AOB)0OC.

Eolution

(i) Letusshow that
AO(BOC)O(AOB)OC

xOADO(BOC)
O xOA or xO(B OC), by definition of union
O xOA or (xOB or xOC)
O (xOA or xOB) or xOC

Introduction 5

O xO(AOB) or xOC
O xO(AOB)OC.

Therefore we have
AOd@BOC)O(AOB)OC D
(ii) Let usnow show that
(AOB)OCOAD(BOC).
Assume that y isany element of theset (AOB) OC

yO(AOB)OC
O yO(AOB) or yOC
O (yOA or yOB) or yOC
O yOA or (yOB or yOIC)
O yOAO(BOC)

Therefore we have

(AOB)OCOAO(MBOC) 2
From (1) and (2), we have

AO(BOC)=(AOB)OC

Example 0.1.4: Prove that the intersection of setsis associativei.e,, if
A, B and C are three sets, then

An(BnC)=(AnB)nC.
Eolution

Let us prove that An(BnC)O(AnB)nC
Let x be an element such that

xOANn(BnC)

xOA and xO(B n C)
xOA and (xOB and x0OC)
(xOA and xOB) and xOC
xO(An B) and xOC
xO(AnB)nC

I o |

Therefore An(BnC)O(AnB)nC (1)
Let us prove that (AnB)nCOAN(BnC).
Let usassumetheelement yO(An B)n C
0 yO(AnB) and yOC

6 Theory of Automata, Formal Languages and Computation

O (yOA and yOB) and yOC
O yOA and yOB and yOC
O yOA and yO(B nC)

O yOAn(BnC)

Therefore we have (AnB)nCOANn(BNC) 2

From (1) and (2), we have

An(BnC)=(AnB)nC

Example 0.1.5: For any two setsAand B, provethe DeMorgan’sLaws

(@ (AOBY=A nB
() (AnBy=A OB

Eolution

(@ xO(AOBY -« xOAOB
= xOA and xOB
= XOA and xOB'
= XOA n B

(b) YO(AnB)Y =« yOANB
< either yOA or yOB
= either yOA or yOB'
- yOA OB

Hencewehave(An BY = A O B'.

Example 0.1.6: If the symmetric difference of the two sets Aand B is
refined as (A -B) O (B — A) and denoted by AA B, prove that

(8 AAB=BAA
(b) (AOB)-(AnB)=AAB.

Eolution

(@ AAB=(A-B)IJ(B-A)
=(B-A)O(A-B)
=BAA
(b) (AOB)-(AnB)=(AOB)n (AnB)
(-x=-y=xny')
=(AOB)n (A OB)
=((AOB)n A)O(AOB)nB")
=(AnA)OBNA)I(ANB)
O(BNB)

Introduction 7

=(AnB)O(BnA)

(-(An A)=(BnB)=0)
= (A-B)O(B-A)
= AAB.

Additional Terminology

(a) Digoint Sets. If A and B have no common element, that is, An B =0,
then the sets A and B are said to be digjoint.

(b) Cardinality. The“Cardinality” of aset A, written |A|, is the number of
elementsin set A.

(c) Powerset. The“powerset” of aset A, written 2%, isthe set of all subsets of
A i.e, aset containing ‘n’ elements has a powerset containing 2" elements.

(d) Cartesian Product. Let A and B be two sets. Then the set of all ordered
pairs(x,y) wherex 0 Aand yO B iscalled the” Cartesian Product” of thesets A
and B and isdenoted by Ax B, i.e.

AxB={(xy) : xOA and yOB}

Example 0.1.7: Given A={1, 2, 3} determine P(A) (powerset of A).

Eolution

Asthe set A = {1, 2, 3} has 3 elements the powerset P(A) will have 2° = 8
elements.

P(A)={0,{1,{2,{3.{12,{23.{33, {123}

Example 0.1.8: Given A=[{a b}, {c,{d,ef}], determine the
powerset P(A).

Eolution

Since A has 3 elements, P(A) has 2° = 8 elements.

_PAKa b {d][{a b {d e F}L.Id.{d.e f}],
P =D B e], 0

Example 0.1.9: Provethat (AxB) O (AxC)=Ax(BOC)

Proof: (AxB)O(AxC)={(xy):(x, Y)OAxB or (x,y)OAxC}
={(x, y):xOA yOB or xOA yOC}
={(x, y):xOA and yOB or yOC}
={(x, y):xOA yOBOC}
= Ax(BOC) O

8 Theory of Automata, Formal Languages and Computation

Example 0.1.10: Given A={1,2}, B={x, vy, zZ} and C = {3, 4}, find
AxBxCandn(AxB xC).

Eolution

i o

1,v,3

ey Y
<0 oy
< e

2,¥,3

2 y<431 EZ,§,4;
= e

n(Ax B xC) = n(A) (h(B) (h(C) = (2) (3) (2) =12.

0.1.2 Relations and Functions

Definition of Relation: A relation on setsSand Tisaset of ordered pairs (s, t),
where

(@ sOS(sisamember of S)

(b) tOT

(c) Sand T need not be different

(d) Theset of all first elementsin the “domain” of the relation, and
(e) Theset of al second elementsisthe “range” of the relation.

Example:

Set S SetT

Fig. 1 SetsSand T are digoint
Suppose Sistheset{a, b, c, d, e} andset Tis{w, X, Y, Z}.

Introduction 9

Then arelationon Sand T is

R={(ay), (cw), (¢ 2, (d y)}
The four ordered pairsin the relation is represented as shown in Fig. 2.

Fig. 2 RelationR={(a, y), (c, w), (c, w), (c, 2), (d, y)}

Equivalence Relation

A subset R of Ax Aiscalled an equivalence relation on A if R satisfies the
following conditions:

(i) (a,a)dRforal adA(Risreflexive)
(i) If (a,b) OR, then (b,a) OR, then (a, b) OR (R is symmetric)
@iii) If (a,b)0OR and (b,c¢) OR, then (a, ¢) OR (Ristransitive)

Partial Ordering Relations

A relation Ron aset Siscalled a“Partia ordering” or a“Partial order”, if Ris
reflexive, antisymmetric and transitive.

A set Stogether with apartial ordering Riscalled a“Partially ordered set”
or “Poset”.

Example. The relation < on the set R of rea numbers is reflexive,
antisymmetric and transitive. Therefore<isa“Partial ordering”.
Partition

A Partition P of Sis a collection {A} of nonempty subsets of S with the
properties:

(i) EachalOSbelongsto some A,
(i) IfAzA thenA n A =0.

Thus a partition P of Sisa subdivision of Sinto disjoint nonempty sets.
If Risanequivalencerelationonaset S foreach*a’ in S let [a] denotethe
set of elements of Sto which ‘a’ isrelated under R, i.e.

[a]={x: (a,x)OR}

Here[a] isthe Equivalenceclass’ of ‘a’ in S

10 Theory of Automata, Formal Languages and Computation

The collection of all eguivalence classes of elements of S under an
equivalence relation Ris denoted by % e,

S4={lal:a0s}

It isknown as “quotient” set of Shy R.

Example 0.1.11: Given a relation R is ‘circular’ if (a,b)OR and
(b,c)OR O (¢ a) OR. Show that arelationisreflexiveand circular if and
only if it isreflexive, symmetric, and transitive.

Eolution

Let therelation R bereflexive and circular. We shall provethat Risreflexive,
symmetric and transitive.

(a,b)0OR, (b,c)dR O (ca) OR, since Riscircular and
(a,a) DR since Risreflexive.

Wehave (ca) OR, (a,a) 0RO (a,¢) OR, since Riscircular.
Thus shows (a, ¢) DR and (¢, a) OR. Hence Ris symmetric
(a,b)0OR,(b,c) 0RO (¢a)dR, sinceR iscircular
O (a,¢)0R, sinceR issymmetric
O R istransitive

Itisgiven that Risreflexive.
Conversdly, if Risreflexive, symmetric, and transitive then we show that
Risreflexive and circular.

(a,b)0R,(b,c) 0RO (a,¢)OR, sinceR istransitive
O (c,a)OR, sinceR issymmetric
0 R iscircular

(a,000R,(ca)0R O (a,a)0R, sinceR istransitive
0 R isreflexive

Example 0.1.12: Show that the relation “congruence modulo m” over
the set of positive integersis an equivalence relation.

Eolution

Assumethat N = Set of all positive integers
and m = given positive integer.
For x, yON,x = y(mod m) if and only if x—yisdivisibleby m, i.e.

x—=y=km for kOz

Introduction 11

Letx, y,zON. Then

(@ Asx—x=0m, x=x (mod m), for all xON. Therefore this
relationis reflexive
() x=y(modm) O x - y=kmforinteger k
O y—x=(-k)m
O y=x(mod m)
Therefore the relation is symmetric.
(¢ x= y(modm) and y= z(mod m)
O x—-y=km and y- z=Imfor integersk,I.
O (x=y)+(y-2=(k+h)m
O xX-2=(k+)m
O x=z(modm)sincek +1 isasoaninteger
Therefore the relation is transitive.

Since the relation is reflexive, symmetric and transitive, the relation
“congruence modulo m” is an equivalence relation.

Example 0.1.13: Giveexamplesof relationsRon A= {1, 2, 3} with

(@ Rbeing both symmetric and antisymmetric
(b) Rbeing neither symmetric nor antisymmetric

Eolution

A possible set of examples are:

@ R={@y), 22}
() R={@2), (22), (23}

Example 0.1.14: GiventherelaionRinAas
R={(12),(22), (23), (3.2, (4,2), (44}

(@ IsR (i) reflexive (ii) symmetric (iii) transitive?
(b) IsRantisymmetric?
(c) Determine R%.

Eolution

(@ (i) Risnot reflexive because
30A but 3R3,i.e. (3,3) R
(if) Risnot symmetric because
4R2 but 2R4,i.e,(4,2) ORbut (2 4)OR
(iii) Risnot transitive because
4R2 and 2R3 but 4R 3, i.e,
(42 0R, (23)0Rbut (4,3)0R

12 Theory of Automata, Formal Languages and Computation

(b) Risnot antisymmetric because 2R3 and 3R2 but 2 # 3
(c) For each pair (a,b) OR, determine all (b,c) OR. As (a,c) OR?,
R*={(1,1), (2.2, (23), (3.2), (33), (4,2), (4,3), (4,4)}.

Functions

Suppose every element of S occurs exactly once as the first element of an
ordered pair. In Fig shown, every element of Shas exactly one arrow arising
fromit. Thiskind of relation is called a“function”.

Fig. A Function

A function isotherwiseknown as“Mapping”. A functionissaid to map an
element in its domain to an element in its range.

Every element in Sin the domain, i.e., every element of Sis mapped to
some elemet in the range. No element in the domain maps to more than one
element in the range.

Functions as relations

A function f : A - BisaredationfromAtoBi.e, asubset of A x B, such that
each a 0 A belongs to a unique ordered pair (a, b) inf.

Kinds of Functions

(8 One-to-One Function (Injection): A function f:A - B is said to be
one-to-one if different elements in the domain A have distinct images in the
range.

A function f isone-to-oneif f(a) = f (@) impliesa=a'.

—

Fig. An Injection (one to one function)

Introduction 13

(b) Onto function (Surjection): A function f : A - B is said to be an onto
function if each element of B is the image of some element of A.

i.e, f:A- Bisonto if theimage of fis the entire codomain, i.e. if
f (A) =B.i.e, f maps A onto B.

Fig. A Surjection

(c) One-to-one onto Function (Bijection): A function that is both one-to-one
andontoiscalleda“ Bijection” . Such a function maps each and every element
of Ato exactly one element of B, with no elements |eft over. Fig. below shows
bijection.

) >\

Fig. A Bijection

(d) Invertible function: A function f:A - B is invertible if its inverse
relation f " isafunction from Bto A,

A function f : A - B isinvertible if and only it is both one-to-one and
onto.

Example 0.1.15: Find whether the function f (x) = x? from the set of
integers to the set of integersis one-to-one.

Eolution

Thefunction f (x) = x? isnot one-to-one as, for example f (1) = f (1) =1, but
1#-1

Example 0.1.16: Givenfisafunction f : A - BwhereA={a, b, c, d}
and B={1, 2, 3} withf (a) =3, f (b) = 2, f (c) =1, and f(d) = 3. Isthe
function f an onto function?

14 Theory of Automata, Formal Languages and Computation

Eolution

As dl three elements of the codomain are images of elements in the domain,
we have f as an “onto function”.

Example 0.1.17: Given f (x)=2x+3 and
g(x) =3x+2
Check if commutative law holds good for composition of functions.

Eolution

(f D)) = f(g(x)
=f(3x+2)
=2(3x+2)+3
=6x+7

(90F)(x) = g f (x))
= g(@x+3)
=3(2x+3)+2
=6x+11

Since (f) (x) # (g O)(x), commutative law does not hold for composition
of functions.

Example 0.1.18: Check whether the mapping f:X - X where
X ={x0OR,x#0} defined by f (x) = % is one to one and onto.

Eolution

x = set of all non-zero real numbers. Let x;, x, 0 X.

1 1

Then f(x)="1(x;)0 _:X_
1 2

O X =X,

Hence f is one-to-one.

Introduction 15

For every non-zero real number x 0 X there existsanon-zero real number

1 00 X such that
X
(- é@ -x
Hence every element x 0 X is an image of)—1(Thereforef isonto.

Therefore f is one-to-one and onto.

0.1.3 Graphs and Trees
Graphs

A graph G consists of afiniteset V of objectscalled “Vertices’, afinite set E of
objectscalled “Edges’, and afunction y that assigns to each edge a subset { v,
w}, where v and w are vertices (and may be the same).

Therefore we write G=(V,Ey).
Example: GivenV={1,2, 3,4} andE={e;, e, &;, &, &}
y is defined by

v(e)=y(e)={12
y(e)={43
v(&)={13}
v(e,)={24

ThenG = (V, E, y) isagraph shown below.

1 2

4 3

Degree of avertex: Itisdefined asthe number of edges having that vertex as
an end point.

Loop: A graph may have an edge from avertex toitself, such an edgeiscalled
a‘“loop”.

Degree of a vertex is 2, for a loop since that vertex serves as both
endpoints of the loop.

Isolated vertex: A vertex with*“zero” asdegreeiscalled an*“|solated vertex.”

16 Theory of Automata, Formal Languages and Computation

Q b

a

d)

Adjacent vertices: A pair of vertices that determine an edge are “adjacent”
vertices.

Inthe graph shown above, vertex ‘€ isan“Isolated vertex”, ‘a’ and ‘b’ are
adjacent vertices, vertices‘'a’ and ‘d’ are not adjacent.

Path: A path inagraph G consists of apair (V, E) of sequences.
Circuit: A circuit is apath that begins and ends at the same vertex.

SmplePath: A pathiscalled“simple” if no vertex appears morethanoncein
the vertex sequence.

Connected Graph: A graph is caled “connected” if there is a path from any
vertex to any other vertex inthegraph, otherwise, thegraphis* disconnected” .

Components. If the graph is disconnected, the various connected pieces are
called the “components’ of the graph.

1 2 A B
X C
4 3 E
(2 (b) D

The above two graphs are examples of connected graphs.

2 5
> 34<
1 6

(©) C)
The above two graphs are examples of disconnected graphs.

Introduction 17

(A “walk” is a sequence of edges, where the finish vertex of each edgeis
the start vertex of the next edge).

Tree: Agraphissaidtobea”Tree” if itisconnected and hasno simplecycles.
(A “path” isacycleif it startsand endsin the same node. A “ simple cycle”
is onethat does not repeat any nodes except for the first and last).

Fig. A Tree
Directed Graph: The graphissaid to be a“directed graph” if it hasarrowsin
stead of lines.

Outdegree: The number of arrows pointing from a particular node is the
“outdegree” of that node.

Indegree: The number of arrows pointing to a particular node is the
“indegree”.

O O

Fig. Directed Graph

Directed graphs (as shown in fig.) are an easy way of depicting binary
relations.

18 Theory of Automata, Formal Languages and Computation

0.1.4 Strings and Languages

The mathematical study of the “Theory of Computation” begins by
understanding the Mathematics of strings of symbols.

Alphabet: It isdefined as afinite set of symbols.

Example: Roman alphabet {a, b, Z.
“Binary Alphabet” {0, 1} is pertinent to the theory of computation.

Sring: A “string” over an aphabet is a finite sequence of symbols from that
alphabet, which is usually written next to one another and not separated by
commas.

(i) 1f %, ={0,1 then 001001 is astring over % .
(i) I, ={aMb, ..., 2) then axyrpgstcd isastring over Z .

Length of Sring: The “length” of a string is its length as a sequence. The
length of astring w is written as |w|.

Example: [10011| =5

Empty Sring: The string of zero length is called the “empty string”. Thisis
denoted by [1
The empty string playsthe role of 0 in anumber system.

Reverse String: If w=w,w, ...w, where each w, 0%, the reverse of w is
W W, g e W

Substring: zisasubstring of wif z appears consecutively within w.
Asan example, ‘deck’ isasubstring of ‘abcdeckabcjkl’.

Concatenation: Assume a string x of length m and string y of length n, the
concatenation of x and y is written xy, which is the string obtained by
appending y to theend of X, asin X, X5... Xy Yy Vs - -+ Y-

To concatenate a string with itself many times we use the “superscript”
notation:

* k
XX ... X=X

Qffix; If w=xvfor somex, then v isasuffix of w.

Prefix: If w=vy for somey, then visaprefix of w.

Lexicographic ordering: The Lexicographic ordering of stringsisthe sameas
the dictionary ordering, except that shorter strings precede longer strings.

Introduction 19

The lexicographic ordering of all strings over the aphabet {0, 1} is ([} O,
1,00, 01, 10, 11, 000, ...).

Language: Any set of strings over an aphabet is called alanguage.

The set of all strings, including the empty string over an alphabet Z is
denoted as .

Infinite languages L are denoted as

L= {WD ¥" :w has property F’}

Examples:
@ L = {WD{O,J}* :w has an equal number of 0's and 1's}
(b) L,= {wD s ws WR} where W is the reverse string of w.

Concatenation of Languages: If L; and L, are languages over Z, their
concatenationisL =L, - L,, or smply L =L,L,, where

L:{WD > :w=x. yfor somexOL,and yOI Lz}

Example: GivenZ ={0,1}
L = {wD 3" :w has an even number of O's}
L, ={w:w startswith a0 and the rest of the symbols are 1's}
then
L, L, ={w:w has an odd number of 0's}
Kleene Sar: Another*l anguage operationisthe*Kleene Star” of alanguagelL,
whichisdenoted by L.

L" isthe set of all strings obtained by concatenating zero or more strings
fromL.

U =E\NDZ* W=W,w, for somek >0and 0
0 Somew,, Wy, ..., W, 0L

Example: If L ={01, 1, 100} then 110001110011 L', since 110001110011 =
1. 100- 01- 1. 100 1. 1, each of these stringsisin L.

Example 0.1.19: Provethat |uv| = |u| +|V], for any two given strings u
andv.

20 Theory of Automata, Formal Languages and Computation

Eolution

For all ad%' and w any string on %, we make arecursive definition as
laj=1,|wa| = |w|+1

With this formal definition, we can prove

luvf=Tul +[Vv.

By thisdefinition made, | uv| = |u] +|v| holdsfor all u of any length and v of
length 1, which isthe basis.
Let usassumev of length n + 1 and we writeit as

vV =wa.
Therefore we have, |v|=|wW +1,
|uv] = [uwal = [uw| +1
But by inductive hypothesis,
[uwf = [ul+|w
so that
luv = [ul+ W +1=|u+|v
Hencefor al uand al v of length upto n +1, we have
[uv|=ul+|v|

which is the inductive step.

Example 0.1.20: Use induction on to show that |u"|= n|y] for all
stringsu and al n.

Eolution

Basis: Forn=1, [u*| = |u| =1 (assume)
nu=Yu=|u=1

Inductive Hypothesis. Let us assume that it istrue for n.

[u"|=nul.
Inductive Step: [u™ =" - U= U]+l
=nlu+|u
= (n+D]u

which isthe required Inductive step to be proved.
Hence we have|u"|=n|u].

Introduction 21

Example 0.1.21: Thereverseof astringisdefined by therecusiverules
aR =g,
(wa)R = anw®
forall a0, w3 . Using this prove that
(uw)" = vRuR

foraluvOxz".

Eolution

Giventhat a®=a,

(wa)® = awR.
Now we have to prove (uv)® = vRuR.
Let us assume that u=wb and v = wa.

LHS = (uv)® = (wbwa)® = bw” awk
= (bw®)(aw®)
= (bw)® (aw)
= vR @R = RHS

Hence proved.

Example 0.1.22: Given X ={a, b} obtain 3.

(@) Givean example of afinitelanguagein Z.
(b) Given L={a"b": n=0}, check if the strings aabb, aaaabbbb,

abb are in the language L.
Eolution
>={ab}

Thereforewe have =™ ={\, a, b, aa, ab, ba, bb, aaa, }

(@ {a, aa, aab} isan example of afinitelanguagein Z.
(i) aabb - astringinL. (n=2)
(ii) aaaa bbbb - astringinL. (n=4)
(iii) abb - not astringin L (since thereis no n satisfying this).

22 Theory of Automata, Formal Languages and Computation

Example 0.1.23: Givean{a”b”:nzo}
obtain (a) L? (b) L?.

Eolution

GivenL={a”b”:n20}

(@ L? :{a”b”ambm:nzo,mzo}
where n and m are unrelated.

For example, the string aabbaaabbb isin L.
(b) Reverseof L isgiven by

LR ={b”a”:n20}

Example 0.1.24: LetL ={ab, aa, baa}. Which of the following strings
areinL’.
(@) abaabaaabaa
(b) aaaabaaaa
(c) baaaaabaaaab
(d) baaaaabaa

Eolution

Please note that L isthe “star-closure” of alanguage L, given by

() abaabaaabaa — ThisstringisinL’
(b) aaaabaaaa - Thisstringisin L’
(c) baaaaabaaaab or baaaaabaa aab

1 1
(undefined) (undefined)

ThisstringisnotinL’.
(d) baaaaabaa - ThisstringisinL’.

Example 0.1.25: GivenlL :{a”b“+l : nZO}.
Itistruethat L = L for the given language L?

Introduction 23

Eolution

Weknow L =L°0Ll'OL%......
and L'='0L20L3%......
Now for given L ={a“bn+1 n 20} , we have
L°=a" =b
Ll — albl+l — ab2
L2 — a2b2+1 — a2b3.

*_ 10 1 2
Therefore, we have L=L0roL....

Henceitistruethat L =L".

Example 0.1.26: Given u= a’ba®b? and u= bab?, obtain

@ uv (€ Al (i) IIVZZII
(b) w () vl @l
(© \/22 Q) vl
(d) u (h) livul

Eolution

(@ uv=(a’ba’b?)(bab?) = a’ba’b’ab’

(b) wu= (bab?)(a’ba’b?) = bab?a’ba’b?

(©) v?=w = (bab?)(bab?) = bab®ab?

(d) u® = uu=(a’ba’b)(bab?) = a’ba’b*ab?
(&) |lu]l= 8 (asthere are 8 lettersin the word u)

() IMI=4
(Q) lluvi|=12
(h) lvul =12
(i) I|V22||=8
() =11

Example 0.1.27: For any word u and v, prove that
@ juvl| = {full + [V
(b) fluv]| = {jvull-

Proof: (&) Let us assume |[u]| = mand |jv|]| = n. Therefore uv will have ‘m’
letters of u followed by ‘n’ letters of v.

24 Theory of Automata, Formal Languages and Computation

Therefore we have
[luv|= m+n=[[u[|+]|v]].

() Now, IlWII=[ul+[Iv] (from (&)
O =[[vi[+[]ul]
O [luv] = [[vul].

Example 0.1.28: GivenA={a, b, ¢}, find L" where
(L={b3} (@i)L={ab} (ii)L={ab,c}

Eolution

(i) ForL={b%,L" hasall wordsb", where nis even (including the
empty word A).
(i) ForL={a, b}, L* haswordsinaandb.
(iiiy ForL={a b c%}

L* hasdl wordsfrom A={a, b, c} with thelength of each maximal subword
composed entirely of C'sisdivisible by 3.

Example 0.1.29: Forthelanguagel ={ab, c} overtheset A={a, b, c}.
Find (a) L3 (b) L™ (c) L.

Eolution

(@ ForL ={ab,c}, wehave

L3 = All 3- word sequences from L
= {ababab, ababc, abcab, abc? ,cabab,cabc,czab,cg}

(b) L is “Not defined” as negative power of a language is not
defined.
(©) L°={A}, where\ isempty word.

Example 0.1.30: Given L, = {a, ab, a’} and L, = {b?, aba} are the
languages over A= {a, b}, determine {&} L,L, (b) L,L,.

Eolution:

(& TofindL,L,, weconcatenatewordsinL, withwordsin L, sothat

LL, = {abz, a’ba, ab®, ababa, a%b?, a3ba}

Introduction 25

(b) TofindL,L,, weconcatenatewordsin L, withwordsin L, so that

L,L, ={b* b%aba, abab? aha?ba}

Example 0.1.31: Find (i) uvu (i) Au, U\, UAv given u = a’b and v =
bab.

Eolution

(i) uvu= (a’b)(b’ab)(a’b)
= a’b*aba’b
(il) Weknow that A isan empty word. Therefore we have
Au=u\ =u=a’b
ulv = uv = (a’b)(b%ab)
= a’b*ab

Example 0.1.32: GivenA={a, b, ¢} checkif L;, L,, L;and L, areall
languages over the aphabet A., where
L, ={a, aa, ab, ac abc, cab}
L, = {aba, aabaa}
L={ }
L, ={a'ch' 23

Eolution

All thelanguages L, L,, L; and L, are defined over the alphabet A.

Example 0.1.33:
@ Givenl, ={a‘bj\i >j2]} and
L, ={a'bi1<i<} findL, OL,.
(b) GivenlL, ={a‘b‘ci\i, j 21} and
L, ={a'bic/[i,j21} find L, n L.

Eolution

@ LoL={abi>j>3 ofabfisi<}
:{aibi\i,—:j, i,jzl}

26 Theory of Automata, Formal Languages and Computation

0 Lt ={abclijzg nfablclij=1
:{aibici‘iil}

Example 0.1.34: Given L, is English language and L, is French
language, what doyoumeanby (a) L, O L, andL; n L,.

Eolution

(@ L, OL, = Setof al sentences someone who speaks both English
and French can recognize.

(b) L, nL,=Languagethat containsall the sentencesthat arein both
L, andL,.

Example 0.1.35: GivenA={a, b, c},B={b,c,d} and

L ={a'b[i=1]j>1}, L ={b'cl]izj=1}
L={abicdl|iz1j2}, ,={(ad)ad!|iz2j=1}
Determine whether each of the following statementsistrue or false.

(8 L,isalanguage over A.

(b) L,isalanguageover B.

() L,isalanguageover A B.

(d) L,isalanguageover An B.

() Lgisalanguageover A B.

(f) Lsisalanguageover A n B.

(9) L,isalanguageover Al B.

(h) L,isalanguageover A—B.

(i) L,isalanguageover B—A.

() L, OL,isalanguageover A.

(k) L, OL,isalanguageover A B.
() L, OL,isalanguageover A n B.
(m) L, nL,isalanguage over B.

(n) L, nL,isalanguageover A0 B.
(0) L, nL,isalanguageover An B.

Eolution

From the given sets A and B, we have

AOB={abcd}
AnB={bd
A-B={a}
B-A={d}.

Introduction 27

Hence we conclude the following
(@ True (b)False (c) True (d) True (€) True (f) False
(9) True (h)Fase (i) Fase (j) True (k) True (I)False
(m) True (n) True (o) True.

0.1.5 Boolean Logic

“Boolean logic” is a system built with two values TRUE and FALSE.
“Boolean values’ are represented by values 0 and 1. There are many Boolean
operations.

() Negation: It meansthe NOT operation, represents by —.
Example: = 0=1and- 1=0.

(b) Conjunction: It meansthe AND operation, represented by [1

(c) Digunction: It meansthe OR operation, represented by [

The truth tables of the above Boolean operations are shown as below:

A B C=A0B A B C=A0B

0 0 0 0 0 0

0 1 0 0 1 1

1 0 0 1 0 1

1 1 1 1 1 1
AND OR

(d) Exclusive-OR operation: 1 if either but not both of its operands are 1.
Exclusive-OR is denoted by [1.

A B C=A0B

0 0 0

0 1 1

1 0 1

1 1 0
Exclusive-OR

(e) Equality: Theequality operation, written with the symbol « , is1if both
its operands have the same value.

28 Theory of Automata, Formal Languages and Computation

(f) Implication: This operation is designated by the symbol — andisOif its
first operand is 1 and its second operand is O; otherwise - is 1.

0.1.6 Fundamental Proof Techniques
(@ Principle of Mathematical Induction

Proof of induction is used to show that al elements of an infinite set have a
specified property. The proof by induction has two parts, (i) Induction step
(i) Basis.

The induction step proves that foreach i 21, if P(i) istrue, then so is
P(i +1). The basis provesthat P(1) is true. When both these parts are proved,
then for each i, P(i) is proved.

Let usillustrate the method of writing a proof by induction.

Basis. To provethat P(1) istrue.

Induction Sep: For eachi =1, assumethat P(i) istrue and use thisassumption
to show that P(i + 1) istrue.

(b) Pigeon-hole Principle

If Aand B arefinite setsand |A| > |B, then there is no one-to-one function from
AtoB.i.e, If an attempt ismade to pair off the elements of A (the “pigeons”)
with elements of B (the “pigeonholes’), sooner or later we will have to put
more than one pigeon in a pigeonhole.

By induction, the pigeonhole principle can be proved.

Example 0.1.36: A sack has 50 marbles of 4 different colours. Show
that there are at least 13 marbles of the same colour.

Eolution

Since we need to partition the set of 50 elements (marbles) into 4 sets
(colours), according to the Pigeon-hole principle at |east one of the sets (same
colour) has [b0/40= 13 elements (marbles). That is to say that at least 13
marbles have the same colour.

Example 0.1.37: Show that 2" >n°® for n=10 by Mathematical
Induction.

Proof: (i) Basis Forn=10,2" =1024>10°
(i) Inductive Step: Assume2* > k3

Introduction 29

Now,

10
1@3 .
+=1 @2
S
1@3 .
> 1+- k
S

(k+D)°
3

k
2K > (k +12)3.

1\

> k3

Hence2" > n® for n>10. 0

Example 0.1.38: Provethat for every integer n >0, the number
4% 1 3™2 jsamultiple of 13.

Proof: We useinduction on n, starting withn = 0.

P(0) = 420 +302 = 4+3% =13(1) (1)
Assume P(k) = 4% +3%*2 =13t, for some integer t.)
We need to prove that

P(k +1):4%€*D*1 4 36*D*2 jg 3 multiple of 13.

Now,
42k+D+1 +3(k+1)+2 = 4@k+)+2 +3(k+2)+1
— 42(42k+1)+42(3k+2 _3k+2)+3[3k+2
— 42(42k+l +3k+2)+3k+2(_42 +3)
=16(13t) +3"*2(-13) [from (2)]
= 13]16t - 3] ®)

From (3) it follows that P(k+1) is a multiple of 13. Hence we have,
4% 1 3™2 jsamultiple of 13. m|

Example 0.1.39: Show that for any integer n=0, (11)™? + (12)°™ is
divisible by 133.

Proof: Basis: Whenn =0, 11% + 12! = 133 is divisible by 133.

30 Theory of Automata, Formal Languages and Computation

Inductive Hypothesis: When n = k.
112 +12%*1 =133p
Inductive Step: Whenn=k+ 1
11k+3 +122k+3 =11- 11k+2 +122k+3
=11(133p _122k+1) $122%k+3
=133(11p) —12%** (11-12?)
=133(11p +12%*1)

Henceit istruefor n=0. O

Example 0.1.40: Itisknown that for any positiveinteger n>2,
i+i+...i_A>o
n+l n+2 2n

where A is a constant. How large can A be?

Eolution

Let the value of A be x.
n=2,}+}—x>0 @Assume x<1ﬁ
3 4 12

Inductive Hypothesis:
1

1 1
Forn=k,——+——+--+—-x>0
k+1 k+2 2k

Inductive Step:

1 1
+ oot -X
k+2 k+3 2(k +1

For n= k+1,

01 1 10 1 1 1
= +—— .+ 04 + - -X
Hc+1 k+2 2kH 2k+1 2k+2 k+1

@Addi ng and substracting LH
k+1

But 01 +i+...iu—x+ (p- positive)
ool k+2 kg XTP PP

Introduction 31

From (1), we have

01,1, 1 g o, 1,1 1
F+2 k+3 “2k+2 'H Pt o +1 2k +2 k+1
1 1
:p+ -
2k +1 2k +2
1
=p

+ —
2k +1)(2k +2)

Hence the value of x isincreasing for increase in n.

0 Maximum value of A<é.

Example 0.1.41: For the sequence of integers [F,[]l,, defined by
F, =1 F,=1and F,=F,_, +F,_,,n23 prove by Mathematical
Induction that

Proof: Basis; n =1,

0 -5
Fl:i%[+£m_ \/EED
581 2 002 [
_ 13,45 1,450
B2 2 2 2p
=1

R SCL N AL I S
V5@ 2 0 02 0Of 5@ 2 O 020

32 Theory of Automata, Formal Languages and Computation

Example 0.1.42: Show that any positive integer, n=>2is either aprime
or a product of primes.
Proof: Basis: n =2 isaprime.
Inductive Hypothesis. For n =k, kis either a prime or a product of primes.
Inductive Step: For n=k+ 1, if k+ 1isprimethegiven statementistrueelse,
k+1=pg, pq<k

O k + lisaproduct of primes.

Example 0.1.43: Prove by Mathematical Induction, for n=1,

L, _nn+)(n+2)
2T
_Nn(n+)@n+1)

Proof: Let P(n) =1° +2% +..-n? !

Basis For n=1, P(1) = 1 = 1 (on calculating LHS)

s py - 1ED_ 00O

Therefore P(1) istrue.

Inductive Hypothesis:
P(K)=1% +2% +...k? = Wistrue
Inductive Step: We claim that
P(K+1) =12 +2% +...+(k +1)% = (e + Dk -;2)(2k *3) istrue.
Now,
1 +2% 4 4k? + (k+D)? = (@ +2% +--+k?) + (k +D)?
_ k(k +1)6(2k +1) (k +1)2
(. P(K) istrue)
_ k(k +1) (2k +1) +6(k +1)*
- 6

(k +1)[2k? + 7k +6]
6

Introduction 33

(k+D (k +2) (2k +3)
6

O P(k+1) istrue.

Thuswehave, if P(K) istrue, P(k+1) isasotrue. By principle of Mathematical
Induction, we have

Z:—lkz _ n(n +1)(2n+1)’ n>1
= 6 a

Example 0.1.44: Provethat2" > n, forall nO N, by using Mathematical
Induction.

Proof: LetP(n)=2"-n>0.
Basis Forn=1,P(1)=2'-1=2-1=1>0.
Therefore P(1) istrue.

Inductive Hypothesis: Let us assume that P(K) is true. Here we have k as a
positive integer.

0 2 -k is positive integer

02 -k=m @

Inductive Sep: To prove that P(k + 1) is aso positive. Let us consider
2K — (k +1).
We have

2K —(k+) =2(2)F -k -1
=2(k+m)-k-1
=k+2m-1
= positive (- mis positive)

O If P(K) istrue, P(k + 1) isalso true.
Hence by Mathematical Induction, P(n) istrue, i.e.,

2"-n>00 2" >n0OnON O

Example 0.1.45: A wheel of fortune has the numbers from 1 to 36
painted on it in at random. Prove that irrespective of how the numbers are
situated, three consecutive numbers total 55 or more.

Eolution

Let n, be any number on the whesl.

34 Theory of Automata, Formal Languages and Computation

Counting clockwise from n,, label the other numbersn,, n;, s Ngg.-
For the result to be false, we should have

n, +n, +n; <55
n, +n; +n, <55

Ngq + Ngs + N <35,
Mg +Ngg + 1y <55,
Ng + N, +n, <55

Inall theinequalities above, thetermsn,, n,, N, appear exactly three
times.
Therefore adding the 36 inequalities we get

3y 761 n, =3% 7’61 j <36(35) = 1980.
But 5> ?61 j = (36)(37) = 666.

But this gives the contradiction that
1998 = 3 (666) < 1980.

Example 0.1.46: Prove by induction,

n(n+1)(2n+1)

13+24+35+--n(n+2) = -

Proof:

Basis 13= @ (2)(9) =3

Thisresult istruefor n=1.

Inductive Hypothesis: Assume that the result istrue for n = k(=1).
i.e,
k(k +D)(2k +7)

13+24+35+---k(k+2) = 5

Inductive Sep: Forn=k+ 1,

[1L3+24+---k(k+2)]+(k+D(k +3)

_ k(k +1)(2k +7)00
= A = (k +1)(k +3)

Introduction 35

= Lgl)[k(Zk +7)+6(k +3)]

_ (k+1)(2k? +13k +18)

6
_ (k+D(k +2)(2k +9)
6

Hence the result follows for al nOZ", by the principle of Mathematical
induction. a

Example 0.1.47: Prove by induction

n 1 n

2= +1) nel
n 1 n
Proof: Assume S(n): Z i=lm =T
Forn=1,
gt 1 1 _ 1
s0= Zi=1i(i +1) 1) 1+1
O S@) istrue.
<k 1 k .
Assume S(k).zi:l i+ = k—+l|strue.
Now consider S(k + 1).
1 1 ok 1 1
Zi=li(i+1)_Zi=li(i+1)+(k+1)(k+2)
ok 1
T+ kD (k+2)
_ [k(k+2)+1]
T (k+D (k +2)
_ kel
T k+2

Therefore, SK) O Sk + 1). Hence the result follows by Mathematical
Induction.

Example 0.1.48: Prove by inductionforn0 z*,

n>40 n?<2"

Proof: For n=5,2°=32>25="5%,

36 Theory of Automata, Formal Languages and Computation

Assume theresult for n=k(=5):
2> 12,
For k> 3, we have
k(k-2)>1
0 k?>2k +1
0 2% >k?
O 2% +2% >k?2 +k?
O 2% > k2 +k2 >k2(2k +1)
O 27 > (k +1)2

Hence the result is true for n=5by the principle of Mathematical Induction.
O

Example 0.1.49: Given S(n) as the statement
. [

Prove that the truth of Sk) implies the truth of Sk + 1) by Mathematical
induction.

Proof: Assume S(K). For Sk + 1), we have
Zik:lliz %+%%/2E +(k +1)
= %2 +k+ %@+2k +2§/2
Ek +1)2 + (k +1)+%%/2
é{k +1)+%@2§/2

Therefore S(k) O gk +1). O

Example 0.1.50: Show that if we select 151 distinct computer
engineering courses numbered between 1 and 300 inclusive, at least two
are consecutively numbered (using Pigeonhole Principle).

Introduction 37

Eolution

Let the selected course numbers be

(T ST Kis; (@)
The 302 numbers consisting of (1) together with
k, +1k, +1,...... kisp +1 2

range in value between 1 and 301. By Pigeonhole principle, at least two of
those values coincide. The numbers (1) are al distinct and so the numbers (2)
are also distinct.

It must bethenthat one of (1) and oneof (2) areequal. Thereforewehave

k; :kj +1

and course k; follows course k.

Example 0.1.51: Supposethereare 50 marblesof four different colours
inasack, if exactly 8 marblesarered, show that there are at least 14 of the
same colour.

Eolution

If we know that 8 of the marbles are red, then no other marbles could be red,
and we need to partition therest (50 — 8) = 42 marblesinto therest (4—1) =3
colours.

According to the Pigeon-hole principle, there are at least (42/30= 14
marbles, which must have the same colour.

0.1.7 Introduction to Grammar

Grammar is a mechanism to describe the languages.
A grammar (G) is defined as a quadruple

G=(V,T,SP)
where
V = Finite set of objects called VARIABLES
T = Finite set of objects called TERMINAL SYMBOLS
sgv = Start variables
P = Finite set of Productions.

A production rule P is of the form
X-y

Given astring w, of theformw = uxv, we can usetheproductionrulex —» yand
obtain anew string z = uyv.

38 Theory of Automata, Formal Languages and Computation

The set of all strings obtained by using Production rulesisthe“ Language’
generated by the Grammar.

If the grammar G = (V, T, S P) then
LG) ={wOT :S11 w
If WOL(G), then the sequence
SOwOw, 0w Ow, 0w
isa“derivation” of the sentence w.

The string S,w;,w,, w,, which contain variables as well as
terminals, are called “SENTENTIAL FORMS’ of the derivation.

Example 0.1.52: Given aGrammar G = ({S}, {a,b}, S, P)
with P defined as

S . ah,
S A

(i) Obtain a sentence in language generated by G and the sentential form
(i) Obtain the language L(G).

Eolution

SO a%
0 aaShb
00 aabb

Thereforewe have S {1 aabb.

(i) Sentencein the language generated by G = aabb.
Sentential form = aaSob.
(ii) TheruleS - aShisrecursive.

All sentential formswill have the forms
w =a'Sh'
Applying the productionrule S - aSh, we get
aiSbi 0 ai+lsbi+l
Thisistruefor al i.
In order to get asentencewe apply S — A.
Therefore we get
S a"sb" 0 a"b"

Introduction 39

Therefore L(G) :{a”b“; nzo}.

Example 0.1.53: Obtain a Grammar which generates the language
L :{a“b“+1 :nZO}

Eolution

With L ={a”bn n 20} , the grammar

G=({s}.{ab},SP)
with productionrulesS - aSh, S - A.
Therefore L = { a"b™:n> O} is obtained by generating an extrab.
Thisis done with a production rule
S - Ab
Hence the grammar G is given by
G =({S, A}{{a, b}, S, P) with production rules given by

S - Ab
A - aAb
Ao A

Example 0.1.54: ObtainthelanguageL produced by G with production
rules

S S5
S—P)\

S a%
S - bSa

Eolution

Itisknown from the given production rulesthat G has equal number of &’ sand
b's.
If wstartswith an ‘a’ and endswith a‘b’, then w L has the form
w=aw b

wherew; OL.
If wstartswith a‘b’ and endswith an‘a’ then w L hasthe form

w=bw, a

wherew; OL.

40 Theory of Automata, Formal Languages and Computation

Asastring in L can begin and end with the same symbol, the string shoud
be of the form

W=w, W,

wherew, and w, arein L, produced by S — SS
This generates the language

L={w:n, (W)= n, (W}

where n(w) and n,(w) denotes the number of a's and number of b's in the
string w, respectively.

Example 0.1.55: GivenG, = ({A S}.{a,b},S,P,) with P, defined by
the production rules

S _ afb|A
A~ aAb|A
show that L(G,) ={a"b" : n20}.

Also show that G, isequivalent to G whereG = ({S},{a, b}, S, P) where P
isgiven by

S- a%h

S A
Given P, as

S - aAb

S A

S - aAb

A

S - A produces a string with zero length. (n=0)

SO aAb SO aAb
O aAb O aaAbb
0 ab O aabb

O a’b? andsoon

Therefore L(G,) ={a"b": n>0}.

GivenG = ({S}.,{a,b},S,P) wherePisS - aSh, S - A.
Therule S — aShisrecursive.
All sentential forms will have the forms

w =a'sh

Introduction 41

Applying the production rule S - aSh, we get
a'sb' 0 a™'sp™

Thisistruefor al i.
In order to get asentencewe apply S - A.
Therefore we get

Ssf1 a"sb" O a"b"
Hence L(G) :{a”b” : nzO}

Hence G, is equivdent to G as both the grammars are given by
{a”bn : nzo}.

Example 0.1.56: Given agrammar G defined by the production rules

S- AB
A - Aa
B - Bb
A- a
B - b

Show that the word w=a’b* OL(G),

where L isalanguage determined by G.

Eolution

AB
AaB
aaB
aaBb
aaBbb
aaBbbb
aabbbb

a’p*

Ooooogoodg

Hence theword w= a®b* OL(G).

Example 0.1.57: Findgrammarsfor Z = {a, b} that generate the sets of

(@) all stringswith exactly one‘a’
(b) all stringswith at least one ‘@’
(c) dll stringswith no morethanthreea’s.

42 Theory of Automata, Formal Languages and Computation

Eolution

(& GivenZ={a,b}
We are able to write the grammar G which produces all strings
with exactly one ‘a’ whose production rules are
A5 aSh

S-S
S- 0O

(b) Foral stringswith at least one‘a’: Production rules of Grammar
Care

A - a%h

S - bSa
S- 0O

(c) For al stringswith no more than threea's
Lz{a"bm‘ns 3, m2 0}

with production rules

A - aSh
S - aBb
B - aCb
C- bC
C-b|O

Example 0.1.58: Give a simple description of the language generated
by the grammar with productions

(@) S- aA, (b) S - Aa,
A - bS, A- B

Eoution

(@) For the given production rules

S- aA
A bS
S- A

we have the language L given by
L ={ a"o"|n> 1}
(b) For the given production rules
S- Aa

Introduction 43

A- B
B - Aa

Thereisno language L produced as there is no proper termination.

GLOSSARY

Set: Collection of objects

Singleton: Set having only one element.

Empty set: Set with no element

Complement: Set containing everything not contained in the base set.

Cardinality: Number of elementsin a set.

Powerset: Set having ‘n’ elements have a powerset having 2" elements.

Relation: A relation on two setsis aset of ordered pair.

Poset: Partially ordered set.

Mapping: A function is otherwise called Mapping.

I njection (one-to-onefunction): Functionisone-to-oneif different elements
in domain of one set have distinct images in the range.

Surjection (onto function): A function isonto function if each element of a
set isthe image of some element of the other set.

Bijection (one-to-one onto function): Function that is both one-to-one and
onto

Invertible function: Function isinvertible if and only if it is both one-to-one
and onto.

Degree of vertex: Number of edges having that vertex as an end point.

L oop: Graph having an edge from a vertex to itself.

Isolated vertex: Vertex with zero as degree.

Directed graph: Graph having arrows instead of lines.

Outdegree: Number of arrows pointing from a particular node.

Indegree: Number of arrows pointing to a particular node.

Alphabet: Finite set of symbols.

String: Finite sequence of symbols from an aphabet.

Lexicographic ordering: Dictionary ordering, except that shorter strings
precede longer strings.

Language: Any set of strings over an alphabet.

Kleenestar: Set of all strings obtained by concatenating zero or more strings
from alanguage.

Boolean logic: System built with two values True and False.

Negation: Means NOT operation

Conjunction: Means AND operation

Disunction: Means OR operation.

44 Theory of Automata, Formal Languages and Computation

Exclusive-OR: 1 if either but not both of its operands are 1.

Mathematical Induction: Hastwo parts (a) Induction step (b) Basis.

Pigen-holeprinciple: If anattemptismadeto pair off the elementsof A (“the
pigeons’) with elements of B (the “ pigeon holes’), sooner or later we
will have to put more than one pigeon in a pigeon hole.

REVIEW QUESTIONS

1. Definethefollowing terms:
(@) Set (b) Union (c) Intersection
2. Define the following terms:
(a) set difference (b) Complement
Explain with examples.
3. What have you understood by the following:
(@) Idempotency
(b) Commutativity
(c) Associativity in respect of sets.
4. Definethefollowing w.r.t. sets:
(a) Digtributivity (b) Absorption (c) DeMorgan’slaws
5. Stand prove DeMorgan's Laws.
6. Definethefollowing termsw.r.t. sets.
(@) Digoint sets
(b) Cardinality
(c) Powerset
(d) Cartesian product.
7. Define arelation. Explain with an example.
What is an equivalence relation? Give an example.
9. Explaintheterms:
(a) Partial ordered set/Poset (b) Partition of arelation
10. What do you mean by equivalence class?
11. Definefunction asarelation.
12. What are the kinds of functions?
13. Explain the following with an example for each:
(@) one-to-onefunction
(b) ontofunction
(c) one-to-one onto function
(d) invertible function.
14. Differentiate between Injection, Surjection and bijection with
examples.
15. Define agraph with an example.

o

Introduction 45

16.

17.

18.

19.

20.

21.
22.

22.
23.
24,
25.
26.
27.
28.

29.

30.
31
32.

Define the following terms:

(@) Degreeof avertex

(b) Loop

(c) Isolated vertex

(d) Adjacent vertices.

Define the following terms w.r.t agraph

(&) path (b) circuit (c) simple path

Define the following terms w.r.t. of graph

(8 Connected graph

(b) Components of agraph

(c) Wwak of agraph

(d) Directed graph.

Define the following terms w.r.t. agraph

(a) out degree (b) in degree

How will you define the following:

(a) string (b) alphabet in languages.

How do you define the length of a string?

Define the following in respect of languages.

(8 Empty string

(b) Reversestring

(c) Substring

(d) Concatenation

What do you mean by lexicographic ordering of strings?
What do you mean by prefix and suffix of astring?
Define alanguage with an example.

Define concatenation of strings with an example.

Define “kleene star”, with an example.

What are the kinds of fundamental proof techniques?
Explain the following with an example (in Boolean logic)
(8 Negation

(b) Conjunction

(c) Digunction

(d) Exclusive-OR

(e) Equality

(f) Implication

State and explain the principle of Mathematical Induction with an
example.

State and explain Pigeon-hole principle with an example.
What do you mean by Grammar?

What are the types of Grammars?

46

Theory of Automata, Formal Languages and Computation

10.
11

12.

13.

14.
15.
16.
17.

18.

EXERCISES

Determine whether each of the following pairs of setsis equal

@ o{g

) {{2.{22}}

(© {1, 3, 3,5 5, 5}, {5 3 1}

For each of the following sets, determine whether 5 isan element of that
Set.

(@ {xOR|xisaninteger greather than 1}

(b) {xOR|xisthe square of an integer}

© {55}

Determine whether each of the following statementsis True or False.
@ x0{x (bed{x (c)el{x

If A,Band C aresetssuch that ACB and B 0 C, show that AOC.
Find the Cardinality of each of the following sets.

@{1y O{@ ©o{e} oo}

Determine the powerset of the following sets.

@{a O{ab ©{e{d}

Determine the number of elementsin each of the following sets.

@ P(P@) () P({pa{a}.{{a}}})

GivenA={a,b,c,d} andB={y, z, find{a} AxB(b) B x A

Find out the cartesian product A x B x C, where Aisthe set of all airlines
and B and C are both the set of dl citiesin Australia.

If Aisaset, showthatgpx A= Axp= A

Determine how many elementswill A x B haveif Ahasin elementsand
B has n elements.

Show that the ordered pair (a, b) can be defined in terms of sets as
{{a}.,{a B}, (Hint: First show that{{a},{a, b} ={c,{c d}} if and only
ifa=candb=d).

LetA={1,2 3,45 andB={0,3,6}.Find(@ AOB()An B

(0 A-B(d)B-A

Show that A= A, for agiven set A.

Showthat (@) AOB=BOA (b)AnB=BnA

Show that if Aand Bare sets, A-B = An B.

Show that if Aand B are sets, then (An B) O (An B) = A

What can you say about the sets A and B if the following are true?
& AOB=A

(b) AnB=A

(coc A-B=A

(d AnB=BnA

Introduction 47

19.

20.

21.

22.

23.

24.

25.

26.
27.

28.
29.

30.

31.
32.

33.

(e A-B=B-A
LetA ={1, 2, 3, i}fori:1,2,3,.......Find(a).LnJAi,(b)ﬁAi

Using Membership table show that
An(BOC)=(AnB)O(ANnC).
Using Venn diagram show that
AO(BNC)=(AOB)n (AOC)
Using set builder notation and logical equivalences show that
AnB=AOB

State and prove De Morgan’s laws.

Prove by (a) Venn Diagram (b) Membership table:
(i) Commutative law (ii) Distoibutive law.

Given A={a}, B ={alb}, find A°, B® and AB.
Given A={[a}, B ={ab} determine A", B" and B
Given A and B are subsets of = and 0O A, show that the equation
X = AX 0 B hasaunique solution X = A"B.
Define=* intermsof <.

Given L, ={ab, bc ca}, L, ={aa, ac, cb} determine
@LOL G L 0L ©L 0, @)L,

What do you mean by the Kleene closure of set A?
What do you mean by [Hree closure of set A?
Given A={a, aa}, B ={a}, C ={aa} show that

A(B nC)OAB n AC.

A survey was conducted among 1000 people. Of these 595 are

democrats. 595 wear glasses and 550 like icecream. 395 of them are

democrats who wear glasses, 350 of them are democrats who like

icecream and 400 of them wear glasses and like icecreams; 250 of them

are democrats who wear glasses and like icecream.

(@ How many of them are not Democrats, who do not wear glasses,
and do not like icecreams?

(b) How many of them are Democrats, who do not wear glassesand do
not like icecreams?

Itisknownthat at the* Catherine Assumption University”, 60 percent of

them play bridge, 70 percent jog, 20 percent play tennis and bridge, 30

percent play Tennis and jog, and 40 percent play bridge and jog. If

someone claimed that 20 percent of the Professors jog and play bridge

and Tennis, would you believe in this claim? Why?

48

Theory of Automata, Formal Languages and Computation

35.

36.

37.

38.

39.

42.

Prove:

@ AOAnB)=A

(b) An(AOB)=A

(0 A-B=AnB

(d AO(AnB)=AOB

(& An(AOB)=AnB.

Check if the following are functions defined in Rto R:

@ =7

(b f(x)=vx

() f(x)=+Vx?+1

Determine the domain and range of the following functions.

(& Thefunctionthat assignsto each positiveinteger thelargest perfect
sgquare not exceeding this integer

(b) The function that assigns to each hit string twice the number of
zerosin that string.

Which of the following functions are onto from the set {a, b, c, d}.

@ f(@=bf=af(c)=cf(d)=d

(b) f(@=d f(b)=b, f(c)=c f(d)=d

Determine which of the following functions from Z to Z is one-to-one

@ f(n=n-1

(b) f(n)=n?+1

© f(m=n’

(@) f()=m20

Determine which of the following functionsis abijection from Rto R.

@ f(x)=3x+1

(b) f(x)=2x*+1

© fx=3x°

d) fx)=x2+D/(x* +4)

If gisafunction from Ato B and f isafunction from B to C.

(& Show that if bothfand g oneontofunctions, thenfB gisalso onto.

(b) Show that if both f and g are one-to-onefunctions, thenfB g isalso
one-to-one.

If f and f B g are one-to-one, does it follow that g is one-to-one? Justify
your answer.

Find f B g and g of where f (x) = 2x* +1and g(x) = x +5 are functions
fromRto R.

Introduction 49

46.

47.

49.

50.

51.

52.

53.

55.

Show that the mapping f: X — X when X ={x0R, x#0} defined

by f (x) =)—1(is one-to-one and onto.

State which of the following are injections, surjections or bijections
from Rto R, where Risthe set of all real numbers.

@ f(x)=-2x

(b) f(x)=x%-1

Given X = {1, 2, 3, 4} and a function f: X » X given by
f ={(12),(23),(34), (41} Find the composite function f*.

Given f :R - Rand g:R - R, where R is the set of real numbers,
where f (x) = x* —2and g(x) = x + 4 Determine f ogandgo f. State
whether these functions are injective, surjective and bijective.

Given Ristherelation on the set N of all natural numbers given by the
expression x + 3y = 12.

(@) ExpressRasaset of ordered pairs

(b) Determine the domain and range of R.

Given RastherelationfromA={2,3, 4,5} toB={3, 6,7, 10}, whichis
defined by the expression “x dividesy”.

(8 ExpressRasaset of ordered pairs.

(b) Determine the domain and range.

For each of the following relations on the set {1, 2, 3, 4}, determine
whether it isreflexive, or symmetric or antisymmetric or itistransitive.
@ {(22),(23),(24),(32), (33), (34)}

(b) {(1.1),(12),(21),(22),(33), (44}

© {(24).(42)}

d {(1.2),(23), 34}

How many relations are there on a set with ‘n’ elements that are

(8 symmetric

(b) antisymmetric

(c) asymmetric

(d) irreflexive

(e) reflexive & symmetric

(f) neither reflexive nor irreflexive

Show that the relation R on aset A is symmetric if and only if R= R™
where R isthe inverse relation.

Assume that the relation Risirreflexive. |s RP necessarily irreflexive?
Give reasons.

Given Risareflexivereation on aset A, show that R isreflexivefor all
positive integers n.

50

Theory of Automata, Formal Languages and Computation

56.

57.

58.

59.

60.

61.

62.

63.

65.

66.
67.

68.

Given Risarelation R={(a,b) | a divides b} on the set of positive

integers. Determine

@R' MR

Determine whether the relation R on the set of al integersisreflexive,
symmetric, antisymmetric, and/or transitive, where (x, y) OR if and
only if

@xy=1 (b)x=y(modb) (c)x=y*

Determine the language of grammar G givenby V={S A, a, b},
T={a, b} and productionP ={S - aA,S - b, A - aa}.

Determine the grammar that generates the set

{0"" |n=012 }

Determine at least two grammars that generate the set {0™1"

are nonnegative integers} .
Determine the grammar that generates the set
{0""2" In=012 }

Determine the grammar for each of the following languages.

(@ setof al bit strings containing an even number of 0° and no 1°.
(b) set of all strings containing more 0° than 1°.

(c) setof al strings containing an equal number of 0° and 1°.

(d) setof al strings containing an unequal number of 0° and 1°.
Determine the grammars for the following languages on = ={a}.
(@ L={w:|w]|mod3=0}

(b) L={w:|w|mod3=|w]|mod 2}

Assuming Z ={a, b} with n(w) and n,(w) asthe number of asand b’'s
respectively in string w, find grammars for

@ L={w:n, (w)=2n, (W)}

(b) L={w:n, (W) >n, (W)}

Are the two grammars with respective productions

mand n

S - aSh|ab|A
and

S - aAblab

A - aAb|A
equivalent?

Are there languages for which L* = L2
Provethat (L,L,)" = LYLY for all languages L, and L.
Show that any 2" x 2" chessboard with one square removed can betiled

Introduction 51

69.

70.
71.
72.

73.

74.

75.

76.

using L-shaped pieces, where these pieces cover three squares at atime
as shown infig. (n-positive integer).

Using Mathematical Induction provethat 3+ 35+ 35%+-.-+35"=3
(5"* ! - 1)/4, where n is a nonnegative integer.

Using Mathematical induction prove that n! < n", wheren > 1.

Show that 12— 2% + 3% —--- + (-1)" ™n® = (<1)"*n(n+1)/2 where n > 0.
Determine which amounts of postage can be formed using 5-cent and
6-cent postage stamps. Prove your solution using mathematical
induction.

Show that n lines separate the planeinto (n? + n +2) / 2regionsif no two
of these lines are parallel and no three pass through a common point.

A computer network has 6 computers. Each computer is directly
connected to at least one of the other computers. Show that there are at
least 2 computersin the network that are directly connected to the same
number of other computers (using Pigeonhole principle).

Show that in a group of 5 people where any two people are either
friends/enemies, there are not necessarily three mutual friends or three
mutual enemies, using Pigeon-hole principle.

Useinductionto provethat any integer composed of 3" identical digitsis
divisible by 3".

SHORT QUESTIONS AND ANSWERS

Define a set.
A setisacollection of objects.
Define “elements’ of a set.
The objects comprising a set are called its elements or members.
Define asingleton.
A set having only one element is called a Singleton.
Define an empty set.
A set with no element at all is called the empty set.

52

Theory of Automata, Formal Languages and Computation

10.

11

12.

13.

14.

15.

What do you mean by ‘ membership criterion’ of a set?

The criterion for determining for any given thing, whether itisoris
not amember of the given setiscalled ‘ membership criterion’ of the set.
What isanull set?

A set which hasno elements at all iscalled Null set.
Define a subset.

If every element of set A is aso an element of set B, then Alisa
“subset” of B, which iswritten as A 0 B.

Define a proper subset.

If every element of set A isaso an element of set B, but B also has
some element not contained in A, we say that Aisa* proper subset” of B,
and write A 0 B.

What isaNull set?

A set having no element is called a Null set.
Define Union of two sets.

The Union of two setsisthe set that has objects that are elements of
at least one of the two given sets, and possibly both.
Union of two sets A and B is given by

AOB={x:xOAorxOB}

Define intersection of sets.
Theintersection of setsA and B, written A n B, isaset that contains
exactly those elements that are in both A and B.

AnB={x:xOAorxOB}

Define set difference.
The set difference of set A and set B, written as A — B, isthe set that
contains everything that isin A but not in B.

A-B={x:xOA and xOB}

Define Complement of a set.
The Complement of a set A, written as A, is the sat containing
everything that isnot in A.
Define the set operations
(a) Idempotency (b) Commutativity
AOA=A
(@) ldempotency: N

(b) Commutativity: AL B=BLA
AnB=BnA.

Define the set operations
(a) Associativity (b) Distributivity

Introduction 53

16.

17.

18.

19.

20.

21.

22.

23.

24.

(8 Associativity: (AOB)OC=A0(BOC)
(AnB)nC=An(BnC)
(b) Distributivity: (AOB)nC=(AnC)0(BnC)
(AnB)OC=(AOC)n(BOC)
Define the set operation viz., Absorption.
(AOB)n A=A
(AnBYOA=A
State DeMorgan’s Laws.
A-(BOC)=(A-B)n (A-C)
A-(BnC)=(A-B)O(A-C)
What are digoint sets?
If A and B have no common elementsi.e., A n B = ¢, then the setsA
and B are said to be digjoint.
Define cardinality of a set.
The Cardinality of aset A, written |A|, is the number of elementsin
set A
Define powerset.
The set of all subsets of A, written 2*, is called The power set of set
A
If aset has'n’ elements, how many elements does the powerset have?
The Powerset has 2" elements.
Define Cartesian Product.
The set of al ordered pairs (%, y) where x O A and y[OB is called
Cartesian product of the sets A and B, denoted by A x B, i.e,

AxB={(x y):xOA and yOIB}

Define arelation.
A relation on sets Sand T isa set of ordered pairs (s, t), whose
(8 sOS(sisamember of §
(b) tadT
() Sand T need not be different
(d) Theset of al first elementsisthe “domain” of the relation, and
(e) Theset of al the second elementsisthe “range” of the relation.
What is an equivalence relation?
A subset R of Ax Alis called an equivalence relation on A if R
satisfies the following conditions:
() (a,a)dRforal adA(Risreflexive)
@iy If (a,b) OR,then (b,a) OR, then (a,b) OR
(Ris symmetric)
(@iii) If (a,b)0Rand (b, c) R, then (a, c) OR (Ristransitive)

54

Theory of Automata, Formal Languages and Computation

25.

26.

27.

28.

29.

30.

31.

32.

What do you mean by apartial ordering relation?

A relation Ron a set Sis caled a “partial ordering” or a “partial
order” if Risreflexive, antisymmetric and transitive.
What do you mean by a Poset?

A set S together with a partial ordering R is caled a “Partialy
ordered set” or “Poset”.
What do you mean by Partition?

A Partition P of Sisacollection{ A} of nonempty subsets of Swith
the properties:

(i) EachalSbelongsto some A,

(i) IfA A thenAn A =0,
What is afunction?

Suppose every element of S occurs exactly once asthefirst element
of an ordered pair. In fig. shown, every element of S has exactly one
arrow arising from it. Thiskind of relation is called a“function”.

domain co-domain

\ T~

A function maps an element in its domain to an element in its
co-domain.

What do you mean by injection?

A one-to-onefunctioniscalled an Injection. A function f : A — Bis
said to be one-to-one if different elementsin the domain A has distinct
imagesin the range.

A function of isone-to-oneif f (a) = f (') impliesa=4a'.
Define Surjection.

An onto function is called a Surjection.

A function f ; A - Bissaidto bean ontofunctionif each element of B
isthe image of some element of A.
What do you mean by bijection?

A one-to-one onto function is called a bijection. A function that
maps each and every element of A to exactly one element of B, with no
elements left over is aone-to-one onto function.

What is an invertible function?

A function f :A - B isinvertible if its inverse relation f " isa

function from B to A.

Introduction 55

33.

35.

36.

37.

38.

39.

4]1.

42.

46.

A function f : A - Bisinvertibleif and only if it isboth one-to-one and
onto.
Define a Graph.

A graph a consists of a finite set V of object called “Vertices’, a
finite set E of objects called “Edges’ and a function y that assigns to
each edge a subset {v, w}, where v and w are vertices. Here we have
G=(\V,Ey).

Define degree of a vertex.

Degree of a vertex is defined as the number of edges having that

vertex as an end point.
What is an isolated vertex?

A vertex with zero as degree is called an Isolated vertex.
What isacircuit?

A circuit isa path that begins and ends at the same vertex.
What is a connected graph?

A graph is called “connected” if there is a path from any vertex to
any other vertex in the graph.
When isagraph said to be atree?

A graphissaidtobeatreeif itisconnected and hasno simplecycles.
When isapath called acycle?

A path isacycleif it starts and ends in the same node.

What is a directed graph?

A graph issaid to be directed if it has arrowsin stead of lines.
Define outdegree of a node.

The number of arrows pointing from a particular node is the
outdegree of that node.

Define Indegree of anode.

The number of arrows pointing to a particle node is the indegree.
Define Alphabet with an example.

Alphabet is defined as afinite set of symbols
Example: Roman Alphabet {a, b, z
Define astring.

A string over an alphabet is afinite sequence of symbols from that
aphabet, which isusually written next to one another and not separated
by commas.

Give examples for strings.
(@ Ifx, ={01 then 001001 isastring over = ,
(b 1fz,={anb,...... Z} then axyrpgsted isastring over Z ..
Define length of a string.
The length of a string is its length as a sequence. The length of a
string w iswritten as | w |.
Example: | 10011 | =5.

56

Theory of Automata, Formal Languages and Computation

47.

49,

50.

51.

52.

53.

55.

56.

57.

58.

Define an Empty string.

The string of zero length is called the empty string, denoted by [1
Define prefix and suffix of a string.

Prefix: 1f w= vy for somey, then visaprefix of w.
uffix: If w=xv for some x, then v isa suffix of w.
What do you mean by L exicographics ordering?

The Lexicographic ordering of strings is the same as dictionary
ordering, except that shorter strings precede longer strings.
The Lexicograhic ordering of all strings over the alphabet { 0,1} is(d, 0,
1, 00, 01, 10, 11, 000, ... }
What is a Language?

Any set of strings over an aphabet X is called a Language.
Define .

Theset of al strings, including theempty string over anaphabet Z is
denoted by 5.
Define concatenation of languages L, and L.

L=L O, ={wOZ"; w=xDOyfor somex 0L, and yOL,}
Define Kleene star.

Kleene star of alanguage L is denoted by L" which is the set of all
strings obtained by concatenating zero or more strings from L.
LU ={wOZ :w=w, ...w, for somek >0and somew,, W,, ... w, L}
What is Boolean logic?

It is a system built with two values — True and False., represented
by 1 and 0.
What do you mean by Negation?

It means NOT operation, represented by —.
Example: -0=1and-1=0.
What do you mean by conjunction?

It means the AND operation, represented by O
What do you mean by Disjunction?

It means the OR operation, represented by 1
Sketch the truth table for Conjunction & Disjunction

A B C=A0B A B C=A0B
0 0 0 0 0 0
0 1 0 0 1 1
1 0 0 1 0 1
1 1 1 1 1 1

Conjunction Disconjunction

Introduction 57

60.

61.

62.

59. Sketch the Ex-OR truth table.

A B C=A0OB

0 0

0 1 1

1 0 1

1 1 0
Conjunction

What isthe principle of Mathematical Induction?

There are two parts to the method of proof by induction (used to
show that all elements of an infinite set have a specified property):
(i) Induction step (ii) Basis.

The Induction step provesthat for eachi =1, if P(i) istrue, thensois
P(i +1).

The basis proves that P(1) istrue.
When both these parts are proved, then for each i, P(i) is proved.
State Pigeon-hole Principle.

If an attempt is made to pair off the elements of A (the “pigeons”)
with elements of B (the “pigeonholes’), sooner or later we will have to
put more than one pigeon in a pigeonhole.

Define a Grammar of a Language.
A Grammar (G) is defined as a quadruple

G=(\V,T,SP)
where
V = finiteset of objects called Variables
T = finite set of objects called Terminal symbols.
SOV = start symbol

P = finiteset of productions.

Chapter 1
DFA and NFA

1.1 DETERMINISTIC FINITE AUTOMATA (DFA)
1.1.1 Automata—What is it?

An automaton is an abstract model of adigital computer. An automaton has a
mechanism to read input, which isastring over agiven alphabet. Thisinput is
actually written on an “input file”, which can be read by the automaton but
cannot changeit.

Input File

LTI/ o

Control Unit

I n

Output

A
v

Storage

Fig. Automaton

Input file is divided into cells, each of which can hold one symbol. The
automaton has atemporary “storage” device, which has unlimited number of
cells, the contents of which can be atered by the automaton. Automaton has a
control unit, which is said to be in one of afinite number of “internal states’.
The automaton can change state in a defined way.

1.1.2 Types of Automaton

(8 Deterministic Automata
(b) Non-deterministic Automata

A deterministic automatais one in which each move (transition from one
state to another) is unequally determined by the current configuration.

If the internal state, input and contents of the storage are known, it is
possible to predict the future behaviour of the automaton. Thisis said to be
deterministic automata otherwise it is nondeterminist automata.

DFA and NFA 59

An automaton whose output response is “yes’ or “No” is caled an
“Acceptor”.
1.1.3 Definition of Deterministic Finite Automaton
A Deterministic Finite Automator (DFA) isa5-tuple
M=(Q,223q,F)

where

Q = Finite state of “internal states’

> = Finite set of symbols called “ Input a phabet”
0:QxX - Q = Trandgtion Function

g, 0Q = Initia state

FOQ = Setof Fina states

The input mechanism can move only from left to right and reads exactly
one symbol on each step.

The transition from one interna state to another are governed by the
transition function o.

If5(qq, @) = q,, then if the DFA isin stateq, and the current input symbol
isa, the DFA will go into state g;.

Example 1.1.1: Design a DFA, M which accepts the language
L(M) ={w(a,b)" :wdoes not contain three consecutive b's).

Let M=(Q, Z 9, qF)
where
Q = {0yt 0 agd
> = {ab}
Qo istheinitia state
F = {0, 0q,0,} areinitia states

and & is defined as follows;

Initial state Symbol Final state
q Y 5(q,0)
o a Qo
Qo b a;
0, a Qo
a; b 0z
0> a Qo
0z b 0;
O; a 0z
0z b 0z

60 Theory of Automata, Formal Languages and Computation

Eolution

M does not accept specified language, aslong asthree consecutive b’ shave not
been read.
It should be noted that

(i) Misinstateq, (wherei =0,1, or 2) immediately after reading arun
of i consecutive b's that either began the input string or was
preceded by an‘a’.

(i) Ifan‘a isread and M isin state, ¢, g, or M returns to its initial
state .

0o 0, and g, are “Final states’ (as given in the problem). Therefore any input
string not containing three consecutive b’ s will be accepted.

In case we get three consecutive b’'s then the g, state is reached (which is
not final state), hence M will remain in this state, irrespective of any other
symbol in the rest of the string. This state g, is said to be “ dead state” or M is
said to be “trapped” at gs.

The DFA schematic is shown below based on the discussion above.

Fig. Finite Automaton with four states

Example 1.1.2: Determine the DFA schematic for M = (Q, Z,0,q, F)
where Q = {q,, 0,, 03}, = ={0,1}, q, isthe start state, F = {q,} and d is
given by the table below.

Initial state Symbol Final state
q o 8(q,0)
O, 0 0,
a; 1 S7)
a, 0 0z
d, 1 a,
0; 0 0z
0; 1 0,

Also determine a Language L recognized by the DFA.

DFA and NFA 61

Eolution

0 1
1 0
@ @3

0,1

Fig. Finite Automaton having three states.

Fromthegiventablefor §, the DFA isdrawn, whered, istheonly final state.
(Itisto benoted that a DFA can “accept” astring and it can “recognize” alanguage.
Catch hereisthat “accept” is used for strings and “recognize” for that of alanguage).
It could be seen that the DFA accepts strings that has at least one 1 and an
even number of Os following the last 1.
Hence the language L is given by

L ={w|w contains at |east one 1 and
an even number of Osfollow thelast 1}

where L = L(M) and M recognized the RHS of the equation above.

Example 1.1.3: Sketch the DFA given
M = ({0;,0.} {038, ¢;.{d.})
and d isgiven by
8(9;,0)=¢q; and 8(d,,0)=q,
0(q,.) =0, 06(g9)=0,
Determine a Language L(M), that the DFA recognizes.

Eolution

From the given data, it is easy to predict the schematic of DFA asfollows.
Internal states = q;, 0,.
Symbols=0, 1.
Transition function = d (as defined above in the given problem)
g, = Initia state
g, = Final state.

0 1
1

g
0

Fig. State diagram of DFA

62 Theory of Automata, Formal Languages and Computation

If astringendsinao, itis“rejected” and “ accepted” only if the string ends
in al. Therefore the language

L(M) ={w|wendsinal}.
Example 1.1.4: Design a DFA, the language recognized by the
Automaton being

L={a"b:n=0}

Eolution

a a,b
_,_b,a_'b,

For thegivenlanguageL = {a"b:n >0}, thestringscould beb, ab, a’b, &b, ...
Therefore the DFA acceptsall strings consisting of an arbitrary number of
a's, followed by asingle b. All other input strings are rejected.

Example 1.1.5: Obtain the state table diagram and state transistion
diagram (DFA Schematic) of the finite state Automaton M = (Q, %, 9,
0o, F), whereQ ={q,, 0;,d,, 45}, Z ={a, b}, q, istheinitial state, Fisthe
final state with the transistion defined by
3(gg,a)=d, d(dz,a)=0; 0(d, b)=0;
0(q,@) =0q; 9(do,b)=0a; 08(qs b)=0q,
3(d,,@) =do 8(gy, b) =qp

Eolution

The State Table diagram is as shown below

o a b
o 0, 0y
Oy ds Qo
d; o 0s
Os Oh 0]

With the given definitions, the State Transition diagram/DFA Schematic is
shown on next page.

DFA and NFA 63

Example 1.1.6: Obtain the DFA that accepts/recognizes the language
L(M) ={w|wD{a, b, c}" and w contains the pattern abac}

(Note: Thisisan application of DFA’s involving searching a text for a specified
pattern)

Eolution

Let usbegin by “hard coding” the pattern into the machines states as shownin
fig. (a) below.

Input

— @0 >y »@2 »@3

Fig. (3

As the pattern ‘abac’ has length four, there are four states required
in addition to one intial state q,, to remember the pattern. g, is the only
accepting state required and this state g, can be reached only after reading
‘abac’.

The complete DFA is as shown below in Fig. (b).

Fig. (b)

Example 1.1.7: Given X ={a, b}, construct a DFA that shall recognize
thelanguage L = {b™ab" :m n>0}.

64 Theory of Automata, Formal Languages and Computation

Eolution

The given language L = {b™ab" :m n >0} has all words with exactly one ‘a
whichisneither thefirst nor last | etter of theword i.e., thereisoneor moreb’'s
before or after ‘a’.

DFA isdrawn above for the automaton M,

where M =(Q, Z,9,q,, F)with

Q={do, 01,9, 03, ds}
Z={ab}; q,=Initia state,
F ={dq;} =Fina state.
and disdefined as per thelanguage L. (q, is “dead” state)

Example 1.1.8: Given X ={a, b}, construct aDFA which recognize the
language L ={a™b" :m n>0}.

Eolution

ThegivenlanguageL ={a™b" :m n>0} hasall wordswhich beginwith oneor

more &' s followed by one or moreb's.
Thefinite automaton M (Q, Z,9, q,, F) iswith

Q = {do G, Gy, 93}

> ={ab}
Qo = Initia state
F={qg,} = Fina state

and 0 as defined by language L.
The DFA is as shown below.

Yo

Hereq; isa“dead” state.

DFA and NFA 65

Example 1.1.9: Construct aDFA which recognizesthe set of al strings
on X~ ={a, b} starting with the prefix ‘ab’.

Eolution

Only two states (q,, g,) are required to recognize ab, in addition to the input
state. One additional state called the “trap” stateis also required.

a,b

b t@

Fig. (a) DFA

Hence the DFA that recognizesthe set of all stringson ~ = {a, b} starting
with the prefix ‘ab’ is drawn above, where the automaton M is

M({do, &, . d3},{08,6,{d,})
with the state table diagram for 6 as shown below.

o) a b
o Oh O;
O, 0s d,
d, d; a,
d; d; 0;

Fig. (b) State table diagram

Example 1.1.10: Determinethe DFA that will accept those wordsfrom
> ={a, b} where the number of b’'sis divisible by three. Sketch the state
table diagram of the finite Automaton M also.

Eolution

The Finite Automaton M is M (Q, %, 9, gy, F) with
Q={d,,q;,0,}

66 Theory of Automata, Formal Languages and Computation

>={ab}
g, = Initia state
F = Find state

We choose three states g, g, g,. The states count the number of b’smodulo 3,
with g, astheinput aswell as accepting state where ¢, and ¢, are not accepting
states. Run arrows from g, to q,, g, to g, and g, to g, with label *b’.

If any a isencountered, it does not alter the state. The suitable DFA isas
shown in the figure (a).

Fig. (a) DFA

The state table diagram is shown in Fig. (b).

o a b
o o Oy
d, Oy 0,
a, 0y Qo

Fig. (b) State table diagram

Example 1.1.11: Construct an FA accepting all stringsin{0,1} " having
even number of 0's.

Eolution

The Finite Automaton M is given by

M ({do.0;.9,}.{08,9,0,,{0,})-
The Finite Automaton is as shown.

DFA and NFA 67

Example 1.1.12: Congtruct afinite automaton accpting all strings over
{0, 1}

(@ having odd number of O's
(b) having even number of 0's and even number of 1's.

Eolution

@ M({qo,0:,9:}.{01,0, 0. {0 })- (SeeFig. (a))
(b) M({{dp, 6,02, 0A5},{0L,3, do.{do})- (See Fig. (D))

Fig. (a) Fig. (b)

Example 1.1.13: Determinean FA, M accepting L,
whereL ={w{0J} " : Every Oinw hasalimmediately toitsright} .

Eolution

0,1

0 =<C13;

The finite automaton is given by
M ({qo’ qlv q21 q3} ’{011} ’61 qO’{qz})-

68 Theory of Automata, Formal Languages and Computation

Example 1.1.14: Determine the languages produced by the FA shown
inFigs. (a) and (b).

@ @x
o~ SRS

(@) (b)

Eolution

(@) For = ={a, b}, language generated = {a,b}"

(@will be accepted when initial state equal final state).
(b) For = ={a, b}, language generated = {a, b} *

{Ois not accepted).

Example 1.1.15: Determinethe FA if ¥ ={a, b} for

(8) Language generated L, = (ab)” ={(ab)"|n=0}
(Cknot accepted)

(b) Language generated Ly ={(ab)" [n=1
(Cknot accepted)

Eolution

(@ GivenL, ={(ab)" |n=0}.
The FA is shown below in Fig. (a).

Fig. (a)

The FA isgiven by

M ({do. 9y, 92} .{a b}, 3, 0o, do)
where g, isa“dead state”.

DFA and NFA 69

(b) Given Ly ={(ab)"|n=1 (C+not accepted) i.e,, initial state # final state).
The FA for thislanguage Lg is shown in Fig. (b).

Fig.(b)

The FA isgiven by

M ({do, d;,d,, ds}.{a b},0,do,d,)
where g, isa*“ dead state”.

Example 1.1.16: Determine the FA with the
() Set of strings beginning withan ‘a’.
(b) Set of strings beginning with ‘a’ and ending with ‘b'’.
(c) Set of strings having ‘aaa’ as a subword.
(d) Setof integers
(e) Set of signed integers.

Eolution

(&) Set of stringsbeginningwithan‘a’.

[It is not necessary always to have a dead state]
(b) Set of strings beginning with ‘a’ and ending with ‘b’.

70 Theory of Automata, Formal Languages and Computation

(c) Set of strings having ‘aaa’ as a subword.

(d) Set of integers.

9 Alphabet = ={0,1, ..., 9}

(e) Set of signed Integers.

D @ @<

+— 1-9 0-9

1.2 NON-DETERMINISTIC FINITE AUTOMATA (NFA)

Definition

A Nondeterministic Finite Automata (NFA) is defined by a 5-tuple
M=(Q25,q,F)

where Q,Z,9,q,,F aredefined asfollows:

Q = Finite set of internal states
> = Finite set of symbols called “Input a phabet”
5 = Qx(X0O{A}) - 2°

g, OQistheInitial states
F OQisaset of Fina states

NFA differsfrom DFA in that, the range of & in NFA isin the powerset 2°.
A string is accepted by an NFA if there is some sequence of possible
moves that will put the machine in the final state at the end of the string.

Example 1.2.1: Obtain an NFA for alanguage consisting of all strings
over {0,1} containing a 1 in the third position from the end.

Eolution

0, O, g; areinitial states

DFA and NFA 71

q, isthefinal state.

1 0,1 0,1
—»
Please note that thisis an NFA asd(q,,0) = q; and d(q,.1) = gs.

Example 1.2.2: Determine an NFA accepting the language

(@ L, ={x|x0{ab g andx containsthe pattern abac}
(b) L,={a’ Ob'}

Eolution

@ a,b,c a,b,c
_» abac

Example 1.2.3: Determine an NFA accepting all strings over {0,1}
which end in 1 but does not contain the substring 00.

Eolution

The conditions to be satisfied are:

(@ Stringshouldendinal
(b) String should not contain 0.

The NFA isshown in figure.

Example 1.2.4: Obtain an NFA which should accept a language L,,
givenby L, ={x0{a, b}" :]x|=3and third symbol of x from the right is

{"a}.

72 Theory of Automata, Formal Languages and Computation

Eolution

The conditions are

(@) thelast two symbolscanbe‘a or‘b’.
(b) third symbol from therightis‘a’
(c) symboal inany position but for the last three position canbe‘a’ or

‘b.
The NFA isshown in fig. below.
a,b

—’@ OO @

Example 1.2.5: Sketch the NFA state diagram for

M = ({qov ql’ q2’ q3} 1{0’]}’6’ qov{q3})
with the state table as given below.

o 0 1
o o Oy Go» Q2
O, 0; O
0, U 03
03 Os Os

Eolution

The NFA statesare gy, ¢;, g, and gs.
0(do.0) ={dg, &} O(doD ={do, qy}
(a,,0) ={qs} 0(d,.1) = {0}
5(d3.,0) ={qs} 5(d;.0) ={ds} -

The NFA is as shown below.

DFA and NFA 73

Example 1.2.6: Given L is the language accepted by NFA in Fig.
Determine an NFA that accepts L [{a°}.

a a =®;>

Eolution

The language accepted by the given NFA is
L={a%* O0{a":n isodd}.
Now to make an NFA accepting the language:
L={a®* 0{a":nisodd} O{a"}.

Thisisaccomplished by adding two states after state g, viz., g; and g, asshown
infig.

_ a @ a a @
o @

The NFA isgiven by
M = ({dy, 0,02, A3, A4 A5, A6 7}, {a}, 0,0y, {03, U5, 07})

Example 1.2.7: Find an NFA with four states for
L={a":n=0} O{b"a:n>1

Eolution

NFA for the language:
L={a":n=0} O{b"a:n>1

For such alanguage two cases are to be considered.

Case(i): a",n=0
0, goes to a state g, where all ' s are absorbed. Hence a" is accepted.

74 Theory of Automata, Formal Languages and Computation

Case (ii): b"a:n>1

Qo goes to a state g, where al b's are accepted and when an ‘&’ is
encountered it goes to final state ¢,. An additional state g, is added as a
rejection statefor the caseswhen ‘b’ isencountered after & sof case (i) or when
‘@ or ‘b’ isencountered after b"a of case (ii).

The NFA isgiven by

M = ({do, G, d,, 03,94} ,{a b}, d,dp,{0,,d3})
which is shown in the fig. below.

Example 1.2.8: Designan NFA with no morethan five statesfor the set
{abab": n>0} O{aba": n>0}.

Eolution

NFA for the language
L={abab": n>0} O{aba": n>0}

M = ({do, 0,0z, 03, da} {2, b}, 0, Ao, {0, A3, A4})

Here the NFA is such that it accepts all strings of the type aba" and abab"
wheren=0.

g, isfor the case when string is ab, i.e. ab” withn = 0.
0 is for the case when string is abab" with n> 0.
q, isfor the case when string is aba” withn>0

This NFA is shown in the fig. above.

DFA and NFA 75

Example 1.2.9: Determine an NFA with three states that accepts the
language { ab, abc} .

Eolution:

NFA for the language
L ={ab abd"

should be such that it accepts “ab” or “abc” in the first step and then thisis
looped with initial state so that any combination of “ab” and “abc” can be
accepted.

Hence we have the NFA as

M = ({do.0;.9,}.{a. b ¢,0,0y.{0;})
which is shown below:

Example 1.2.10: Determine an NFA that accepts the language
L(aa’ (a + b))

Eolution:

a

a . ab

—@ O——
NFA isgiven by
M = ({do, %, d,}.{a, 1},8,00,{d,})

1.3 EQUIVALENCE OF NFA AND DFA

Definition

Two finite accepters M, and M, are equivalent iff
L(M,) = L(M,)

i.e., if both accept the same language.

Both DFA and NFA recognize the same class of languages. It isimportant
to note that every NFA has an equivalent DFA.

Let usillustrate the conversion of NDA to DFA through an example.

76 Theory of Automata, Formal Languages and Computation

Example 1.3.1: Determine a deterministic Finite State Automaton
from the given Nondeterministic FSA.

M = ({do, o }.{a. b},3,q0,{0y})
with the state table diagram for & given below.

0 a b

o {do a.t {a}
Ox U {9 aut

Eolution

Let M'=(Q',Z,0,00,F') be a determine. Finite state automaton (DFA),
where

Q ={[qp].[a;],[do,a;].[C]},
do = [adl
and F'={la,].[90,q,]}

Please remember that [] denotes a single state. Let us now proceed to
determined' to be defined for the DFA.

b} a b
(Gl (Ao Gl [G]
[a] U (9o, a1

[%lo,Cl] [%lo,0l] [%lo,01]

O O O

It isto be noted that
&' ([0, a1].@) =[qg, 0]

since %' ([dp, 911, @) = 3(qp, @) 0 d(ay,)
={0p,q,} OO
={0;,0;}

and & ([do, 0,1, b) =[d, 04]

since 3 ([do, Gy 1. b) = 3(ap, b) U 3(qy, b)

={a,} O{do, o}
={do. a1}

DFA and NFA

Hereany subset containing g, isthefinal statein DFA. Thisisshown asbelow.

Example 1.3.2: GiventheNDA asshowninFig. (a), withd asshownin

Fig. (b).

@

Qo
Oy
0,

Determine the equivalent DFA for the above given NDA.

Eolution

Conversion of NDA to DFA is done through subset construction as shown in

the State table diagram below.

[Go]
[do» Gl
[0y, Gl

0

a

/A

&>
Fig. (a)
a b
{do A} U
O {au a2}
O O
Fig. (b)

a b
(9o, a1 O
(9o, a1 [a;, q,]

U (e

O O

78 Theory of Automata, Formal Languages and Computation

The corresponding DFA is shown below. Please note that here any subset
containing g, isthefinal state.

Example 1.3.3: Giventhe NDA as shown in fig. below, determine the
equivalent DFA.

ovy

Eolution

The given NDA has g, and g, asfinal states. It accepts strings ending in 00 or
11. The state table is shown below.

0] 1
o {do A} | {do s}
Oy {a} g
O O O
G O {ag
ds O O

The conversion of NDA to DFA is done through the subset construction.

DFA and NFA 79

0' isgiven by the following state table.

0 1
- [Qo] [Gor 0] (%o, O]
(9o, G [do, 0, 9] (%o, O]
(9. 0l (9o, Gul [Go» U3, 4]
[do, 0, 9] [do, 0, 9] (9. 0l
(90,93, 0,] (%o, il (90,93, 0,]

Any state containing g, or g, will be afinal state.
The DFA is shown below.

[do,91,d2] [do,93,d4]

Example 1.3.4: DetermineaNFA accepting { ab, ba} and useit tofind
aDFA accepting it.

Eolution

The state table is as shown below.

a b
o Oh 07
) U Os
0] 0s O
Os O O

The NFA is shown below.

Qo isthe input state, g, is the final state.

80

Theory of Automata, Formal Languages and Computation

The state table corresponding to the DFA is derived by using subset
construction. State table for DFA is as shown below.

a b

[a] [a] [a,]
[au] O [aal
[a] [a] 0

[aa] O O
0 0 0

The DFA is as shown above.

1.4 REGULAR EXPRESSION
1.4.1 Regular Languages

The regular languages are those languages that can be constructed from the
“big three” set operations viz., (a) Union (b) Concatenation (c) Kleene star.
A regular language is defined as follows.

Definition: Let 2 be an aphabet. The class of “regular languages’ over X is
defined inductively as follows:

@
(b)
(©

(d)

(€
(f)

O isaregular language
For eacho O Z,{c} isaregular language

For any natural number n>2 if L, L,,...... L, are regular
languages, thensoisL, O L, O oL,

For any natura number n=2 if L, L,,...... L, are regular
languages, thensoisL; oL, o oL,.

If L isaregular language, then soisL’.
Nothing elseisaregular language unlessiits construction follows
fromrules (a) to (e).

DFA and NFA 81

Examples:
(i) Oisaregular language (by rule (a))
(i) L={a,ab}isalanguageover 3 ={a, b} because, both{a} and{b}
are regular languages by rule (b). By rule (d) it follows that
{a} o {b} ={ab} isaregular language. Using rule (c), we see that
{a} O{ab} = Lisaregular language.
(iii) The language over the alphabet {0,1} where strings contain an
even number of 0’s can be constructed by

(L'((01)(01)))
orsimply 1°(01° 01)".
1.4.2 Regular Expressions

Regular expressions were designed to represent regular languages with a
mathematical tool, atool built from a set of primitives and operations.

This representation involves a combination of strings of symbols from
some alphabet Z, parantheses and the operators +, [J and *.

A regular expression is obtained from the symbol { a, b, ¢}, empty string [,
and empty-set (0 perform the operations +, [fand * (union, concatenation and
Kleene star).

Examples
0+ 1 representsthe set {0, 1}
1 represents the set { 1}
0 represents the set { 0}
(0+1) 1 representsthe set {01, 11}
(a+b) (b + c) represents the set { ab, bb, ac, bc}

(0+1) =0+ (0+1)+(0+1) (0+1) +--=%
0+1)" = (0+1)(0+1) =2" =5 —{g}

1.4.3 Building Regular Expressions
Assumethat ~ ={a,b, ¢
Zeroor more; a means“zero or morea's’,

To say “zero or more ab’s,” i.e, {A,ab,abab, } you need to say
(ab)*.

One or more: Since @ means “zero or more @'s’, you can use aa (or
equivalently a a) to mean “one or more a's’. Similarly to describe ‘one or
more ab’s’, that is{ ab, abab, ababab, }, you can use ab (ab)*.

Zero or one: It can be described as an optional ‘a’ with (a + A).

82 Theory of Automata, Formal Languages and Computation

Any string at all: Todescribeany stringat al (with < ={a, b, ¢ you canuse
(a+b+c)".

Any nonempty string: Thisiswritten any character from Z ={a, b, ¢ followed
by any string at al: (a+b+c)(a+b+c)

Any string containing exactly one To describe any string that contains
exactly one ‘a’ put “any string not containing an a”, on either side of the ‘a’
like: (b+c)" a(b+c)".

1.4.4 Languages defined by Regular Expressions

There is a very simple correspondence between regular expressions and the
languages they denote:

Regular expression L (Regular Expression)
X, foreachxOX {x}
A {A}
O {}
(r) L(r)
Iy (L(r)
nf L(r)L(r,)
n+n L(r,) O L(ry)

1.4.5 Regular Expressions to NFA

(i) Forany xin Z, the regular expression denotes the language {x}.
The NFA (with a single start state and a single final state) as
shown below, represents exactly that language.

NFA for x

(ii) The regular expression A denotes the language {A}that is the
language containing only the empty string.

~O—2—0

NFA for A

DFA and NFA 83

(iii) The regular expression O denotes the language O; no strings
belong to this language, not even the empty string.

O O

NFA for O

(iv) For juxtaposition, stringsin L(r,) followed by stringsin L(r,), we

NFA for rqr,

chain the NFAs together as shown.
(v) The*“+” denotes “or” in aregular expression, we would use an
NFA with a choice of paths.

NFA forry +ry

(vi) The star (*) denotes zero or more applications of the regular
expression, hence aloop hasto be set up in the NFA.

1.4.6 NFAs to Regular Expression
The basic approach to convert NFA, to Regular Expressionsis as follows:

(i) 1f anNFA hasmorethan onefinal state, convert it toan NFA with
only one final state. Make the original final states nonfinal, and
add a A-transition from each to the new (single) final state.

84 Theory of Automata, Formal Languages and Computation

(if) Consider the NFA to be a generalised transition graph, which is
just like an NFA except that the edges may be labeled with
arbitrary regular expressions. Since the labels on the edges of an
NFA may be either A or members of each of these can be
considered to be aregular expression.

(iii) Removes states one by one from the NFA, relabeling edge as you
go, until only theinitial and the final state remain.

(iv) Read the fina regular expression from the two state automaton
that results.

Theregular expression derived in thefinal step acceptsthe samelanguage
astheoriginal NFA.

Example 1.4.1: Represent the following sets by regular expression

(@ {0ab
(b) {111,111......}
(©) {ab,a,b,bb}

Eolution

(8 Theset{[] ab} isrepresented by the regular expression [+ ab

(b) Theset{1,11111...... } isgot by concatenating 1 and any element
of {1} . Therefore 1(1) represent the given set.

(c) The set {aba bbb} represents the regular expression
ab+a+b+bb.

Example 1.4.2: Obtain the regular expressions for the following sets:

(8 Thesetof al strings over {a, b} beginning and ending with ‘a’.
(b) {b% b> b}
© {a*™*|n>0

Eolution

(@ The regular expression for ‘the set of all strings over {a, b}
beginning and ending with ‘a’ is given by:

a(a+b)a
(b) Theregular expression for{b? b>,b®, } isgiven by:
bb (bbh)’

2n+1 |

() Theregular expression for {a n>0} isgiven by:

a(aa)

DFA and NFA 85

Example 1.4.3: Obtain the regular expressions for the languages given
by
@ L, ={a*"b*™*|n=20m=0}
(b) L, ={a, bb, aa, abb, ba, bbb, }
(©) Ly ={wO{0L" |w hasno pair of consecutive zeros}
(d) L,={stringsof 0'sand 1'sending in 00}

Eolution

(@ L, ={a*"b®*™*!| n=0,m=0} denotes the regular expression
(aa) (bb) b

(b) The regular expression for the language
L, ={a, bb, aa, abb, ba, bbb, }

(a+b) (a+bb)
(c) Theregular expressionfor thelanguagel, = {w{03}" |w hasno
pair of consecutive zeros} is given by
@011) (0+A) +1 (0+A)
(d) Theregular expression for the language L, = {strings of 0's and
1’ sbeginning with 0 and ending with 1} is given by
000+1)1

Example 1.4.4: Describe the set represented by the regular expression
(aa+b) (bb+a)

Eolution

The given regular expression is
(aa+b) (bb+a)".

The English language descriptionisasfollows: “ The set of all the stringsof the
formuvwherea' sarein pairsinuand b’sarein pairsinv”.

Example 1.4.5: Give Regular expressions for the following on
>={a,bd

(& all strings containing exactly one a

(b) all strings containing no more than three a’s

(c) all stringswhich contain at least one occurrence of each symbol in
>

86

Theory of Automata, Formal Languages and Computation

(d)
()

Eolution

@
(b)

(©

(d)

all stringswhich contain no runsof & sof length greater than two.
al stringsinwhichall runsof a’ shavelengthsthat are multiples of
three.

RE=(b+c) a(b+c) [forall strings containing exact one a
All strings containing no morethan threea’s: We can describe the
string containing zero, one, two or threea’ s(and nothing el se) as

(A+a)(A+a)(A +a)

Now we want to allow arbitrary strings not containing a's at the
places marked by X's:

XA+a)X(A+a)X(A +a)X
Thereforewe put (b + ¢)” for each X.
(b+c) A\ +a)(b+c) (A +a)(b+0c) (A +a)(b+0)
All strings which contain at least one occurrence of each symbol
inZ:
Here we cannot assume the symbols are in any particular order.

We have no way of saying “in any order’, so we haveto list the
possible orders:

abc + acb + bac + bca + cab + cba

Let us put X in every place where we want to allow an arbitrary
string:

XaXbXcX + XaXcXbX + XbXaXcX + XbXcXaX
+ XcXaxXbX + XcXbXaX

Finally, wereplaceall X’swith (a+b+c)" to get thefinal regular
expression:

(a+b+c)a(a+b+c)ba+b+c) cla+tb+c) +
(a+b+c)a@+b+c) c@a+b+c) ' ba+b+c) +
(a+b+c)'ba+b+c) a@a+b+c) cla+b+c)” +
(a+b+c) bla+b+c) cla+b+c) a(@+b+c)
(a+b+c)'cla+b+c)a(@a+b+c) ba+b+c)
(a+b+c) cla+b+c) bla+b+c)a(@+b+c)

+
+
All strings which contain no runs of a's of length greater than

two: An expression containing no a, one a, or one aa:

(b+o) (A +a+aa)b+c)

DFA and NFA 87

But if we want to repeat this, we have to ensure to have least one
non-a between repetitions:

(b+c) (A +a+aa)b+c) (b+c)(b+c)" (A +a+aa)b+c)’)

(e) All stringsinwhich all runs of a s have lengths that are multiples
of three:

(aaa+b+c)

Example 1.4.6: Find regular expressions over % ={a,b} for the
language defined as follows:
@ L ={a"™": m>0
(b) L, ={b™ab": m>0,n>0}
(© Ly={a™™, m>0n>0

Eolution

(@ Given L, ={a™b™: m>0},
L, has those words beginning with one or more a's followed by
oneor moreb'’s.
Therefore the regular expression is
aa bb (or)a'abb
(b) Given L, ={b™ab": m>0,n>0}. Thislanguage hasthose words
w whose letters are all b except for one ‘a’ that is not the first or

last letter of w.
Therefore the regular expressionis

bb abb’
() GivenlL, ={a"b™, m>0}.

There is no regular expression for this beginning as L, is not
regular.

Example 1.4.7: Determine all strings in L((a+b) b(a+ab)’) of
length less than four.

Eolution

b, ab, bb, ba, aab, abb, bab, bbb, baa, bba, aba

Example 1.4.8: Find the regular expressions for the languages defined
by

88 Theory of Automata, Formal Languages and Computation

(i) L={a"p":n=1 m=1 nm=3}
(i) L,={ab"w:n=3wl{ab}"}
(i) Ly ={ww:v,wl{ahb} ,|V|=2
(iv) L, ={w:|w mod 3=0C}

Eolution:

(i) Regular ExpressionforlL, ={a"b™ : n=1, m>1, nm=>3}isgiven
by
aa(a’) b(b) +a(@)bb(b)
(i) Regular Expression for L, ={ab"w: n>3 wl{a, b} "} is given
by
abbb (b') (a+b) (@a+b)’
(iii) Regular Expression for Ly = {ww : v,w{a, b, |v|]= 2 isgiven
by
(a+b)(a+b)(a+b) (a+b)(a+h)
(iv) Theregular expressionfor L, ={w:|w mod 3 =0} isgiven by

(aaa + bbb + ccc + aab + aba + abb + bab
+ bba + cab + cba + cbb + caa)’

1.5 TWO-WAY FINITE AUTOMATA

Two-way finite automata are machines that can read input string in either
direction. This type of machines have a “read head”, which can move left or
right over the input string.

Likethefinite automata, the two-way finite automataa so have afinite set
Q of states and they can be either deterministic (2DFA) or nondeterministic
(2NFA).

They accept only regular sets like the ordinary finite automata. Let us
assume that the symbols of theinput string are occupying cells of afinite tape,
one symbol per cell as shown in fig. The left and right endmarkers |— and —|
enclosetheinput string. The endmarkers are not included in theinput a phabet
>

— & |& |&g

o —

...... a, |—|

DFA and NFA 89

Definition
A 2DFA isan octuple
M = (Q’ zvl_’ _|16’ S tv r)

where, Qisafinite set of states
> isafinite set of input aphabet.
|— isthe left endmarker, |— O Z,
—| istheright endmarker, —| O Z,

0:Qx(ZU0{|— —}) -~ (Qx{L,R}) isthetransition function.

sOQ isthe start state,
t 0Q isthe accept state, and
r JQisthergject state, r #t

such that for al the states q,

0(g,t) = (u,R) for some ulQ,
0(q—1) = (v,L) for some vOQ

and for al symbolsb0% O {|—}

3(t,b) = (4, R), 5(r,b)= (I, R)
5 (t’_l) = (tv L)’ 6(rv_l) = (r’ L)

0 takes a state and a symbol as arguments and returns a new state and a
directionto movetheheadi.e., if d (p, b) = (g, d), then whenever the machine
isin state p and scanning atape cell containing symbol b, it movesitshead one
cell in the direction d and enters the state q.

1.6 FINITE AUTOMATA WITH OUTPUT
1.6.1 Definition

A finite-state machine M = (Q, Z,0,9,A, q,) consists of a finite set Q of
states, afiniteinput a phabet Z, afinite output alphabet O, atransition function
0 that assignsto each state and input pair anew state, an output function A that
assigns to each state and input pair an output, and an initial state g,

LetM = (Q,%,0,8,A, q,) beafinitestatemachine. A statetableisused to
denote the values of the transition function & and the output function A for all
pairs of states and input.

1.6.2 Mealey Machine

Usually thefinite automatahave binary output, i.e., they accept the string or do
not accept the string. Thisisbasically decided on the basis of whether the final
stateis reached by the initial state. Removing this restriction, we aretrying to
consider amodel wherethe outputs can be chosen from someother al phabet.

a0 Theory of Automata, Formal Languages and Computation

The values of the output function F(t) in the most general case is a
function of the present state q(t) and present input X(t).

F(t) = Aa(t), x(t))
where A is called the output function.
Thismodé is called the “Mealey machine”.
A “Mesley machine” isasix-tuple(Q, ,0, 9, A, q,) whereall thesymbols
except A have the same meaning as discussed in the sections above.
A isthe output function mapping x Q into O.

1.6.3 Moore Machine

If the output function F(t) depends only on the present state and isindependent
of the present input g(t), then we have the output function f(t) given by

F(®)=A(a(t)

A Moore machine is a six-tuple (Q, %,0,9, A, q,) with the usual
meanings for symbols.

Example 1.6.1: Given state table as shown below that describes a
finite-state machine with states Q ={q,,q,.d,.05}, input alphabet
> ={01 and output aphabet O = {0, 1}, sketch the state diagram.

o A
State Input Output
0 1 0 1
Qo a, Uo 1 0
a, 0z Uo 1 1
*7 a, 0z 0 1
0; 0z a; 0 0

Eolution

The given state table corresponds to finite-state machine with output. The
corresponding state diagram is shown below.

DFA and NFA 91

Example 1.6.2: Give examples for Moore and Mealy Models of finite
automata with outputs.

Eolution

State Table shown in Fig. (a) represents aMoore Machine and that of Fig. (b)
shows a Mealey Machine.

Current Next State d
State Output
Input A
0 1
Input — o 0s Oh 0
Oy Oh 07 1
07 0, 0s 0
O O % 0
Fig. (a)
Next State
Input O Input 1
State Output State Output
Input — g, Os 0 0, 0
0, Oh 1 o 0
Os 0, 1 O 1
Qs Qs 1 0s 0
Fig. (b)

1.7 PROPERTIES OF REGULAR SETS (LANGUAGES)
A regular set (language) is a set accepted by a finite automaton.

1.7.1 Closure

A set is closed under an operation if, whenever the operation is applied to
members of the set, the result is also a member of the set.

For example, the set of integersis closed under addition, becausex +y is
an integer whenever x and y are integers. However, integers are not closed
under division: if x and y are integers, x/y may or may not be an integer.

92 Theory of Automata, Formal Languages and Computation

There are several operations defined on languages:

L, OL, : stringsineither L, or L,.
L, nL, : stringsinbothL, andL,.
L L, : stringscomposed of one string from L, followed by one
string from L.
—L, : All strings (over the same alphabet) not in L,.

*

L, : Zeroor morestrings from L, concatenated together
L, -L, : stringsinL, that arenotinL,.
LY : stringsinL,, reversed.

We shall show that the set of regular languages is closed under each of
these operations.

1.7.2 Union, Concatenation, Negation, Kleene Star, Reverse
The general approach is as follows:

(i) Buildautomata(DFA or NFA) for each of thelanguagesinvolved.
(ii) Show how to combine the automata in order to form a new
automaton which recognizes the desired language.
(iii) Since the language is represented by NFA/DFA, we shal
conclude that the language is regular.

Union of L; and L,

(8 Createanew start state
(b) MakeaA-transition from the new start state to each of the original
start states.

Concatenation of L, and L,

(@ PutaA-transitionfromeachfinal stateof L, totheinitial stateof L.
(b) Maketheoriginal final states of L, nonfinal.

1.7.3 Intersection and Set Difference

Just as with the other operations, it can be proved that regular languages are
closed under intersection and set difference by starting with automata for the
initial languages, and constructing a new automaton that represents the
operation applied to the initial languages.

Inthisconstruction, acompletely new machineisformed, whose statesare
labelled with an ordered pair of state names: the first element of each pairisa
state from L, and the second element of each pair is a state from L.

(8) Beginby creating astart state whoselabel is (start state of L,, start
state of L,).

DFA and NFA 93

(b) Repeat the following until no new arcs can be added:

(1) Find astate (A, B) that lacks atransition for some xin Z.
(2) Add a transition on x from state (A, B) to state (6 (A, X),
0 (B, x)). (If thisstate does not aready exist, createit).

Negation of L,

(8 Start with acomplete DFA, not with an NFA
(b) Makeevery final state nonfinal and every nonfina state final.

Kleene star of L,

(@) Make anew start state; connect it to the original start state with a
A-transition.
(b) Make a new fina state; connect the original fina state (which

becomes nonfinal) to it with A-transitions.
(c) Connect the new start state and new final state with a pair of

A-transitions.
Reverse of L,

() Start with an automaton with just onefina state.
(b) Maketheinitial state final and fina stateinitial.
() Reversethedirection of every arc.

The same construction isused for both intersection and set difference. The

distinction isin how the fina states are selected.
Intersection
Make a state (A, B) asfinal if both

(i) Aisafina stateinL, and

(i) Bisafinal stateinL,
Set Difference
Mark astate (A, B) asfinal if Aisafina stateinL,, but Bisnot afina stateinL,.

1.8 PUMPING LEMMA
1.8.1 Principle of Pumping Lemma

 |If aninfinite language is regular, it can be defined by a DFA.

» The DFA has some finite number of states (say).

 Sincethelanguageisinfinite, some strings of the language should have
length > n.

94 Theory of Automata, Formal Languages and Computation

» For astring of length > n accepted by the DFA, the walk through the
DFA must contain acycle.

» Repeating the cycle an arbitrary number of times should yield another
string accepted by the DFA.

The “pumping lemma’ for regular languages is another way of showing
that a given infinnite language is not regular. The proof is always done by
“contradiction”. The technique that is followed is as outlined below:

(i) Assumethat the language L isregular.

(ii) By Pigeon-hole principle, any sufficiently long string in L should
repeat some state in the DFA, and therefore, the walk contains a
“cycle’.

(iii) Show that repeating the cycle some number of times (*“pumping”
the cycle) yieldsastring that isnotin L.
(iv) Concludethat L is not regular.

1.8.2 Applying the Pumping Lemma
Definition of Pumping Lemma

If L isan infinite regular language, then there exists some positive integer ‘m’
such that any string w L, whose length is‘m’ or greater can be decomposed
into three parts, xyz where

(i) |xy|islessthan or equal to m.
(i) lyl>0,
(i) w =xy'zisasoinLforali=0,1,23,

To use thislemma, we need to show:

(i) For any choice of m,
(ii) For some w(L that we get to choose (and we will choose one of
length at least ‘).
(iii) For any way of decomposing w into xyz, so long as |xy| is not
greater thanmandyisnotA,
(iv) We can chooseani such that xy'zisnotinL.

Example 1.8.1: Provethat L ={a"b" : n>0} isnot regular.

Eolution

(i) Wedon't know m, but let us assume that there is one.
(i) Chooseastringw = a'b", wheren>m, sothat any prefix of length
‘m' consistsonly of a's.

DFA and NFA 95

(ili) Wedon't know the decomposition of wintoxyz, but since|xy|< m

(iv)

Xy must consist entirely of a’s. Moreover, y cannot be empty.
Choose i = 0. This has the effect of dropping | y | &'s out of the
string, without affectng the number of b’s. The resultant string has
fewer a' sthan b’s, hence does not belong to L.

Therefore L is not regular.

Example 1.8.2: ProvethatL ={a"b* : n>k and n>0}isnot regular.

Eolution

(i)
(i)

(iii)

(iv)

We do not know ‘m’, but assume thereis one.

Choose a string w= a"b*, where n > m, so that any prefix of
length‘m’ consistsentirely of a's, and k=n—1, sothat thereisjust
one more athan b.

We do not know the decomposition of w into xyz, but since
[xY]< m xy must consist entirely of a's. Moreover, y cannot be
empty.

Choose i = 0. This has the effect of dropping | y | @' s out of the
string, without affecting the number of b's. The resultant string
fewer a's than before, so it has either fewer a’s than b’'s, or the
same number of each. Either way, the string does not belongto L,
so L isnot regular.

Example 1.8.3: Show that L={a":nisaprimenumber} is not

regular.

Eolution

(i)
(i)

(iii)
(iv)

Wedon't know m, but assume thereis one.

Chose a string w = a" where n is a prime number and
[xyZ=n>m+1 (This can always be done because there is no
largest prime number). Any prefix of w consists entirely of a's.
Wedo not know the decomposition of winto xyz but since|xy|< m
it followsthat | z| > 1. Asusud, |y | > 0.

Since|Z>1, |xy>1. Choosei =|x7. Then|xy' 4 = |xd +| | | x4

=@+ 1) 1.
Since (1 + | y|) and | xz | are each greater than 1, the product must
be a composite number.

Therefore|xy' 7 is a composite number.

Hence L isnot regular.

96 Theory of Automata, Formal Languages and Computation

1.9 CLOSURE PROPERTIES OF REGULAR LANGUAGES

THEOREM 1: If L, and L, are regular over Z, then L, O L, isregular i.e,
union of two regular sets is also regular. [Regular sets are closed w.r.t.
union].

Proof: As L, and L, are given to be regular; there exists finite automata
M; =(Q %9,,0,,F)and M, =(Q,,2,d,,0,,F,) such that L, = T(M,) and
L, =T (My).
[T(M)={x0%" :8(do,x) OF}
isalanguage L(M) accepted by M]
Letusassumethat Q, n Q, = .
Let us define NFA with CHransitions as follows:

M3 =(Q,2,0,9o,F)

where
(i) Q=Q, 0Q, O{qy}whereq,isanew statenotinQ, 0Q,
(i) F=FOF,
(iii) disdefinedbyd(q,,0) ={a,,0,})
_®i(a,a) if qUQ
o(a.2)= ggz(q,a) if q0Q, (b)

It is obvious that 6(q,,0) ={0,,0,} induces CHransitions either to the
initial state g, of M, or initial state g, of M,.

From (b), the transitions of M are the same as transitions M, or M,
depending on whether g, or g, reached by CHransitions from g,

SinceF = F, O F,, any string accepted by M, or M, accepted by M.

Thereforel, O L, =T(M)and soisregular. a

THEOREM 2: [f LisregularandL 0", then =" - Lisalso aregular set.

Proof: LetL=T(M)where M =(Q,Z,9,q,, F)isanFA.
Though L O X", 3 (q, @) need not be defined asfor all ‘a’ in =.

0(q, a) isdefined for some‘a in X eventhough ‘a’ does not find aplacein
the strings accepted by M.
Let us now modify >, Q and & as defined below.

(i) If ad%; - Z, thenthesymbol ‘a will not appear in any string of
T(M). Thereforewedelete‘a’ from %, and all transitions defined
by the symbol ‘a’. T(M) is not affected by this).

(i) If~-%; #0, we add adead state d to Q. We define d(d, a) = d
fordl‘a inXandd(d,a)=d foralginQand‘a inX-Z,.

Once again T(M) is not affected by this.

DFA and NFA 97

Let usconsider M got after applying (i) and (ii) to 2, Q and d. Wewrite the
modified M as

(Q! 216! qO’ F)
Let us now define a new automaton M' by
Ml: (Q’ Z,é,qon_ F)

We can seethat wOT (M") iff 8(qq, W) DQ — F andwOT(M).
ThereforeX” —L =T (M’) and therefore regular. 0

THEOREM 3: If L, and L, areregular, soisL; n L, [Regular sets are closed
w.r.t. Intersection]

Proof: Itisimportant to note that
L L= (L 0L)"
If L, and L, are regular, then L, L5 are regular by theorem 1.

Therefore (L; O L)€ isregular by theorem 2.
Hencel, n L, isregular. g

1.10 MYHILL-NERODE THEOREM
1.10.1 Myhill-Nerode Relations
Isomorphism

TwoDFAsgivenby M = (Q,,, %0, S, Fn,)andN = (Qy,%,%,,s, F,) ae
said to be “isomorphic” if there is a oneto-one and onto mapping
f:Qu - Qu suchthat

(i) f(sw)=sy,
(i) fOy(pa)=08y(f(p),a)fordl POQ,,,alZz,
(i) pOF,, if f(pOF.

| somorphic automata accept same set.

Myhill-Nerode Relations

LetROZ bearegular set, andlet M = (Q, =,3, s F) beaDFA for Rwith no
inaccessible states.
The automaton M induces an equivalence relation=,, on 3" defined by
def A A
X=y Y= 3(sx)=0(sy)

Itiseasy to show that therelation =, isanequivalencerelation, meaning
it isreflexive, symmetric and transitive.

98 Theory of Automata, Formal Languages and Computation

A few properties satisfied by =, areasfollows:

(@) Itisa right congruence: forany x, yO= andalZ,
X=y ydxasy vy,

Proof: Assumex=,, V.
Therefore we have

3(sxa) = 3(3(sx), a)
=0(0(s y),a) (by assumption)
=5(s ya) O
(b) ItrefinesR: forany x, yOs',
x=,, yO xOR < yOR).
Proof: Since (sx)= 8(3 y), which iseither an accept state or areject state,
so either both x and y are accepted or both are rejected. O

(c) Itisof “Finiteindex”: i.e., it has only finitely many equivalence class.
Thisis because there is exactly one equivalence class

X0z |8(sx) = o}
corresponding to each state g of M.

Hencetheequivalencerelaion=on% isa“Myhill-Heroderelation” for Rif it
satisfies properties (a), (b) and (c). i.e., if itisaright congruence of finiteindex
refining R.

1.10.2 Myhill-Nerode Theorem

Let RO X . Thefollowing statements are equivalent.

(i) Risregular
(ii) There existsaMyhill-Nerode relation for R
(iii) Therelation =4 isof finite index.

(The proof is beyond the scope of this book).

Example 1.10.1: Using Myhill-Nerode Theorem verify whether
L={a"b" : n>0} isregular or not.

Eolution

Thisis done by determining the = -classes. If k #m then a* #, a™, since

DFA and NFA 99

a“b* OL but a™b* OL. Hence there are infinitely many =, -classes, at least

one for each a*, k =0.

Hence by Myhill-Nerode Theorem L is not regular. (The application of
Myhill-Nerode theorem has been illustrated above).

GLOSSARY

Automaton: Abstract model of adigital computer.

Acceptor: Automaton whose output responseis“Yes’ or “No”

DFA: Deterministic Finite Automata.

NFA: Non-deterministic Finite Automata.

Regular Language: Language that can be constructed from the set
operations—Union, Concatenation and Kleene star.

Regular expression: Mathematical tool built from a set of primitives and
operations.

Two-way Finite Automata: Machines that can read input string in either
direction.

Moore machine: Output function depends only on present state and
independent of present input.

Mealey machine: Value of the output function is a function of the present
state and present input in a Mealey Machine.

Pumping lemma: A way to show that an infinite language is not regular.

REVIEW QUESTIONS

Define the term * Automata with an example.
What are the types of Automaton?

Explain Deterministic automata with an example.
Explain Non-deterministic automaton with an example.
Distinguish between DFA and NFA.

Explain the terms:

(@) State Tablediagram

(b) State Transition diagram.

Define Non-deterministic Finite automata.
Comment on the equivalence of NFA and DFA.
What are regular expressions?

10. Define aregular language.

11. Giveexamplesfor regular expressions.

ouswbdE

© © N

100

Theory of Automata, Formal Languages and Computation

12.

13.
14.
15.
16.
17.
18.

10.
20.
21.
22.
23.
24,

Comment on the correspondence between regular expressions and the
languages they denote.

How will you convert an NFA to aregular expression?

What do you mean by two way finite automata?

What do you mean by finite automata with output.

What do you mean by a Mealy machine?

What do you mean by a Moore machine?

Give examples for Moore and mealy models of finite automata with
outputs.

State the properties of regular sets.

State the principle of pumping lemma.

Define Pumping lemma.

Explain the closure properties of Regular languages.

What is | somorphism?

State the Myhill-Nerode relations.

EXERCISES

For 2 ={a, b} construct DFA that accepts the following set of strings
(& all stringswith exactly one‘a

(b) dl stringswith at least one ‘a

(c) dl stringswith no morethan threea's

(d) all stringswith at least one‘a and exactly two b’s.

(e L={w:|w|mod3=0}

(f) L={w:|w|mod5%0}

Determine a DFA that accepts al strings on {0,1} except those
containing the substring 001.

Obtain the NFA for alanguage defined by

L={a"b"/nm=1.

and its associated state table diagram.
Construct an NFA for the state table given below.

5 0 1
o {9 au} {as}
o} { a0} {a., gz}
0 O {ao ax}

0; {dy, G, a3} {a.}

DFA and NFA 101

Obtain the language recognised by the NDA shown below.

Convert the NDA to DFA given M = ({q,,d;,0d,}.{a, b},0,0, {0, })
with state table as given below

a b
o {a., .} U
) U {a,}
07 U {a,}

Determine the DFA that accepts the language
L(aa +aba +b)
Determine the DFA that accepts the language
L (ab(a+ab (a+aa)).

Determine the regular expression for the languages accepted by the
following automata:

102 Theory of Automata, Formal Languages and Computation

10. Construct the state diagram for the finite-state machine with the state

table shown below.
g h
Input Input
State 0 1 0 1
S S S 1 0
S S; S 1 1
S, S S, 0 1
S) S 0 0

11. Construct the state table for the finite-state machine with the state
diagram shown below.

12. In agiven coding agorithm, when three consecutive 1's appear in a
message, the receiver of the message knows that there has been a
transmission error. Construct afinite state machine that givesa 1 asits
output but if and only if the last three bitsrecelved areall 1's.

13. Obtain the state tables for the finite-state machines with the following
state diagrams.

@

DFA and NFA 103

14.

15.

16.

17.

18.

19.

20.

(b)

For the finite-state machine shown in problem (13), determine the
output for each of the following input strings

(@ 0111

(b) 11011011

(c) 01010101010

Construct a finite-state machine that delays an input string two bits,
giving 00 as the first two bits of output.

Construct afinite state machine that determineswhether theinput string
hasalinthelast position and a0 in thethird to the last position read so
far.

Construct the state table for the Moore machine with the state diagram
shown below. Each input string to a Moore machine M produces an
output string. The output corresponding to an input string
a,8,,...... ,a, is the sring 9(s)9(s) -..... g(s,) where
s =f(5.a)fori=12 k.

(52

Determine the output generated by the Moore machine shown in
prablem (17), with each of the input strings shown below.

(3 0101 (b) 111111 (c) 11101110111
Construct a Moore machine that determines whether an input string
contains an even or odd number of 1°. The machine should give 1 as
output if an even number of 1° arein the string and 0 as output if an odd
number of 1° are in the string.
Obtain the languages recognized by each of the following Finite-state
automata shown below.

104 Theory of Automata, Formal Languages and Computation

1 0,
(a) Start @'

(b)

21. Obtain the NDA with state table shown below.

Input
State 0 1
S S St S3
s, S S1 3
$ S S
S3 Sor S S S

22. Determine the state table for the NDA with state diagram as shown

below.

23. DetermineaDFA that recognizesthe samelanguage asthe NDA shown

in problem 2.2 (Determine the language first).

24. Determine the language recognized by the NDA shown below.

DFA and NFA 105

25.

26.

27.

28.

29.

Start

) &
0
0
O e 0 o 1 4
D

Determine the languages recognized by the given DFA.

@ Start . 1 I 0,1 @0’1

Determine a DFA that recognizes each of the following

@ {1"|n=223...}

(b) {1,00}

© {0

Show that thereis no finite-state automaton that recognizesthe set of bit
strings containing an equal number of 0° and 1°.

What are the strings in the regular sets specified by the regular
expressions given below.

(@ 10

(b) (10)

(cood01

(oo o1

(e) (0* 1.

Construct aNDA that recognizes the regular set1 [01

106 Theory of Automata, Formal Languages and Computation

30. Determine aregular grammar that generates the regular set recognized
by the finite state automaton shown in Fig.

31. Prove that the set {0"1" | n=012...... } made up of al strings
consisting of ablock of Osfollowed by ablock of an equal number of 1°,
isnot regular.

32. Express each of the following sets using aregular expression.

(& the set of strings of one or more Os followed by a 1.
(b) theset of stringsof two or more symbolsfollowed by three or more
Os.

33. Show that if A isaregular set, then set A%, the set of all reversals of
stringsin A, isalso regular.

34. Find an NDA which recognizestheset 0'1'.

35. Show that the set {0*" 1"} is not regular using pumping lemma.

36. Show that the set of palindromes over {0,1} is not regular using
pumping lemma.

37. Convert the NFA to DFA of the NFA shown below.

38. Convert the regular expression (ab [a)” to an NFA.
39. Convert the regular expression (a 0 b)” abato an NFA.

40. Using pumping lemma show that the following languages are not
regular.

@ L ={0"1"2" | n=0
() L,={a®|n=0} (@ meansastringof 2"a’s).

41. Giveregular expressions for each of the following subsets of {a, b} .
(@ {x|xcontainsan even number of a's}

DFA and NFA 107

42.

46.

47.

(b) {x|xcontainsan odd number of b’'s}

(c) {x]|xcontainsan even number of &s or an odd number of b’s}
(d) {x|xcontainsan even number of & s and an odd number of b’ s}
Give the DFA accepting the sets of strings matching the following
regular expressions:

(@ (000* +111*)*

(b) (01 +10) (01 +10) (01 + 10)

(¢ (0+1(01*0)*1)*

Show that the following sets are not regular.

@ {a"o™ | n=2m}

(b) {xO{a,bd | x isapalindrome}

() {xO{abg | thelengthof xisasquare}

Consider the NFA shown below.

a
a

g e

b

(& Construct an equivalent DFA.

(b) Givean equivalent regular expression.

Convert the NDA to equivalent DFA for each of the following:
a,b

@

o P a,b

Givetheregular expressionsfor each of thefollowing subsetsof { a, b} .
(@ {x|xdoesnot contain the substring a}

(b) {x|xdoesnot contain the substring ab}

() {x|xdoesnot contain the substring aba}

Match each NFA with an equivalent regular expression.

108

Theory of Automata, Formal Languages and Computation

49,

1

2.

(i) DO+0(01'1+00) (01)

(i) 0+0(10'1+10) 10

(i) 0+0(10'1+00) 0

(iv) 0+0(01'1+00) 0

(v) 0+0(10'1+10)'1

Define an NFA with four states equivalent to the regular expression

(01+011+0111)".

Convert this automaton to an equivalent deterministic one.
Obtain the DFA equivalent to the following regular expressions:
(@ (00+11)" (01+10) (00+ 11)

(b) (000)" 1+ (00)'1

(©) (0(01)" (1+00)+1(10)" (0+11))

SHORT QUESTIONS AND ANSWERS

What is an automaton?

An Automaton is an abstract model of a digital computer. It has a
mechanism to read input, which is a string over a given alphabet. This
input is actually written on an “input” file, which can be read by the
automaton but cannot changeit.

What are the types of Automaton?
(8 Deterministic Automata

DFA and NFA 109

(b) Non-deterministic Automata
What do you mean by deterministic automata?
If the internal state, input and contents of storage are known, it is

possibleto predict the future behaviour of the automaton. Thisissaid to
be deterministic automaton.

What do you mean by non-deterministic automata?

If the internal state, input and contents of storage are known, if itis
not possible to predict the future behaviours of the automaton, it is said
to be non-determine automaton.

Give the formal definition of Deterministic Finite Automaton (DFA).
A Deterministic Finite Automaton (DFA) isat-tuple

M=(QZ%34q,F)
where
Q = Finite state of “internal states’
> = Finite state of symbols called ‘ Input Alphabet’.
0:Q xZ - Q= Transition function
do Q= Initia state
F 0Q = Set of Final states.
Define the transition function d in DFA.

Ifd(qy,a) = q,, then if the DFA isin state ¢, and the current input
symbol is a, the DFA will go into state g;.

Give the forma definition of Non-deterministic Finite Automata
(NFA).
A non-deterministic Finite Automata(NFA) isdefined by a5-tuple

M =(Q,%,3,0,.F)

whereQ, Z,9, q,, F are defined as follows:

Q = Finite set of internal states

> = Finite set of symbolscaled ‘Input aphabet’

5=Qx(Z0{A}) - 2°

do OQisthe‘Initia state’

F OQisaset of Fina states.
What isthe difference between NFA and DFA interms of the transition
function 6?

NFA differs from DFA is that, the range of & in NFA is in the
powerset 2°.
When is a string accepted by an NFA?

A string isaccepted by an NFA if thereis some sequence of possible
movesthat will put the machinein thefinal state at theend of the string.

110

Theory of Automata, Formal Languages and Computation

10.

11

12.

13.

14.

15.

16.

17.

When are two finite acceptors M, and M,, said to be equivalent?
Two finite acceptors M, and M, are said to be equivalent if

L(M;)=L(M,)

i.e., if both accept the same language.
Isit possible to convert every NFA into an equivalent DFA?

Yes, itispossibleto convert every NFA into an equivaent DFA and
vice-versa.

What are regular languages?

Regular languages are those languages that can be constructed from
thethree set operations (a) Union (b) Concatenation and (c) Kleene star.
Give the formal definition of aregular language.

Let > be an aphabet. The class of ‘regular languages over X is
defined inductively asfollows:

(& O isaregular language
(b) Foreacho OZ,{o} isaregular language

(c) For any natural number n22 if L, L,,...... L, are regular
languages, thensoisL, OL,...... oL,.

(d) For any natural number n>2if L;,L,,...... L, are regular
languages, thensoisL; oL, o oL,.

(e) If Lisaregular language, then soisL’.
(f) Nothing else is a regular language unless its construction
follows from rules (a) to (e).
Give an example of aregular language.
Thelanguage over the al phabet { 0, 1} whose strings contain an even
number of 0’s can be constructed by
1¥((01)(01)))
orsmply 1°(01°01)".
What is the motivation behind writing regular expressions?

Regular expresions were designed to represent regular languages
with a mathematical tool, a tool built from a set of primitives and
operations.

How are regular expressions formed?

A regular expression is obtained from the symbols{a, b, ¢}, empty
string [, and empty set 00 performing the operations +, Cand * (union
concatenation and Kleene star).

What do the following regular expressions represent?
@©0+1)1 (b)(a+b)db+c) (c)(0+1) (d)0(e)(0+1)

(@ (0+1) 1representstheset {01, 11}
(b) (a+b) b+ c) represents the set { ab, bb, ac, bc}

DFA and NFA 111

18.

19.

20.

21.

22.

23.

24,

(¢) (0+ 1)* representsthe following:
O0+1) =O0+O0+1) +(O0+D) O+ + - =%

*

(d) Orepresentstheset{ 0}

(e) O+)" =(0+D) O+ =2" =32 {0}
What are the languages defined by the following regular expressions?
@O0 ®nr, @©rn+n

(a) Ford, thelanguageis{ }

(b) Forrr,, thelanguageis L(r;)L(r,).

(c) Forr, +r,, thelanguageisL(r;) O L(r,).
Sketch the NFA for () xOX (b)A () O.

(@) NFA for x: \‘Q—f—Q
(b) NFA for A: \Q—LQ
() NFA for O: \‘Q O

What do you mean by two-way finite automata?
Two way-finite automata are machines that can read input string in
either direction.
What is the kind of arrangement you have for the “read head” in a
two-way automata machine?
These types of machineshave a‘read head’, which can move left or
right over the input string.
State a common characteristic between Finite automata and two-way
finite automata?
Both Finite automata and two-way finite automata have the same
finite set Q of states. They accept only regular sets.
What are the types of two-way finite automata?
() 2DFA (Deteministic)
(b) 2NFA (Non-deterministic)
Givethe formal definition of a2DFA (two-way DFA).
A 2DFA isan octuple

M=@QZ2}F4.3str)
where, Q isafine set of states,
> isafinite set of input,
-istheleft end marker, O,
—istheright end marker, {OZ,
0:Qx(Z0O{K} - (Qx{L,R}) isthetransition function

112

Theory of Automata, Formal Languages and Computation

25.

26.

27.

28.

29.

30.

31

sOQisthe start state,

t 0Q isthe accept state, and

r JQisthergect state, r # .

What isa Mealey Machine?

Usually the finite automata have binary output i.e., they accept the
string or do not accept the string. Thisis basically decided on the basis
of whether the final state is reached by the initial state. Removing this
restrictin, we are trying to consider a model where the outputs can be
chosen from some other aphabet. The value of the output function F(t)
inthe most general caseisafunction of the present state q(t) and present
input X(t).

F () = A(q(t), x(1))
where A is called the output function. This model is called the
“Medey Machine”.
What is a Moore Machine?
If the output function F (t) depends only on the present state and is
independent of the present input g (t), then we have the output function
F(t) given by

F(t)=A(a()

A Moore machine is a six-tuple (Q,%,0,0,A,q,) with the usual
meanings for symbols.
What isaregular set?

A set whichisaccepted by afiniteautomatoniscalled aregular set.
What is closure property of aregular set?

A set is closed under an operation if, whenever the operation is
applied to members of the set, the result is also amember of the set.
State the meanings of the following operations made on languages:

@LOL BLnL ©-L @L-L @@L OL

(@ L, OL,: Stringsin either L, or L,.
(b) L, n L,: Stringsinboth L, and L.
(c) —L,: All strings (over the same alphabet) notinL,.
(d) L, —L,: StringsinL, that arenotin L,.
(e L1 Zero or more strings from L, concatenated together.
(f) LY: Stringsin L,, reversed.
What is meant by Pumping Lemma?
The Pumping Lemma for regular languages is another way of
showing that a given infinite language is not regular.
What is the method of proof used by Pumping Lemma?
The proof is always done by contradiction.

DFA and NFA 113

32.

33.

33.

35.

36.

37.

State the principle of Pumping Lemma.

If an infinite language is regular,k it can be defined by a DFA. The
DFA has some finite number of states (say n). Since the language is
infinite, some strings of the language should havelength >n. For astring
of length >n accepted by DFA, the walk through of the DFA must
contain acycle. Repeating the cyclean arbitrary number of times should
yield aother string accepted by the DFA.

How will you show that agiven infinite language is not regular using a
Pumping Lemma?

(i) Assume that the language L isregular
(if) By Pigeon-hole principle, any sufficiently long string in L
should repeat some state in the DFA, and therefore, the walk
containsa“cycle’.
(iii) Show that repeating the cycle some number of times
(“pumping” the cycle) yields astring that isnot in L.
(iv) Concludethat L isnot regular.
Give the formal definition of a Pumping Lemma.
If L isan infinite regular language, then there exists some positive
integer ‘m’ suchthat any stringw L, whoselengthis‘m’ or greater can
be decomposed into three parts, xyz where

() | xy |islessthan or equal to m

(i) 1y1>0,

(iii) w =xy'zisasoinLforali=0,123......
Isthelanguage L ={a"b" : n=0} regular or not.

The language L is not regular.

Are the following languages regular or not.
(@ L={a"v* :n>k and n=0}
() L={a" : n isaprime number}.

(8 Not regular
(b) Not regular.
State the closure property of Regular Languages.

(@ If L, and L, areregular over %, then L, O L, isregular, i.e.,
union of two regular sets is aso regular. Regular sets are
closed w.r.t. union.

(b) If L, and L, areregular, soisL, n L,, i.e, regular sets are
closed w.r.t. intersection.

State the Myhill-Nerode Theorem.
Let RO X . Thefollowing statements are equivalent

(i) Risregular

114

Theory of Automata, Formal Languages and Computation

38.

39.

(i) there existsaMyhill-Nerode relation for R.
(iii) therelation = isof finiteindex.
What is an acceptor?
Automaton whose output response is ‘Yes or ‘N0’ is called an
acceptor.
What isaregular expression?
Itisamathematical tool built from aset of primitive and operations.
What are the properties of regular sets?

(& Closure

(b) Union

(c) Concatenation
(d) Negation

(e) Kleenestar
(f) Intersection
(g) Set difference

Chapter 2

Context-Free Grammars

2.1 INTRODUCTION
2.1.1 Definition of CFG
A context-free grammar isa4-tuple (V, T, S P) where

(i) Visafinite set called the variables
(ii) Tisafinite set, digoint from V, caled the terminas
(iii) Pisafiniteset of rules, with eachrulebeing avariableand astring
of variables and terminals, and
(iv) SOV isthe start variable.

If u, vand w are strings of variables and terminals, and A - wisarule of
the grammar, we say that uAv yields uwv, written uAv OO uwv.

2.1.2 Example of CFG

Givenagrammar G=({S,{a, b}, R,).
The set of rulesRis

—

S Db
S-S5
S-0

o))

This grammar generates strings such as
abab, aaabbb, and aababb

If weassumethat aisleft paranthesis* (' and bisright paranthesis*)’, then
L(G) isthelanguage of all strings of properly nested parantheses.
2.1.3 Right-Linear Grammar
In general productions have the form:

vVoOT) - vOT).
In right-linear grammar, all productions have one of the two forms:

VTV

116 Theory of Automata, Formal Languages and Computation

or VT

i.e., the left hand side should have a single variable and the right hand side
consists of any number of terminals (members of T) optionally followed by a
single variable.

2.1.4 Right-Linear Grammars and NFAs

There is a ssimple connection between right-linear grammars and NFAS, as
shown in the following illustration.

A - xB
A - xyzB
A_B
A - X D= @

As an example of the correspondence between an NFA and aright linear
grammar, the following automaton and grammar both recognize the set of set
of strings consisting of an even number of 0’'s and an even number of 1's.

S A
S - 0B
S - 0A
A - 0C
A - 1S
B - 0S
B - 1C

2.1.5 Left-Linear Grammar

In aleft-linear grammar, all productions have one of the two forms:
V o VT

or VT

i.e., theleft hand side must consist of asingle varibale, and the right-hand side
consists of an optional single variable followed by one number of terminals.

Context-free Grammars 117

2.1.6 Conversion of Left-linear Grammar into
Right-Linear Grammar

Step Method
(@ Construct aright-linear Replace each production A - xof L
grammar for the different with aproduction A x® and
languages LR, replace each production A - Bx

with aproduction A — x"B

(b) Construct an NFA for L® from Refer to section 2.1.4 for deriving an
the right-linear grammar. This NFA from aright-linear grammar.
NFA should have just one

final state.
() Reversethe NFA for LR to (i) Construct an NFA to
obtain an NFA for L. recognize the language L.
(ii) Ensurethe NFA hasonly a
singlefina state
(iii) Reversethe direction of arcs
(iv) Maketheinitia state final and
final stateinitial
(d) Construct aright-linear Thisis the technique described in
grammar for L from the the previous section.
NFA for L.

Example 2.1.1: Give some example of context-free languages.

Eolution

(@ Thegrammar G=({$}, {a, b}, S P) with productions
S-aS3, S-bSh S-A
is context free.
SO aSa [aaSaa [0 aabShaa [1 aabbaa
Thuswe have L(a) = {ww® : w{a, b} }.

Thislanguageis context free.
(b) Thegrammar G, with production rules given by
S - abB,
A - aaBb,

B - bbAa,
Ao A

is context free.

118

Theory of Automata, Formal Languages and Computation

Thelanguageis
L(G) ={ab(bbaa)"bba(ba)" :n> 0}

Example 2.1.2: Construct right-and left-linear grammars for the
languageL ={a"b™ : n>2 m>3}.

Eolution

Right-Linear Grammar:

S aS
S - aaA
A - bA
A - bbb

Left-Linear Grammar:

>> 00
LoL
Br8e

!

2.2 DERIVATION TREES

A ‘derivation tree’ isan ordered tree which the the nodes are labeled with the
left sides of productions and in which the children of a node represent its
corresponding right sides.

2.2.1 Definition of a Derivation Tree

Let G=(V, T, S P) beaCFG. An ordered tree isa derivation treefor G iff it
has the following properties:

0]
(i)
(iii)

(iv)

(v)

Theroot of the derivation treeis S

Each and every leaf in the tree hasalabel from T O {A}.

Each and every interior vertex (avertex which isno aleaf) has a
label from V.

If avertex haslabel AV, anditschildrenarelabeled (fromleftto
right) a;,a,, a,, then P must contain a production of the
form

A leaf labeled A has no siblings, that is, a vertex with a child
labeled A can have no other children.

Context-free Grammars 119

2.2.2 Sentential Form

For a given CFG with productions S - aA, A —» aB,B - bB,B - a. The
derivation treeis as shown below.

S
a— \A
a— \
B
b= \B

a

SO aA[aaB [0 aabB [0 aaba

The resultant of the derivation tree is the word w = aaba.
Thisissaid to bein “Sentential Form”.

2.2.3 Partial Derivation Tree

In the definition of derivation tree given, if every leaf has a label from
V OT O{A}itissaidto be"“partial derivation tree”.

2.2.4 Right Most/Left Most/Mixed Derivation

Consider the grammar G with production
S - aSs

Now, we have

wn

O O O O O O O

ass

aaSsS

aabSs (Left Most Derivation)
aabaSSS

aababSS

aababbS

aababbb

The sequence followed is “left most derivation”, following “1121222”, giv-
ing “aababbb”.

120

Theory of Automata, Formal Languages and Computation

S

O O O O O O e

%

(Mixed Derivation)
aabSh

aabaSSh

aabaShb

aababbb

The sequence 1212122 represents a “Mixed Derivation”, giving

“aababbb”.

O Ov O O O O e

ass

ah
aaSs
aasaSPD
aaSaShb
aaSabbb
aababbb

(Right Most Derivation)

The sequence 1211222 represents a “Right Most Derivation”, giving

“aababbb”.

Example 2.2.1: A grammar
productions

S—)
A-

G which is context-free has the

aAB
Bba

B - bB
B- c

(The word w = achabc is derived as follows)

SO aAB - a(Bba)B O achaB 00 acba(bB) O acbabc.

Obtain the derivation tree.

Context-free Grammars 121

Eolution

a

"
TN
b

B

/T\

B a
| b
Cc
(@S - aAB (b) A - Bba (c)B -¢c
S S
/|\ /|\
a a
A B A B
/|\ b/\ /|\ b/\c
| b b
Cc
(d)B - bB (e)B - ¢

Example 2.2.2: A CFG given by productionsis

S- a,
S & aAS,
and A - bS

Obtain the derivation tree of the word w = abaabaa.

Eolution

w = abaabaa isderived from S as

SO aAS O a(bS)S O abaS O aba(aAS)
O abaa(bs)S
0 abaabaS
0 abaabaa

The derivation tree is sketched below.
a/i\
o | e T\
S a A S
|]
S a

a

|
a

122 Theory of Automata, Formal Languages and Computation

Example 2.2.3: GivenaCFGgivenby G=(N, T, P, 9

Obtain the derivation tree and the language generated L(G).

Eolution

SO ab i.e,abdL(G)
SO ah

0 aabb i.e,a’b?0L(G)
SO a%h

0 aaShb

[aaabbb i.e,a’®0LG),

0 a’b® and soon

Derivation treeis as follows.

S
2
S
/ | AN
a b
S
RN
a b

Language generated L(G) ={a"b" | n>1}.

a

Example 2.2.4: GivenaCFGG= (N, T,P, 9

HY S - asaf
withN={S}, T={a b, ¢} andP = [J(2) S — bb[]

AB) S-c¢ H
Obtain the derivation tree and language generated L(G).

Eolution

(i) SO ¢ cOLG) I

(i) SO aSal aca OL(G)

Context-free Grammars

123

/TN
b | b
S
(i) SO bSO beb OL(G) |
c
/TN
a a
(iv) sO asa yd S\
0 abSha b b
0 abcbadL(G) S
and so on.
Hence the language generated L(G) is given by c
L(G) = {wew™ | wO{a,b}"}
where w® = reversal of w
i.e, if w=aa,...... a,,a,
then wi=aa,_ a,a,

Example 2.2.5: GivenG=(N, T, P, S with
N={E},S=E, T={id, +,*, ¢}

P:.1E - E+E
ad 2E-E*E
3. E- (E)
4 E - id
Obtain the derivation tree.

Eolution

E E E

4N RN

E E | (|) |

| * | id E id

id id E/+\E
'

0 [id*id + id | 0 [Gid + id) *id|

124 Theory of Automata, Formal Languages and Computation

Example 2.2.6: Obtain the language generated L(G) for a CFG given
, _ [AS-SS
G(N,T,P, 9withN={S, T{a}, P: % < @

Eolution

S
SO a
a
/S
SO SS S
0 aS | S
0 aa a

SO SSO aSO aSSO aaS O aaaand soon....
Therefore the language generated is
L(G)={a" | nz]

Example 2.2.7: Obtainthelanguage generated by each of thefollowing
production rules.

(a) A—» a (b) S—» a.S (C) A—» a
A- aB S-0 A- aB
S- bS S- bS S bs
S-0 S-a S-a

S-b

Ll

Eolution

(8 Thelanguage generated isa*“type-3 language’ or “regular set”.

(b) SO O
SO aSO a
SO asl aaS U aa
and so on.
Hence the language generated is

LG)={a" |n=0}

Context-free Grammars 125

(0 AOO
A a L(G) ={ww® | wDO{a, b} *}
Al aB
(d s- aS
S- bs L(G)={a, b}’
S-0ad Language generated of any string of a,b
(e S- asS
S- bs L(G)={a,b a
S-a
(f) S- ab
S bS L(G)={ab}",
S-a
S-b

Example 2.2.8: GivenaCFGG=(N,T,P, 9
L S- aSO

withN={S A}, T={a, b} andP = S~ aAE
. A~ bAD
M@ A-b

Obtain the derivation tree and L(G).

Eolution

SO aAOd ab
SO aSO aaA 0 aab
SO aS O aaS [0 aaaA [0 aaabA [aaabb

andsoon...

The derivation tree has been shown herein fig.
S.
r \S
RN
S
a” \A
/

b

e

The language generated is
L(G)={a"b™ n=1, m>3

126 Theory of Automata, Formal Languages and Computation

Example 2.2.9: Given aCFG with

S aAp

P = A - bS[Obtain the derivation tree and L(G).
MBA-DbH

Eolution

a/ \A
SO aAd ab '
b
S
RN
a A
RN
SO aAl abS [abaA [abab... ... b S
/N
a A
b/

The derivation trees suggest ab, abab,
Therefore the language generated

L@G) ={(ab)"| n=T

B Example 2.2.10: Obtain the production rules for CFG given the
language generated as

@ LG)={w|wD{a b, >, W) =xX,w)}
(b) LG)={w|wD{a b}, >, (W) =2y}
(© LG)={w|wD{a b, X, w)=3X,w)

Eolution

(@ S- Sass
S-0
S - SSaS

(b) S- 9SS
S - Sasas
S . D=S
S-O

Context-free Grammars 127

© S . 9SS\ DHS
S - SaSSaDhSaS
S & SaHI\=S
S o PASASAS
S d D

Example 2.2.11: Given agrammar G with production rules

S aB
S - bA
A - aS
A - bAA
A- a

B - bS
B - aBB
B-b

Obtain the (i) leftmost derivation, and (ii) rightmost derivation for the
string “ aaabbabbba’.

Eolution

(i) Leftmost derivation:

SO aB [0 aaBB [0 aaaBBB [0 aaabBB O aaabbB
0 aaabbabB [0 aaabbabbB [0 aaabbabbbS [0 aaabbabbba
0 aaabbabb
(i) Rightmost derivation:

SO aB [0 aaBB [0 aaBbS [0 aaBbbA [0 aaaBBbba
0 aaabBbba [0 aaabbSbhba [0 aaabbaBbba [aaabbabbba

2.3 PARSING AND AMBIGUITY
2.3.1 Parsing
A grammar can be used in two ways:

(8 Usingthe grammar to generate strings of the language.
(b) Using the grammar to recognize the strings.

“Parsing” a string is finding a derivation (or a derivation tree) for that
string.

Parsing a string is like recognizing a string. The only realistic way to
recognize a string of a context-free grammar isto parseit.

128 Theory of Automata, Formal Languages and Computation

2.3.2 Exhaustive Search Parsing

The basic idea of the “Exhaustive Search Parsing” is to parse a string w,
generate all stringsin L and check if w is among them.

Problem arises when L is an infinite language. Therefore a systematic
approach is needed to achieve this, asit is required to know that no strings are
overlooked. And asoitisnecessary so asto stop after afinite number of steps.

Theideaof exhaustive search parsing for astring isto generate al strings
of length no greater than | w |, and see if w isamong them.

The restrictions that are placed on the grammar will allow us to generate
any stringwOL inat most 2 | w|— 1 derivation steps.

Exhaustive search parsing isinefficient. It requirestime exponential in|w.

Therearewaysto further restrict context free grammar so that strings may
be parsed in linear or non-linear time (which methods are beyond the scope of
this book).

There is no known linear or non-linear algorithm for parsing strings of a
general context free grammar.

2.3.3 Topdown/Bottomup Parsing

Sequence of rules are applied in a leftmost derivation in Topdown parsing.
(Refer to section 2.2.4.)

Sequence of rules are applied in a rightmost derivation in Bottomup
parsing.

Thisisillustrated below.

Consider the grammar G with production

1S- aSs
2S-h

The parse trees are as follows.
S
/ | AN
a S

S \b
N

o a/T\S
sb/

Fig. Topdown parsing.

aababbb - Left parse of the string with the sequence 1121222.
Thisisknown as “Topdown Parsing.”

Context-free Grammars 129

“Right Parse” is the reversal of sequence of rules applied in a rightmost
derivation.

S

\S
\s\s\\sS
| (L |

Fig. Bottom-up parsing.

a a a b b

aababbb - Right parse of the string with the sequence 2221121.
Thisisknown as “Bottom-up Parsing.”
2.3.4 Ambiguity
The grammar given by
G=({S}.{ah,S5S-aP|bxa|SS|A)

generates strings having an equal number of a’'sand b’s.
The string “abab” can be generated from this grammar in two distinct
ways, as shown in the following derivation trees:

S S\b /S\
TN a/,s\b /T\b
[T

Similarly, “abab” has two distinct leftmost derivations:

SO aSh O abSab [abab
SO SSO aShs O abS O abaSh O abab.

Also, “abab” has two distinct rightmost derivations:

SO a0 abSab O abab
SO SSO SaSh [Sab 0 aShab O abab

Each of the above derivation trees can be turned into a unique rightmost
derivation, or into a unique leftmost derivation. Each leftmost or rightmost
derivation can be turned into a unique derivation tree. These representations
are largely interchangeable.

130 Theory of Automata, Formal Languages and Computation

2.3.5 Ambiguous Grammars/Ambiguous Languages

Since derivation trees, leftmost derivations, and rightmost derivations are
equivalent rotations, the following definitions are equivalent:

Definition: LetG =(N,T,P, S) beaCFG.
A stringwL(G) issaid to be“ambiguously derivable“if there aretwo or
more different derivation trees for that string in G.

Definition: A CFG givenby G=(N, T, P, S issaid to be “ambiguous’ if there
exists at least one string in L(G) which isambiguously derivable. Otherwiseit
is unambiguous.

Ambiguity is a property of a grammar, and it is usually, but not always
possible to find an equivalent unambiguous grammar.

An “inherantly ambiguous language’ is a language for which no
unambiguous grammar exists.

Example 2.3.1: Prove that the grammar

S - aB|ab,
A aAB |a,
B - ABb|b

is ambiguous.

Eolution

Itiseasy to seethat “ab” hastwo different derivations as shown below.
Given the grammar G with production

1S- aB
2S- ab
3. A- aAB
4 A- a
5B - ABb
6.B- b

Using(2), SO ab H
Using (1), SO aB O ab
and then (6). H

Example 2.3.2: ShowthatthegrammarS - S|S, S - aisambiguous.

Eolution

In order to show that G is ambiguous, we need to find awOL(G), which is
ambiguous.

Context-free Grammars 131

Assume w = abababa.
Thetwo derivation treesfor w = abababaisshownbelow in Fig. (a) and (b).

g /TN
L YN SN
| t;/|\ b b

"

S

S

a

—W0

S
| a

L —=W

Q

a a
(a) (b)

Therefore, the grammar G is ambiguous.

Example 2.3.3: Show that the grammar G with production
S - alaAblabSh
A - aAAb|bS

is ambiguous.

Eolution

SO ab (S - ab)
0 abab (~S- a)

Similarly,

SO aAb (S - aAb)
0 ab (A bS)
0 abab

Since‘abab’ hastwo different derivations, thegrammar G isambiguous.

2.4 SIMPLIFICATION OF CFG
2.4.1 Simplification of CFG-Introduction

In a Context Free Grammar (CFG), it may not be necessary to use al the
symbolsinV O T, or al the production rulesin P while deriving sentences.
Let ustry to eliminate symbols and productionsin G which are not useful
in deriving sentences.
LetG = (V,T, S, P) beacontext-free grammar. Suppose that P contains a
production of the form

A - X BX,.

132 Theory of Automata, Formal Languages and Computation

Assume that A and B are different variables and that

B - yilya|-oe | Yo
isthe set of all productionsin P which have B as the left side.
LetG = (V,T,S,P) bethegrammar inwhich P isconstructed by deleting
A - x BXx,
from P, and adding to it
A = X i Xo X YoXal oo [Xq Yo Xa
Then L(G) = L(G).

Substitution Rule

A production A - X, Bx, can be eliminated from a grammar if we put in its

place the set of productionsin which B is replaced by al strings it derivesin

one step. In thisresult, it is necessary that A and B are different variables.
Anillustration is given in examples 2.4.1 and 2.4.2.

2.4.2 Abolishing Useless Productions

In the grammar G with P,

S a|A|A

Ao aA
the production S — Adoes not play any role because A cannot be transformed
into aterminal string. ‘A’ can occur in a string derived from S this can never

lead to a sentential form. Hence this production rule can be removed, which
does not affect the language.

Definition: LetG = (V, T, S, P) beaCFG.
A variable A0V is said to be “useful” iff there is at least one wO L(G)
such that
SO xAyﬁ w
with x, y in (V DT)*, i.e., avariable is useful iff it occursin at least one
derivation.
[llustration: Consider the grammar G with P

S_ A
A - aA|A
B - bA

HerethevariableBissaidtobe“useless’, hencetheproductionB — bAis
also “useless’. Thereisno way to achieve S 0 XBYy.

Context-free Grammars 133

THEOREM: Let G = (V, T, S P) be a CFG. There exists an equivalent
grammar G= (\/ T,S, P) that does not contain any useless variables or
productions.

Procedure: Thefirst Part-A isto find G, using the algorithm.
Sepl: SetV,tol

Step 2: Repeat the following step until no more variables are added to V;.
For every A1V for which P has a production of the form.

Ao XXy X,, withalx;.inV, OT,add AtoV,.
Step 3: TakeP, asall theproductionsin Pwhosesymbolsareal in(V, O T).

Thus the grammar G, can be generated from G by the above algorithm.
HereG, = (V,T,, S, P,) such that V, contains only variables A for which

AL wOT”

The next step is to check whether every A for which AOw=ab... is
added to V, before the procedure terminates.

Sep below describes the second Part B.

“Dependency graph” is drawn to find all the variables that cannot be
reached from the start symbol S. These variables are removed from the
variable set and also al the productions involving the variables.

The resultant obtained isG.

(a) Empty Production Removal

The productions of context-free grammars can be coerced into a variety of
forms without affecting the expressive power of the grammars.

If the empty string does not belong to a language, then there is a way to
eliminate the productions of the form A - A from the grammar.

If the empty string belongsto alanguage, then we can eliminate A from all
productions save for the single production S — A. In this case we can also
eliminate any ocurrences of Sfrom the right-hand side of productions.

Let usillustrate thisthrough the Example 2.4.4. Any production of a CFG
of theform

Ao A
is called aA-production. Any variable A for which the derivation

AL Aispossible.
is called “NULLABLE".

134 Theory of Automata, Formal Languages and Computation

Let G be any CFG with A not in L(G). Then there exists an equivalent
grammar G having no A-productions.

Procedure to find CFG without A-Productions

Sep (i): For al productions A - A, put Ainto V.
Step (ii): Repeat thefollowing stepsuntil nofurther variablesareadded to V.
For all productions

whereAl,AzA,A3, , A, areinV, put Binto V.
To find P, let us consider al productionsin P of the form

foreachx, OV OT.

For each such production of P, we put into P that production as well as
al those generated by replacing nullable variables with A in all possible
combinations.

(If al x are nullable, the production A — A isnot put into IS).
Let usillustrate this procedure through an example as shown in example
245.
(b) Unit Productions Removal
Any production of a CFG of the form
A- B

where A, B 0V is caled a“Unit-production”. Having variable one on either
side of a production is sometimes undesirable.

“Substitution Rul€” is made use of in removing the unit-productions.

Given G = (V, T, § P), aCFG with no A-productions, there exists a CFG
G= (V T,S, P) that does not have any unit-productions and that is equivalent
to G.

Let usillustrate the procedure to remove unit-production through example
2.4.6.

Procedure to remove the unit productions:
Find al variables B, for each A such that
AD B
This is done by sketching a “depending graph” with an edge (C, D)

Context-free Grammars 135

whenever the grammar has unit-production C — D, then Aﬁ B holds
whenever thereis awalk between A and B.

The new grammar G, equivalent to G is obtained by letting into P all
non-unit productions of P.

Then for al A and B satisfying Al B, weadd to P

A yilYy |..e | Yn
whereB - y; | Y, |...... |y, istheset of all rulesin P with B on the left.

(c) Left Recursion Removal
A variable A isleft-recursive if it occurs in a production of the form
A - AX
foranyxO(V OT) .
A grammar is left-recursive if it contains at least one left-recursive
variable.

Every content-free language can be represented by a grammar that is not
left-recursive.

Example 2.4.1: Given a grammar G = ({A B},{a,b,¢, A P) with
productions

A - alaaA|abBc
B - abbA|b.

obtain an equivalent grammar G such that both G and G would accept thestring
“aaabbc”.

Eolution

Given G as
A - alaaA|abBc Q)
B - abbA|b. 2
Making use of (2) in (1), we have the grammar G with productions

A - al|aaA|ababbAc|abbc
B - abbA|b.

Gis equivaent to G.
Thusthe string “aaabbc” is derived as

A0 aaA 0 aaabBc [aaabbc (with G)

136 Theory of Automata, Formal Languages and Computation

and
AD aaA D aaabbc (withG)

since G and G are equivalent.

Example 2.4.2: GivenaCFG as
G=({S AB,C,E}{abg,P,S)
with production P given by

S AB
A- a
B-b
B-C
E-c/A

Obtain L(G) and obtain an equivalent grammar L(é) by eiminating
useless terminal s and productions.

Eolution

L(G) isobtained as follows:
SO ABO aB O ah.
Therefore, L(G) ={ab}.

Here G=({S AB}.{ah},P.S).
where P' has the production rules

S- AB

A- a

B-b

We have eliminated C asit does not derive terminal string. E and C do not
appear in any sentential form.

E - Aisanull production and hence eliminated. B — C simply replaces
Bby C.

Example 2.4.3: GivenG=(V, T, S P) with P given by

S - aS|A|C
A-a

B - aa

C - aCb

Eliminate the useless symbols and productions from G.

Context-free Grammars 137

Eolution

HereV ={S A, B, C}. Let us determine the set of variables that can lead to a
terminal string.

Since A -~ a and B - aa, implies A and B belong to this set. Also S
belongsto thisset, sinceSO AQO a.

But C does not belong to this set because C does not produce terminals
sinceC - aCh.

Thus Cis removed and its corresponding productions are a so removed.

S aS|A
Ao a
B - aa

HereV,={S A, B}.

To eliminate the variablesthat cannot be reached from the start variable, a
“dependency graph” is drawn and decided.
The dependency graph for V, = {S A, B} isdrawn as below.

o o

A variableis useful only if thereisapath from the vertex labeled Sto the
vertex labeled with that variable.
From the abovefig. it is obvious B is useless. Hence we have

G=V,T,S P)withV ={S, A}, T ={a} and P given by

S aS|A
A- a

Example 2.4.4: Given a CFG with P given by
S- aShb
S, - aS;b|A

obtain anew set of P for agrammar same as the given CFG.

Eolution

The given grammar
S - aSb
S, - aS;b|A

generates the A-free language given by

138 Theory of Automata, Formal Languages and Computation

{a"ob" :n=1
The A-production in P viz.,

S - A
is removed after adding new productions by substituting A for S; where it
occurs on the right. Hence we get
S - aS;blab
S, - aS;bjab
which is the new set of P that produces the same language given by
{a"b":n>1}.

Example 2.4.5: Determine a CFG without A-production equivalent to
the grammar given by P as

S_ ABaC, A- BC, B-Db|A, C-DJA, D-d

Eolution

Refer to the procedure outlined in section 2.4.2 to find CFG without
A-productions.
Sep 1: The“Nullable variables’ are A, Band C.
Sep 2:
S - ABaC|BaC|ABa|AaC|Aa|Ba|ac|a
A - B|C|BC
B-b

C-D
D-d

The above set of rules represent P’ for the new CFG after elimination of
A-productions.

Example 2.4.6: Eliminate unit productions from the grammar G given
by productions (P).

Context-free Grammars 139

Eolution

A - a, B - b E - aarenonunit production. Therefore P will contain these
productions.

SinceBﬂ E, and E - aisanon-unit production, includeB - ain P.

SinceCO E,D O E, includeC - a,D - ainP.

Hence we have the equivalent grammar without unit productions as G
defined by

G=({S AB,C,D,E} {ab},P,S)
with P given by

S- AB
A- a
B—’b
B- a
C-a
D- a

Example 2.4.7: Given a CFG with P given by

S- AB
A-a
B-C
C-D
D- b

Eliminate the unit productions to obtain an equivalent grammar.

Eolution

In the grammar defined by P, we have

B-C
C-D
as unit-productions.
We can replace
B-C
C nd D
and D-b
by B - b,

140 Theory of Automata, Formal Languages and Computation

we have P for an equivalent grammar given by

S- AB
A-a
B-b

Example 2.4.8: Eliminate the unit-production from the CFG with P
given by
S Aa|B
B - Albb
A - a|bc|B.

Eolution

From the given P we shall draw the dependency graph as follows.

S odiiye

From this we see that
sO A
SO B
BO A
AL B

Therefore these rules are added to the original non-unit productions

S- Aa
A albc (fromgiven P)
B - bb
the following new rules
S - albc|bb
A bb
B - a|bc
in order to obtain
S - a]bc|bb| Aa
A - a|bb|bc
B - a|bb|bc

which is P for the new grammar generated equivalent to the given grammar.

Context-free Grammars 141

Example 2.4.9: Given a CFG with P given by

S. ABla
Ao b

Eliminate the useless symbols to obtain an equivaent grammar.

Eolution

Given S- ABla
A-Db
Bisanon-generating symbol. a and b generatethemselves. Sgeneratesaand A
generates b.
When Biseliminated, S — AB is eliminated. Therefore we have
S-a
A-Db

Sand a are only reachable from S. Therefore we eliminate A and b, therefore
we have

S-a

as the new P for equivalent grammar.

Example 2.4.10: Given the CFG with P given by

S AB
A = aAA|
B - bBB|A.

Eliminate the A-productions to obtain P for an equivaent CFG.

Eolution

A and B are “Nullable Symbols’ as they have A-productions. S is aso
“Nullable’, because it has the production S — AB, which has only “Nullable
symbols’, AandB.

For S - AB, we have three waysviz.,

S- AB|A|B
For A - aAA, we have four waysviz.,
A - abA|aAlaAla
For B - bBB, we have three waysviz.,
B - bBB|bB|b

142 Theory of Automata, Formal Languages and Computation

Therefore, the new set of productions P for the grammar equivalent to the
given CFGis

S - ABJ|A|B
S - ahAAlaAla
B - bBB|bB|b.
2.5 NORMAL FORMS
Two kinds of norma forms viz., Chomsky Norma Form and Greibach
Normal Form (GNF) are considered here.
2.5.1 Chomsky Normal Form (CNF)

Any context-free language L without any A-production is generated by a
grammar is which productions are of the form A - BC or A - a, where
ABOVy,andalV,

Procedure to find Equivalent Grammar in CNF

(i) Eliminate the unit productions, and A-productionsif any,
(ii) Eliminate the terminals on the right hand side of length two or
more.
(iii) Restrict the number of variables on the right hand side of
productions to two.
Proof:
For Step (i): Apply the following theorem:

“Every context free language can be generated by agrammar with no
useless symbols and no unit productions’.

At the end of this step the RHS of any production has asingle terminal or
two or more symbols. Let us assume the equivalent resulting grammar as
G=WVy\,V;,P,S).

For Step (ii): Consider any production of the form
Ao VY, oo Yor M22

If y, is a terminal, say ‘&', then introduce a new variable B, and a
production

B
Repeat this for every terminal on RHS.

a — a

Let P’ be the set of productions in P together with the new productions

Context-free Grammars 143

B, — a LetV, betheset of variablesinV,, together with B, sintroduced for

every terminal on RHS.
The resulting grammar G, = (Vy,,V;,P',S) isequivalent to G and every
production in P' has either asingle terminal or two or more variables.

For step (iii): Consider A — B,B, B
where B sare variablesand m=3.

If m=2, then A ~ B, B, isin proper form.
The production A - BB, B,, isreplaced by new productions

where D;'S are new variables.
The grammar thus obtained is G,, whichiisin CNF.

Example 2.5.1: Obtain a grammar in Chomsky Normal Form (CNF)
equivalent to the grammar G with productions P given

S -, aAbB
A - aAla
B -~ bB|b.

Eolution

(i) There are no unit productionsin the given set of P.
(i) Amongst the given productions, we have

Ao a,
B-b

which arein proper form.
For S - aAbB, we have
S - B,AB,B,
B, - a
B, - b
For A = aA, we have
A- BA

For B - bB, we have
B - B,B.

144 Theory of Automata, Formal Languages and Computation

Therefore, we have G, given by
G, =({S AB,B,,B,}.{al},P,S)
where P' has the productions
S- B,AB,B
A~ B,A
B - B,B
B, -~ a
B, - b
A- a
B-b

(iii) InP"above, we have only
S - B,AB,B

not in proper form.

Hence we assume new variables D, and D, and the productions
D, - AD,
D, - B,B

Therefore the grammar in Chomsky Norma Form (CNF) is G, with the
productions given by

S~ B,D,,
D, - AD,,
D, - B,B,

A~ B,A

B,B

a
and B - b

Example 2.5.2: Obtain a grammar in Chomsky Normal Form (CNF)
equivalent to the grammar G with productions P given by

S - ABa
A - aab
B - AC

Context-free Grammars 145

Eolution

(i) The given set P does not have any unit productions or
A-productions.
(ii) None of the given rulesisin proper form.

For S -~ ABa, we have

S - ABB,
and B, - a
For A - aab, we have

A - B,B,B,
and B, - b
For B — Ac, we have

B - AB,

and B, -cC

Therefore G, has a set of productions P’ given by

S - ABB,
A- B,B,B,
B - AB,

B, - a

B, - Db

B, - ¢C

(iii) InP'" aove, we have
S - ABB,
A - B,B,B,

not in proper form.

Hence we assume new variables D, and D, and the productions

S~ AD,,
D, - BB,,
A~ B,D,,
D, - B,B,.

Thus the grammar in Chomsky Normal Form (CNF) is G, given by the
productions given by

S~ AD,,
D, - BB,,
A~ B,D,,
DZ - BaBb’

146 Theory of Automata, Formal Languages and Computation

B - AB,

B, - a

B, - b
and B, - ¢

Example 2.5.3: Reduce the given CFG with P given by
S - abShjalaAb and A - bS|aAAb
to Chomsky Normal Form (CNF).

Eolution

(i) Thereareneither A-productions nor unit product in the given set of
P.
(i) Among the given productions, we have
S-a

in proper form.
For S — abSh, we have

S-B,B,SB,, B, -a andB, - h.
For S - aAb, we have
S - B,AB,.
For A - bS, we have
A - B,S.
For A -~ aAAb, we have
A - B, AAB,.
Therefore, we have G, given by
G, = ({S AB,.By}.{ab},P,9)
which has P’ given by
S - B,B,By
S - B,AB,
A - B,AAB,
A- B,S
B, - a
B, - b
and S- a
(iii) In P’ above, we have
S - B,B, By
S - B,AB,

Context-free Grammars 147

and A - B, AAB,

not in proper form.

Hence we assume new variables D,, D,, D;, D, and Dy with
productions given as below:

For S - B,B,SB,, we have

S- B,D;, D, - BD, D, SB,
For S -~ B, AB,, we have

S - B,D,
D, - AB,

For A -~ B, AAB,, we have
A~ B,D,
D, - ADg
Ds - AB,

Therefore, the grammar in Chomsky Normal Form (CNF) is G,
with production given by

S- B,

D, - B,
D, - SB,
S - B,D;
D; - AB,
A~ B,D,
D, - ADg
D, - AB,
A~ B,S
B, - a
B,- b

and S- a

Example 2.5.4: Obtain the grammar G givenby P asS - a|b|cSS.

Eolution

(i) There are no A-productions and no unit productionsin given P.
(i) Among the given productions,

S-a
and S-b

arein proper form.

148 Theory of Automata, Formal Languages and Computation

For S - ¢SS, we have

S - B.SS.

B, - ¢
Therefore we have G, given by
Gl = ({S‘}’{av va}’P"S)

which has P’ given by

S - B.SS

B, - cC

S- a

S- b

(iii) In P’ above, we have
S - B.SS

C
not in proper form.
Hence we have new variable D, and new productions,
D, - SS

Therefore the grammar in Chomsky Normal Form (CNF) is G,
with productions given by
S- B.D;
D, - SS
B, - ¢C
S- a
and S-h

2.5.2 Greibach Normal Form

In Chomsky’s Normal Form (CNF), restrictions are put on the length of right
sides of a production, whereas in Greibach Normal Form (GNF), restriction
are put on the positions in which terminals and variables can appear.

GNF isuseful in simplifying some proofs and making constructions such
as Push Down Automaton (PDA) accepting a CFG.

Definition: A context-free grammar is said to be in Greibach Normal Form
(GNF) if dl productions have the form

A - ax

wherea 0T and xOV".

Context-free Grammars 149

For agrammar in GNF, the RHS of every production hasasingleterminal
followed by astring of variables.

The procedure of getting a grammar in GNF is beyond the scope of this
book.

GLOSSARY

CFG: Context-Free Grammar.
Left-Linear Grammar: All productions are either of the form

Vo VT

or VT

Right-Linear Grammar: All productions are either of the form
VoTYV

or VoT

Parsing: Finding a derivation of the string.

Topdown Parsing: Sequence of rules applied in the leftmost derivation

Bottomup Parsing: Sequence of rules applied in arightmost derivation.

Ambiguous Grammar: A CFG is said to be “ambiguous’ if there exists at
least one string in the language of the CFG which is ambiguously
derivable. Otherwise it is unambiguous.

Useless Production: A production rule not affecting the language

Unit Production: Any production of a CFG of the form A - B where
A, BV iscaled a Unit-Production.

Chomsky Normal Form: A CFG without any A-productionsis generated by
a grammar in which productions are of the foorm A - BC or A= a,
where A, BOV, and a OV .

REVIEW QUESTIONS

Define the term: Context-Free Grammar (CFG).

Give an example of aCFG.

What do you mean by aright linear grammar?

Show the relationship existing between right-linear grammars and
NFAs. Give an example.

What is aleft-linear grammar?

Compare right-linear grammar with left-linear grammar.

Give some examples of Context-free languages.

What are derivation Trees?

AW bdPE

0O N O

150

Theory of Automata, Formal Languages and Computation

10.
11
12.
13.
14.

15.
16.
17.

18.
10.
20.
21.
22.

23.
24.
25.
26.
27.
28.
29.
30.

Define ‘derivation tree’.

When is an ordered tree said to be a derivation tree?
What do you mean by sentential form?

What isapartia derivation tree?

Explain (a) Rightmost (b) Leftmost and (c) Mixed derivation.
What do you mean by the terms

(a) Parsing

(b) Ambiguity.

What do you mean by exhaustive search parsing?
Distinguish between top-down and bottom-up parsing.
Define the terms:

(8 Ambiguous Grammar (b) Ambiguous Language.
What do you mean by inherantly ambiguous language?
Explain the method of simplifying a CFG.

State the substitution rule.

How will you abolish useless production in CFG?
What do you mean by empty production removal? Explain with an
example.

State the procedure to find CFG without A-productions.
What do you mean by unit production removal?

What do you mean by left recursion removal ?

What are the kinds of Normal Forms?

What do you mean by Chomsky Normal Form (CNF)?
State the procedure to find equivaent grammar in CNF.
What do you mean by Greibach Normal Form (GNF).
When isa CFG said to be in GNF?

EXERCISES

Generatethe Context-Free Grammarsthat give thefollowing languages.
(@ {w]|wcontainsat |least three 1s}

(b) {w|w starts and ends with the same symbol}

(¢ {w/|thelength of wis odd}

(d) {w|w=w- thatis wisapalindrome}

Determine the CFG that generates the following languages.

(8 Thesetof stringsover theaphabet { a, b} withtwiceasmany a’ sas
b's.

(b) The complement of the language {a" b" | n >0}

Determine aderivationtreeof a* b+a* bgiventhata* b+a* b isin
L(G) where G isgiven by the productions S - S+ S|S* S|a|b.

Context-free Grammars 151

10.

11
12.

Given grammar G with productions
S - aB|bA, A - alaS|bAA, B - b|bs|aBB.

For the string aaabbabbba, find a rightmost derivation, leftmost
derivation and parse tree.

Obtain the derivation tree for the string a?v’c in the grammar
G=(N,T,P,S)where N =(Xy,%), T=(a,b,c), S=x,,

P={x, - axy|bx,, %, - bx,|c. o

Obtain a CFG that generates the language L ={a'b’c* [i, j, k =0 and
eitheri =j orj = k}. Isthe grammar you have generated ambiguous?
Let G, and Gy be context-free grammars, generating the languages
L(G,) and L(Gg), respectively. Show that there is a context-free
grammar generating each of the following sets.

@LGA)OLG) (LGA)LGe) (O LG,) -

GivenV={S A, B,a, b} andT={a, b}. Determinewhether G=(V, T, S
P) isatype 0 grammar but not atype 1 grammar, atype 1 grammar but
not atype 2 grammar, or atype 2 grammar but not atype 3 grammar if P,
the set of productionsis

(@ S—aAB, A~ BbB- A (b)S- ABa AB- a

(e S-aA A-bB,B- b B A.

Given Gisagrammar withV ={a, b, ¢, S}, T ={a, b, ¢}, starting symbol
S and productions S - abS,S - bcS, S - bbS, S aand S - ch.
Construct derivation treesfor:

(@ bcbba

(b) bbbcbba

(c) bcabbbbbch.

For agrammar G with productions

S aAS|a
A _ SHA|SS|ba.

Show that S 0 aabbaa and construct a derivation tree for aabbaa.
Obtain a CFG for generating all integers.
Given the grammar G:

S - aAD

A - aB|bAB

B-b

D-d

Reduce the grammar G to Chomsky Normal Form.

152 Theory of Automata, Formal Languages and Computation

13. Obtain a grammar in Chomsky Norma Form equivalent to
S - aAbB,A - aA|a,B - bB|b.
14. Convert the following NFA to DFA.

aba
— @
A A
@
15. Provethat for every NFA thereisan equivaent NFA that has only one

final state.
16. Given M = ({0,.9,}.{0T.A,q,.{0,}) isan NFA with

A ={(0y,0,dp), (95,0, 9;), (Ag.,1, A), (01,1, dp) (A1, G)}

Draw the state transition diagram for M. Convert to a DFA using subset
construction.
17. Show that thegrammar with productionsS - aSb|SS|A, isambiguous.
18. Show that the grammar

S - a®S|bSaS|A

is ambiguous.
19. Givethederivationtreefor (((a +b)* ¢)) +a + b, using the grammar

G=(V,T,E,P)
V={ET,F,I}
E-T

T-F

F ol

E- E+T
T-T*F

F - (E),

| - albjc

20. Eliminate useless productions from
S - a|aA|B|C
A - aBJ|A
B - Aa
C - cCD,
D - ddd

21. Show that the two grammars

S - abAaA|abAbb|ba,
A - aaa

Context-free Grammars 153

22.

23.

24.
25.

26.

27.

and S - abAB|ba,
A - aaa,
B - aA|bb

are equivalent.
Eliminate all the A-productions from

S - AaB|aaB,
A A
B — bbA|A.

Say whether the following grammars arein CNF:
@ S- As|a (b) S - AS|AAS,
A- SAlb A - SA|aa.
Convert the grammar S - aSh|abinto Chomsky Normal Form.
Convert the grammar with productions

S _. abAB,
A - bABIA,
B _ BAa|A|\

into Chomsky Normal Form.
Give a grammar with no [+ or unit productions generating the set
L(G) —{}, where G isthe grammar

S - ab|T,
T - bTaa|S|O

Give grammars in Chomsky Normal Form for the following CFGs.
(@ {a b} -(palindromes)

(b) {a*b™c"|k,mn=12k >n}

(©) {a"b*a"|k, n=1

(d) {a"b?'c* |k, n=1.

SHORT-QUESTIONS AND ANSWERS

Define a Context-Free Grammar (CFG).
A context-free grammar isa4-tuple (V, T, S P) where
(i) Visafiniteset called the variables
(i) Tisafiniteset, digoint from V, called the terminals.
(iii) Pisafinite set of rules, with each rule being avariable and a
string of variables and terminals, and
(iv) SOV isthe start variable.

154

Theory of Automata, Formal Languages and Computation

If u, vand w are strings of variables and terminalsand A - wisa
rule of the grammar, we say that uAv yields uwv, written uAv O uvwv.

Give an example of CFG.
Given agrammar of G = ({S},{a, b}, R, S). The set of rulesRis
S- aB
S-S5
S-0O

This grammar generates strings such as abab, aaabbb and aababb.

What is aleft linear grammar?
A grammar iswhich al productions are either of the form

V o VT’
or VoT

iscalled aleft linear grammar.
What isright linear grammar?
A grammar iswhich all productions are either of the form
VoTYV
or VT
iscaled aright linear grammar.
What do you mean by Parsing?
Finding a derivation of the string is called Parsing.

What are derivation trees?

A derivation tree is an ordered tree in which the nodes are labeled
with the left sides of productions and in which the children of a node
represent its corresponding right sides.

What do you mean by sentential form?

The resultant of the derivation tree is a word something like
w = aaba for a CFG with productions S - aA, A - aB,B - bB,
B - a.Thisword issaid to bein sentential form.

Sketch the derivation tree for the CFG given by S - aA A - aB,
B - bB,B - a

S,
a— \
A
a— \
B
b \B

a

Context-free Grammars 155

10.

11

12.

13.

14.

15.

16.

17.

18.

19.

What isapartia derivation tree?

In the definition of derivation tree given, if every leaf has a label
fromV OT O{A} thenit is said to be a partial derivation tree.
What do you mean by Topdown Parsing?

The sequence of rules being applied in the leftmost derivation is
referred to as Topdown Parsing.
What is meant by bottomup Parsing?

Sequence of rules applied in arightmost derivation isreferred to as
bottom-up parsing.

What is an ambiguous grammar?

A CFGissaidto beambiguousif thereexistsat least onestringinthe
language of the CFG which is ambiguously derivable. Otherwise it is
unambiguous.

What is meant by a useless production?

A production which does not affect a language is called a useless
production.

What is an Unit Production?

Any production of a CFG of the form A - B where A BOV is
called a Unit Production.

What do you mean by exhaustive search parsing?

To parse astring w, that generates all stringsin L and check if wis
among them is called exhaustive search parsing.
Give the formal definition of an ambiguous CFG.

Let G=(N,T,P,S) be a CFG. A string wOL(G) is said to be
“ambiguoudly derivable’ if there are two or more different derivation
treesfor that string in G.

What is an inherantly ambiguous language?

A language for which no unambiguous grammar exists, is called an

inherantly ambiguous language.
Give examples for ambiguous grammars.
(& A CFG which hasthe production rules

S 5 S, S - aisambiguous.
(b) A CFG which has the production rules
S - alaAblabSh, A - aAAb|bS isambiguous.

What do you mean by substitution rule?

A production A - x,Bx, can be eliminated from a grammar if we
putinitsplacethe set of productionsinwhich B isreplaced by all strings
it derives in one step. In this result, it is essential that A and B are
different variables.

156 Theory of Automata, Formal Languages and Computation

20. Givetheformal definition of a useful production.
LetG=(V,T,S P)beaCFG. A variable A0V issaid to be * useful’
iff thereisat least one w L(G) such that.

sO xAyﬁ w
withx,yin(V OT)’,i.e, avariableis useful if it occursin at least
one derivation.
21. Give an example of agrammar with useless production.
In the grammar G with production rules P given by
S a|A|A
A- aA

The production S - Adoes not play any role because‘ A’ cannot be
transformed into aterminal string. ‘A’ can occur in astring derived from
S, this can never lead to a sentential form.

22. Determine whether the grammar G with P
S nd A
A - aA|A
B - bA

has a useless production?
Here the variable B is “useless’, therefore B - bA is aso useless.
There is no way to achieve sO xBy. Therefore B - bA is a useless
production.
23. What isaA-production?
Any production of a CFG of the form
Ao A

is called a A-production.

24. Whenisavariable said to be “nullable’?
Any variable A for which the derivation

AT A
ispossibleiscalled “Nullable’.

25. Write aprocedure to find CFG without A-productions
(i) Forall production A — A, put Aiinto V.
(i1) Repeat thefollowing stepsuntil no further variables are added
to V.
For al productions

where A, Ay A, ... A, areinVy, put BintoV, .

Context-free Grammars 157

26. What is meant by a Unit Production?
Any production of a CFG of the form

A- B

where A, B OV iscaled a‘Unit Production’.

27. State the procedure to remove the unit productions.
(i) Find al variables B, for each A such that

AD B
Thisisdone by sketching a“ dependency graph” with an edge
(C, D) whenever the grammar has unit production C — D,
then AD) B holdswhenever thereisawalk between A and B,

(if) The new grammar G, equivalent to G is obtained by letting
into P al non-unit productions of P.

(iii) Then for al A and B satisfying AT B, weadd to P

As ylYsl...... A

whereB - |V, |y, isthe set of all rulesin P with B
on the left.

28. What do you mean by left recursion?
A variable Aisleft-recursiveif it occursin aproduction of theform

Ao Ax
forany xO(V OT) .
A grammar is left-recursive if it contains at least one
left-recursive variable.
29. Can every CF language be represented by a grammar that is not
left-recursive?
YES.
30. What are the kinds of Normal Forms?
There are two kinds of Normal Formsviz.,
(& Chomsky Norma Form (CNF)
(b) Greibach Normal Form (GNF)
31. What do you mean by Chomsky Normal Form?
A CFG without any A-production is generated by a grammar in
which productionsareof theform A - BC or A - a,where A, B 00V
anda[V;.

32. Differentiate between Chomsky’s Norma Form (CNF) and Greibach
Norma Form (GNF).

158 Theory of Automata, Formal Languages and Computation

In CNF, restrictions are put on the length of right sides of
production, whereas in Greibach Normal Form (GNF), restrictions are
put on the positions in which terminals and variables can appesr.

33. What is meant by Greibach Normal Form?
A CFGissaidto bein Greibach Normal Formif all productionshave

the form
A - ax

wherea 0T and x OV .

Chapter 3

Pushdown Automata

3.1 DEFINITIONS

Let us consider afinite automata which accepts the language
L(M)={a™"|mn=3.

We seethat M movesfrom g, toq,, onthe occurenceof a's. Onseeing ‘b,
M movesfrom g, to g, and continuesto beinthe state q, on gettingmoreb’s.
Assume that the input string is given by

a™b",
then the resulting state is final state and so M acceptsa™b".
Consider the language L, (M) ={a"b" |n>1 where the number of b's
and @ sareequal. The FA constructed for L, differsfrom that of L.
For the language L, (M)={a™b"|mn=1 there is not necessity to
remember the number of a's. The following have to be remembered.
(@ Whether thefirst symbol is‘b’ (to reject the string)

(b) Whether ‘a’ follows ‘b’ (to reject the string)
(¢) Whether‘a’ follows'a and‘b’ follows'b’ (to accept the string).

We know that FA has only afinite number of states, M cannot remember
the number of a’sin a"b" where ‘n’ islarger than the number of states of M.
The FA does not accept the sets of the form {a"b" [n>1}. This is taken

care by a*PUSHDOWN AUTOMATA”.
Let usillustrate a Pushdown Automata (PDA) model.
3.1.1 Nondeterministic PDA (Definition)
An NPDA isdefined by the 7-tuple
M = (Q’ Z,r,é, q()vzv F)

Finite set of internal states of the control unit
Input alphabet
Finite set of symbols called “ Stack & phabet”

where Q
2
r

160 Theory of Automata, Formal Languages and Computation

5 : Qx(ZO{A})xI - finitesubsetsof Q xI"" isthe
transition function

g, = Initial state of the control unit JQ
Z = Stack start symbol
F O0Q = Set of Final states.

The arguments of & are the current state of the control unit, the current
input symbol, and the current symbol on the top of the stack.
Theresult isa set of pairs (g, X)

next state of the control unit
string that is put on top of the stack in place of the single
symbol there before.

where q
X

The ‘stack’ is an additional component available as part of PDA. The
‘stack’ increasesits memory. With respect to{a"b" |n>1}, we can storea’sin
the stack. When the symbol ‘b’ is encountered, an ‘a’ from the stack can be
removed. If the stack becomes empty on the completion of processing agiven
string, then the PDA accepts the string.

) 2)
T

Finite State » Z
Control

Pushdown Store
Fig. Model of Pushdown Automaton (PDA)

3.1.2 Transition Functions for NPDA
The transition function for an NPDA has the form
5:Q x (X O{A}) xI - Finitesubsetsof Q xI”

0 isnow afunction of three arguments.
Thefirst two arguments are the same as before;

(i) thestate
(ii) either A, or asymbol from the input alphabet.

The third argument is the symbol on top of the stack. Just as the input
symbol is*“consumed” when the function is applied, the stack symbol is aso
“consumed” (removed from the stack).

Pushdown Automata 161

Note that while the second argument may be A, rather than a member of
the input alphabet (so that no input symbol is consumed), there is no such
option for the third argument.

0 aways consumes a symbol from the stack, no move is possible if the
stack is empty.

There may aso be a A-transition, where the second argument may be A,
which means that a move that does not consume an input symbol is possible.
No moveispossibleif the stack is empty.

Example: Consider the set of transition rules of an NPDA given by

(0, a b) ={(q,, cd), (a3, A)}

If at any time the control unit isin state g,, the input symbol read is ‘&’
and the symbol on the top of stack is‘b’, then one of the following two cases
can occur:

(8 The control unit tends to go into the state g, and the string ‘cd’
replaces ‘b’ on top of the stack.

(b) Thecontrol unit goesinto state g, with the symbol b removed from
the top of the stack.

In the deterministic case, when the function & is applied, the automaton
movesto anew state q JQ and pushes anew string of symbolsx O~ onto the

stack. As we are dealing with nondeterministic pushdown automaton, the
result of applying d isafinite set of (q, X) pairs.

3.1.3 Drawing NPDAs

NPDAs are not usually drawn. However, with afew minor extensions, we can
draw an NPDA similar to the way we draw an NFA.

Instead of labeling an are with an element of %, we can label arcs with
a|x, ywherea 0 Z,x O and yOrl .

Let us consider the NPDA given by

Q={9y,%,02,93}, ={a, b}, I ={0,1,3,9,,Z=0,F ={qs})

where 5(dg,a,0) ={(0;,10), (A3, A)}
(0o, A,0) ={(a3, M)}
0(qy, a,1) = {(q 11}
0(qy, b1) ={(az,A)}
(. b1) ={(az,A)}
(92, A.0) ={(as, A)}

162 Theory of Automata, Formal Languages and Computation

This NPDA isdrawn as follows.

a/0,10 /1,11
Ao ’ >y
MO, al0,\ b/
b/
@)
MO,A

Please note that the top of the stack is considered to be the left, so that, for
example, if weget an‘a’ from the starting position, the stack changesfrom ‘0’
to‘10.".

3.1.4 Execution of NPDA

Assumethat someoneisin the middle of stepping through astring withaDFA,
and we need to take over and finish the job. There are two things that are
required to be known:

(@) the state of the DFA isin, and
(b) what the remaining input is.

But if the automatonisan NPDA we need to know one moreviz., contents
of the stack.

Instantaneous Description of a PDA
The Instantaneous description of a PDA isatriplet (g, w, u),

where g = current state of the automaton

w = unread part of theinput string

u = stack contents (written as a string, with the leftmost
symbol at the top of the stack).

Let the symbol “F’' denote a move of the NPDA, and suppose that
o(0,,a,x) ={(a,, y),...}, then thefollowing is possible:

(4, aW,x2) |- (92, W, y2)

where Windicatesthe rest of the string following ‘a’ and Z indicatesthe rest of
the stack contents underneath the x.

This notation tells that in moving from state g, to state g,, an ‘a’ is
consumed from the input string aw, and the x at the top (left) of the stack xZ is
replaced with y, leaving yZ on the stack.

3.1.5 Accepting Strings with an NPDA
Assume that you have the NPDA given by
M = (Q! zar161q01 ZiF)

Pushdown Automata 163

To recognize string w, begin with the instantaneous assumption

(Ao, W, 2)
where q, = Start state
w = entire string to be processed, and
Z = start stack symbol.

Starting with this instantaneous description, make zero or more moves,
just asis done with an NFA.
There are two kinds of moves that can be made:

(8 A-Transitions: If youarein stateq;, x isthetop (leftmost) symbol
in the stack, and

3(ay, A x) ={(q, W), --.... }
then you can replacethe symbol x with the string w, and moveto d,.
(b) Nonempty transitions: If you are in the state q,, ‘&’ is the next
unconsumed input symbol, x is the top (Ieftmost) symbol in the
stack, and

3(ay, ax) ={(dz, W), }
then you can remove the ‘a from the input string, replace the
symbol x with the string w,, and move to state d,.
If you arein thefinal state when you reach the end of the string (and may
be make some A-transition after reaching the end), then the string is accepted
by the NPDA. It does not matter what is on the stack.

3.1.6 An Example of NPDA Execution

Let us consider the NPDA given by

(0o, a,0) ={(a,,10), (3, A)}
(0, A,0) ={(as.,A)}
o(a,a,1) ={(a, 1)}
(0, b1) ={(az,A)}
(02, b1) ={(a. A)}
(0, A, 0) ={ (a3, M)}

It is possible for us to recognize the string “aaabbb” using the following
sequence of “Moves’:

(dlo, 3aabbb,0) |- (g, , aabbb, 10)
I (q,, abbb,110)
I (g, bbb, 1110)
- (. bb110)
- (d,. b.10)
(G2 1.0)

164 Theory of Automata, Formal Languages and Computation

3.1.7 Accepting Strings with NPDA (Formal Version)
The notation “|-" is used to indicate a single move of an NPDA.

“I-"” is used to indicate a sequence of zero or more moves.
“k"" is used to indicate a sequence of one or more moves.

If M =(Q,2rI,d,q,Z,F)isan NPDA, then the language accepted by
M, L(M), isgiven by

L(M) ={wOZ" : (4, W, 2) - (p.A,u), pOF,ulr’}.

Example 3.1.1: Construct a Push Down Automata (PDA) accepting
{a"bm™a" |m n=1} by empty store.

Eolution

The PDA which will accept
{a"bm™a" mn=1
is given below
PDA = ({do, a1}, {a, b}, {a 2}, 3, G, %, 9)

where d is given by

(1) 8(do, @ %) = {(qo 22)}
(2) 6(do, a a) = {(qo, aa)}
(3) 6(do, b a) = {(q,, @)}
(4 o6(a;, ba) = {(a, a)
(5 o(a,aa) = {(a, M)}
(6) 3(au A 2) = {(aq. M)}

Therefore we can see that we start storing & still b occurs ((1) and (2)). When
the current input symbol is b, the state changes, but no change in PDS occurs
((3)). Once dll the b’'sin the input string acts over ((4)), theremaining a's are
erased ((5)).

Using (6), Z, is erased.

Therefore we have

(@p,@" b™a",) — (o, A, 2) — (G, A\ Q)
Thereforewe seethata™ b™ a" 0O N (PDA).

Example 3.1.2: Construct a PDA accepting {a" b |n>1} by empty
store.

Pushdown Automata 165

Eolution

The PDA that will accept{a" b>" |n=1} isgiven by
PDA = ({0o a5, 9}, {a, b}, {a, 7}, , Gy, Z, @)

where d is given by

3(do, @) = {(ah,az)}

5(q;,aa) = {(q;,aa)}

3 (qy, b a) = {(q,, a)}

3(gy, b a) = {(q;, A)}

3 (a1, A, z9) = {(a, A}

Example 3.1.3: Obtain the PDA accepting {a™ b™ c" |[mn=1 by
empty store.

Eolution

ThePDA whichwill accept{a™ b™ c" | m n =1} by empty storeisgiven below.

PDA = ({qO’ ql}1 (a1 b’ C}’ {201 Zl}’6’ q01 Zo,(p)
where d is given by

3 (dos & Z) = {(9os 2 2)}
3(dp,a z) = {(9, 22)}
3 (Ao, b z) = {(ay, A)}

3 (a, b z) = {(a;, M)}
0 (a1, 6 2y) = {(a1, 2)}
3 (a1, A z9) = {(a, A}

When an ‘a’ isread z, isadded. When a*‘b’ isread then z, isremoved.

Example 3.1.4: Construct a PDA accepting {a" b™a" |mn=1 by
final state.

Eolution

THEOREM: If A=(Q,Z,T,d,d,, 2, F)isaPDA accepting L by null store,
we can find aPDA
B=(Q',%I"0g,0y 2,F")
which accept L by final state, i.e.,
L = N(A) = T(B).
Using the above theorem, we have
B =({do: . %, d¢}.{a, b} {a 7, 2}, 0,00, 75, {0 })
where d is given by
3 (do» M Z5) = {(o: 2 2)}

166 Theory of Automata, Formal Languages and Computation

3 (dos A, Z5) ={(a¢,A)} = 0(do, A,)
3 (as, A, z5) ={(a;, M)} = 3(a, A, 7))
0 (dgs & Z) = {(dp, a7}

3 (qg, &, @) = {(qy, aa)}

3 (dg, b, a) = {(q;, @)}

3 (a5, b a) = {(a,, a)}

3 (ap,a @) = {(as,A)}

3 (a1, A, z9) = {(a, M)}

Example 3.1.5: GivenL={a™b"|n<nj.
Derive (i) acontext-free grammar that accepts L

(i) aPDA accepting L by empty store
(iii) aPDA accepting L by fina state.

Eolution

(i) GivenL={a"b"|n<n}

CFGisgivenby G = ({S},{a, b}, P, S), where productions P are

S_.aSbE
S, as[j
S-a {

(i) The PDA that will accept L(G) by empty store is given by

A=({d {a b}, {SabtdqSy),
where & is defined by therule:
3(q, A, S) ={(q,aM), (9, aS), (9,)}
d(g,aa) =3(q,bb)= {(q,A)}
(iii) B=(Q',Z,I",05,0p, %, F'), where
Q' ={do, 0. a:}, " ={Sa,b 7}, F ={q¢}.
dg isgiven by
Og (Ao, A, Z5) = {(ay, 2,)}
68 (q’)\’ S) ={(q1 aSJ), (qv aS)’ (q’ a)}
dg (g,aa) = {(a,A)} =05 (q,bb)
O (a5, A,) = {(as,A)}

where
05 (0,8 S) =8(9,8S)=¢ and
85 (,b'S) =3(a,bS)=¢
3.2 RELATIONSHIP BETWEEN PDA AND CONTEXT FREE
LANGUAGES

3.2.1 Simplifying CFGs

The productions of context-free grammars can be coerced into a variety of

forms without affecting the expressive power of the grammar.

Pushdown Automata 167

(&) Empty Production Removal

If the empty string does not belong to a language, then there is no way to
eliminate production of the form A - A from the grammar.

If the empty string belongsto alanguage, then we can eliminate A from all
productions same for the single productions S - A. In this case we can
eliminate any occurrences of Sfrom the right-hand-side of productions.

(b) Unit Production Removal

We can eliminate productions of the form A - B from aCFG.

(c) Left Recursion Removal
A variable Aisleft-recursiveif it occursin a production of the form
A - Ax

for any x OV OT)". A grammar is left-recursive if it contains at least one
left-recursive variable.

Every CFL can be represented by a grammar that is not |eft-recursive.
3.2.2 Normal Forms of Context-Free Grammars
(@) Chomsky Normal Form
A grammar isin Chomsky Normal form if al productions are of the form

A - BC
or Ao a

where A, Band Carevariablesand ‘a’ isaterminal. Any context-free grammar
that does not contain A can be put into Chomsky Normal Form.
(b) Greibach Normal Form (GNF)
A grammar isin Greibach Normal Formif al productions are of the form
A ax

where'a’ isaterminal and x OV .

Grammarsin Greibach Normal Form are much longer than the CFG from
which they were derived. GNF isuseful for proving the equivalence of NPDA
and CFG.

Thus GNF is useful in converting a CFG to NPDA.

3.2.3 CFGto NPDA

For any context-free grammar in GNF, it is easy to build an equivalent
nondeterministic pushdown automaton (NPDA).

168 Theory of Automata, Formal Languages and Computation

Any string of acontext-free language has aleftmost derivation. We set up
the NPDA so that the stack contents “corresponds’ to this sentential form:
every move of the NPDA represents one derivation step.

The sentential formis

(The characters already read) + (symbols on the stack)
—(Fina z (initia stack symbol)

In the NPDA, we will construct, the states that are not of much
importance. All the real work is done on the stack. We will use only the
following three states, irrespective of the complexity of the grammar.

(i) startstateq,just getsthingsinitialized. We usethetransition from
g, to g, to put the grammar’s start symbol on the stack.

0(o; A, Z2) — {(0y, S2)}

(if) State g, doesthe bulk of the work. We represent every derivation
step as amove from g, to q;.
(iii) We usethetransition from g, to g; to accept the string

(g, A, 2) — {(as. 2)}
Example Consider the grammar G = ({S, A, B},{a, b}, S, P), where
P={S- aS- aAB,A- aA A- a,B - bB,B - b}

These productions can be turned into transition functions by rearranging
the components.

S—— a AB

d(qp.a,S) — {(d;, AB)}

Thus we obtain the following table:

(Start) (0o, A, 2) — {(ay, S2)}
S-a (0, & S) - {(a, M)}
S - aAB o(d;, &, S) - {(a, AB)}
A- aA o(a,. & A) - {(a;, A)}
A- a o(dy. & A) - {(a;, A)}
B - bB 0(qy, b, B) - {(q;, B)}
B-b 0(qy, b, B) - {(q.,A)}

(finish) 6(ch: A, 2) - {(ar, 2)}

Pushdown Automata 169

For example, the derivation
SO aAB [0 aaB O aabB O aabb
maps into the sequence of moves

(do, @abb, 2) |- (q,, aabb, &)
- (d, abb, AB?)
I (9,,bb, B2)
F (a,.b.B2)
F (9., A, 2)
F (@2, A M)

3.2.4 NPDA to CFG

(8 We have shown that for any CFG, an equivalent NPDA can be obtained.
We shall show also that, for any NPDA, we can produce an equivalent CFG.
Thiswill establish the equivalence of CFGs and NFDAS.

We shall assert without proof that any NPDA can be transformed into an
equivalent NPDA which has the following form:

(i) The NPDA has only one fina state, which it entersif and only if
the stack is empty.
(ii) All transitions have the form

d(g,a,A) ={c,C, Gy, ... }
where each ¢, has one of the two forms

(@;,7)
or (q;,BC)

(b) When we write agrammar, we can use any variable names we choose. As
in programming languages, we like to use “meaningful” variable names.

When we translate an NPDA into a CFG, we will use variable names that
encode information about both the state of the NPDA and the stack content
variable names will have the form

[giAq;],
whereq; and q; arestatesand A isavariable.

The“meaning” of the variable[q, Aqg] isthat the NPDA can go from state
g with Ax on the stack to state g; with x on the stack.

Each transition of the form d(q;,a, A)=(q;,A) results in a single
grammar rule.

Each transition of the form

3(d.a, A) ={q;,BC)

170 Theory of Automata, Formal Languages and Computation

resultsis amultitude of grammar rules, one for each pair of states g, and g, in
the NPDA.

3.2.5 Deterministic Pushdown Automata

A Non-deterministic finite acceptor differsfrom adeterministic finite acceptor
in two ways.

(i) The transition function & is single-vaued for a DFA, but
multi-valued for an NFA.
(i) AnNFA may have A-transitions.

A non-deterministic pushdown automaton differs from a pushdown
automaton in the following ways:

(i) The transition function & is at most single-valued for a DPDA,
multi-valued for an NPDA.
Formally: |6(q,,a, b)|=0orl, for every q0Q,adZ O{A}, and
bdr.

(ii) Both NPDA and DPDA may haveA-transitions; but aDPDA may
have a A-transition only if no other transition is possible.
Formally: If |8(q, A, b)| 20, thend(q, ¢ b) =0 for every cO .

A deterministic CFL isalanguage that can be recognized by aDPDA. The
deterministic context-free languages are a proper subset of the context-free
languages.

3.3 PROPERTIES OF CONTEXT FREE LANGUAGES
3.3.1 Pumping Lemma for CFG

A “Pumping Lemma” is atheorem used to show that, if certain strings belong
to alanguage, then certain other strings must also belong to the language.

Let us discuss a Pumping Lemmafor CFL.

Wewill show that , if L isacontext-freelanguage, then stringsof L that are
at least ‘m' symbolslong can be “pumped” to produce additional stringsin L.
The value of ‘N’ depends on the particular language.

Let L be an infinite context-free language. Then there is some positive
integer ‘M’ such that, if Sisastring of L of Length at least ‘m’, then

(i) S=uwwxy (for someu, v, w, X, y)
@ii) |vwwx|lsm

(i) |wvx=1

(iv) u'wx'yOL.

for al non-negative values of i.

Pushdown Automata 171

It should be understood that

(i)

(if)

(iii)
(iv)

If Sissufficiently long string, then there are two substrings, v and
X, somewherein S Thereis stuff (u) beforev, stuff (w) between v
and x, and stuff (y), after x.

The stuff between v and x won't be too long, because | vwx | can’t
be larger than m.

Substrings v and x won't both be empty, though either one could
be.

If we duplicate substring v, some number (i) of times, and
duplicate x the same number of times, the resultant string will also
beinL.

3.3.2 Definitions

A variable isuseful if it occursin the derivation of some string. This requires

that
@

(b)

the variable occurs in some sentential form (you can get to the
variable if you start from S), and

astring of terminals can be derived from the sentential form (the
variableis not a“dead end”).

A variableis “recursive’ if it can generate a string containing itself. For
example, variable A isrecursive if

sO UAY

for some valuesof uand y.
A recursive variable A can be either

(i)

(i)

“Directly Recursive’, i.e., thereisaproduction
A - X AX,
for some strings x;, X, O(T OV)', or
“Indirectly Recursive”, i.e., therearevariablesx; and productions
Ao X ...
) SRS U

X, oo Xy
Xy —...A...

3.3.3 Proof of Pumping Lemma

(a) Suppose we have a CFL given by L. Then there is some context-free
Grammar G that generates L. Suppose

172 Theory of Automata, Formal Languages and Computation

(i) Lisinfinite, hencethereisno proper upper bound on thelength of
strings belonging to L.
(i) L doesnot contain A.
(iii) G hasno productions or A-productions.

There are only a finite number of variables in a grammar and the
productionsfor each variable havefinite lengths. The only way that agrammar
can generate arbitrarily long stringsisif one or more variables is both useful
and recursive.

Suppose no variable isrecursive.

Since the start symbol is nonrecursive, it must be defined only in terms of
terminalsand other variables. Then sincethose variablsare non recursive, they
have to be defined in terms of terminals and still other variables and so on.
After awhile we run out of “other variables’ while the generated string is till
finite. Therefore thereisan upperbond on the length of the string which can be
generated from the start symbol. This contradicts our statement that the
language isfinite.

Hence, our assumption that no variable is recursive must be incorrect.

(b) Let usconsider astring X belonging to L.

If X is sufficiently long, then the derivation of X must have involved
recursive use of some variable A.

Since A was used in the derivation, the derivation should have started as

SO UAyY

for some values of u and y. Since A was used recursively the derivation must
have continued as

SO uAyﬁ UVAXY

Finally the derivation must have eliminated all variablesto reach astring
Xin the language.

SO uAyﬁ uvAxyIﬁ UVWXY = X
This shows that derivation steps
AT VAX
and AT w
are possible. Hence the derivation
AT wix

must also be possible.

Pushdown Automata 173

It should be noted here that the above does not imply that a was used

recursively only once. The* of 0 could cover many usesof A, aswell asother
recursive variables.

There has to be some “last” recursive step. Consider the longest strings
that can be derived for v, w and x without the use of recursion. Then thereisa
number ‘m’ such that | vwx | <m.

Since the grammar does not contain any A-productions or unit
productions, every derivation step either introduces aterminal or increasesthe

length of the sentential form. Since A 0 VAY, it follows that | vx|> 0.

Finally, since uvAxy occursin the derivation, and A D VvAXand A D ware
both possible, it follows that uv'wx' yalso belongsto L.
This completes the proof of all parts of Lemma.

3.3.4 Usage of Pumping Lemma

The Pumping Lemma can be used to show that certain languages are not
context free.
Let us show that the language

L={a'b'c'|i >0}
is not context-free.

Proof: Suppose L is acontext-free language.
If string X OL, where| X|> m it followsthat X = uvwxy, where|vwx|< m

Choose avaluei that is greater than m. Then, wherever vwx occurs in the
string a'b'c', it cannot contain more than two distinct lettersit can be all a's,
dlb's dlc's oritcanbea sandb’'s, oritcanbeb’'sand c's.

Therefore the string vx cannot contain more than two distinct letters; but
by the“ Pumping Lemma’ it cannot be empty, either, soit must contain at |east
one letter.

Now we are ready to “pump”.

Sinceuwvxy isinL, uv®wx? ymust also bein L. Sincev and x can’t both be

empty,
luvwx® yf > |uvwxy,

so we have added |etters.

Both since vx does not contain all three distinct letters, we cannot have
added the same number of each letter.

Therefore, u/wx?y cannot bein L.

Thus we have arrived at a“ contradiction”.

174 Theory of Automata, Formal Languages and Computation

Hence our original assumption, that L is context free should be false.
Hence the language L is not context-free. O

Example 3.3.1: Check whether the language given by
L={a™b™c" : m<sn<2m}

isaCFL or not.

Eolution

Let s=a"b"c*", n being obtained from Pumping Lemma.

Then s= uwwxy, wherel<|vx|<n.
Therefore, vx cannot have all the three symbols a, b, c.
~ If you assume that vx has only a's and b’s then we can shoose i such that
uvwx'y hasmorethan 2n occurrence of a or b and exactly 2n occurencesof c.
Henceuv'wx' yOL, which is acontradiction. Hence L isnot aCFL.

Example 3.3.2: “|f LisregularandL O =", then=" - Lisalsoaregular
set”—Prove this theorem.

Proof: LetL =T(M)where M = (Q, %,9, q,, F) isaFinite Automata.
We modify 2,Q and d as follows:

(@ IfalZXz,; —Z, thenthe symbol ‘a will not appear in any string of
T(M).

Thereforewecandelete‘a’ fromZ,; and all transitions defined by
‘a.
Here T(M) is not affected.

(b If -2, 20, we can add a dead state d to Q. Let us define
o(d,a)=d,fordl ‘a inzandd(g,a)=d,foral ginQandain
-3,

Hence aso T(M) is not affected.

Let us consider M obtained by applying (a) and (b) to Z,Q and d.

The new M is now written as (Q,%,8,q,,F). Let us define a new
automaton ‘M’ suchthat M’ = (Q, Z,9,Q, F), where M’ differsfrom M only in
itsfinal states.

TherewOT(M")iff 8(q,, W) 0Q - F and wOT (M).

Therefore, 3 — L =T(M')isregular. 0

Example 3.3.3: Provethat the language L given by
L={a"b"| n=0, n#1000}

is context-free.

Pushdown Automata 175

Proof: Let usassume that
L — {alOOO blOOO}
A - .

Then, since L, isfinite, it isregular.
It is obvious that
L={a"b" |n20 n L,.
According to the theorem: “If L, isa CFL and L, is a regular language,
L, n L, iscontext-free”, we have the following.

By closure of regular languages under complementation and closure of
context free languages under regular intersection, the language L given by

L={a"b"| n=0, n#1000}

is context-free. O

Example 3.3.4: Check whether the language given by
L={wD{a,bg" | n,(w)=n,(w) =nc(w)}

is not context-free.

Proof: If L isassumed to be context-free, then
LnL(@bc)={a"b"c" | n=0}.
which is also context-free.

But it isafact that the latter is not context-free.
Therefore we conclude that

L={wO{a b, |n, (W) = ny(w) = n, (W)}

is not context-free. O

Example 3.3.5: Determine whether the language given by
2
L={a" | n>1} is context-free or not.

Eolution

Let us assume that

2
s=a" .

s = uwwxy, wherel<|vx|< n.whichistrue

since, |[wx|< n (by Pumping Lemma)

176 Theory of Automata, Formal Languages and Computation

Let|vx=m m<n.
By Pumping Lemma, uv?wx?yisin L.
Since |uv*wx® yf > n?,
[uviwx®y = k2.
wherek > n+1
But|uv®wx?y = n% +m<n? +2n+1
Therefore, |uv?wx? yj lies between n? and (n + 1)2
Hence, uv?wx? y[L, which is a contradiction.

2
Therefore, {a" : n>1} isnot context-free.

3.4 DECISION ALGORITHMS

THEOREM: Given L is aregular set, i.e., a language accepted by a finite
automaton. Thereexistsaconstant ‘n’ suchthat if ‘s’ inany stringin L and
|9=n, then s= uvwsuch that |uv|< n,|v|=1and for al i =0, uv'wIL.

Proof: Letusassumethat L = T(M) where M = (Q, Z,9,q,,F)and‘n’ bethe
number of statesin Q.

Let W=aa,...... a,0L wherem=c
and <] (e P s P« PRRRRRRON: a,)=q;.

Since m= n, the number of states, the sequences g, q;, g, will have
some repeated states.

Hencethere aretwo integersj and k, 0< j <k <nsuch that g, = q,.

Let usassumethat k isleast in the chosen pair (j, K).

For thiswe have

@ =0
(b) if0<1<kthenq; #q; foralO<i <1 thereforeq,,qs,...... Oy-1
aredistinct statesinQ and k<n.

Let u=aa,...... Aj3V=2a, 8 and w=a.,; ... ,ap.
Therefore s= uvw (as shownin Fig.).

a]-+1, R T
Y
aias ... aj A1y e A

Sinced(q;,v) =0q, = q; ,5(qj ,Vi) =q;.
Therefore3(q,, uv'w) = q,,, OF.

Pushdown Automata 177

Thisillustrates that uv'wIL, for al i = 0.
Sincewv = aa, a, and

k<n|uv|<n
Hence, |v|=21 O
THEOREM: Theset of stringsthat isaccepted by afinite automaton which has
‘n stateis

(& nonempty if and only if M accepts some string of length lessthan
n.

(b) infinite, if an only if M accepts some string of length k where
n<k<2n

Thus thereis a DECISION ALGORITHM, to find out whether M accepts
zero, afinite number, or an infinite number of strings.

Algorithm (i): Let us give an algorithm to decideif T(M) = 0.
Let usconsider the strings of length lessthan n. Test if any of these strings
isin T(M). If so, T(M) = 0. Otherwise, T(M) is empty.

Algorithm (ii): Let us give an algorithm to decide if T(M) isinfinite.
Let us consider the strings of length k, where n<k <2n-1 Test if any
such string isfound in T(M). If so, T(M) isinfinite, otherwise T(M) isfinite.

Example 3.4.1: Provethat there existsan algorithm to find if two finite
automata M, and M, accept the same language.

Proof: Let usassume that

L, = T(M,) and
L, = T(M,).

LetusdefineL= (L, -L,) O(L, - L,).
The language L isregular.
Let us assume that M is afinite automaton such that L = T(M).
Now, if L=0,iff L, = L,.

Since there is an algorithm (decision algorithm) to test if L isaempty, we
have an algorithm to check if L, = L. a

Example 3.4.2: Check whether the language defined by

L={a® = p isaprime number} isregular or not.

178 Theory of Automata, Formal Languages and Computation

Eolution

Let usassumethat L = T(M), where the automaton M has n states.
If pisaprime number greater than n, consider

z=aPOL.
By using pumping lemma, s= uvw and uv'w L fori =1
Also uv"twOL.

P w|=]uww|+HVvF|= p+ pmwherem=]v|.

But |uv
Thisisacontradiction as we see that p + pm cannot be prime.
Therefore the language L is not prime.

Example 3.4.3: Construct a deterministic Pushdown Automata to
accept L, the language of nested, balanced parantheses.

Eolution

Theideaisto store all left parantheses on the stack and then pop them off as
each one matches aright parantheses.

Let us define

M = ({qovql}’{(1)}16’ qo’{ql})
whered is given in the table bel ow.

Table: Transition Table for DPDA.

Transition Current Input Stack New Input Stack
Number state symbol Top state op op

1 Qo (> Jo + push (
2 o ((% + push (
3 %) (% + pop
4 qO > > ql 0 0
5 % > (0z 0 0
6 %) > 0z 0 0

Transitions (1) and (2) are used to push opening parantheses on the stack;
transition (3) is used to to match a closing paranthesis with an open one on the
stack; (4) accepts the input, and (5) and (6) send the machine into arejecting
state, which halts the machine.

Pushdown Automata 179

Consider M oninput (() ()):

(o, [3 (C) O L AT 1= (00, 2, () ())LIL (1)
k= (@[3 () O)LIL (D)
b= (@, [4 (OO (D)
k= (@0, 5 (O) (DL (1)
k= (@, (6, (() ()LL)
b= (@, [7 () ODLILAD
b= (@, [7, (O) ()LILAD

Therefore,
(%L (C) O LILAT I*g(ql,[l(() OLILA]

and since ¢, is an accepting state, al input has been read, and the stack is
empty, wehave (() ())OL(M).

Let us consider M on the input string ()). We get the following
computations.

(90, [1 ()L [LA] 'J (9o, [2 (DLIL (D)
|'\;(qu[31 (DLILA])
L;(qz’[?’v (DLILA])

No further transitions of M can be applied, g, isnot an accepting state, and
so ())OL,.

GLOSSARY

NDPDA: Non-deterministic Pushdown automata
PDA: Pushdown automata
Transition Function of NPDA: Are of the form

0=Qx (2 O{A}) xI

These are finite subsets of Q x "~

180 Theory of Automata, Formal Languages and Computation

Stack: One additional component available as part of PDA.
More of NPDA: |- denotes amove of NPDA.
PDA: Has(q, w, u),

where g = current state of automaton

w = unreal part of input string

u = stack contents.

Simplifying CFG: Done either through (i) Empty Production removal (ii)
Unit production removal (iii) Left recursion removal.

DPDA: Deterministic PDA, which has atransition function as single-valued
for DFA and has A-transitions.

Pumping Lemma: Theorem used to show that if certain strings belong to a
language, then certain other strings must also belong to the language.

Decision Algorithm: To find out if M accepts zero, a finite number, or an
infinite number of strings.

REVIEW QUESTIONS

Define a Pushdown automata.

Define a Nondeterministic Pushdown automata.

State the general form of transition function for an NPDA.
Give the instantaneous description of a PDA.

Explain how the strings are accepted with an NPDA.

What are the kinds of moves that can be made while accepting strings
with an NPDA?

Explain the terms (a) A-transitions (b) Non-empty transitions
Give an example of NPDA execution.

State the relationship between PDA and context free languages.
10. Explain: (a) Empty Production removal (b) Unit Production removal.
11. What are the Normal forms of CFGs?

12. How will you convert a CFG to NPDA?

13. How will you convert aNPDA to CFG?

14. What do you mean by deterministic pushdown automata?

15. State the properties of Context free languages.

16. State the pumping lemmafor CFG.

17. Givethe proof for pumping lemma.

18. State the usuage of pumping lemma.

19. What are decision algorithms?

20. State the usefulness of decision algorithms.

o Uk wDdNE

© © N

Pushdown Automata 181

w

© N o u

10.
11

12.

13.
14.

15.

EXERCISES

Construct a Pushdown automata (PDA) accepting the language
L={0'1|i =0 0{0'1?) |j =0}
For £ ={0,1}, design DPDAs to accept the following languages:
(CN
(o) {0'1'0'1|i,j=0}
(© {0°1']i=3
(d) {0™"|m#n}
Define the concepts of string and language acceptance for PDAS.
For < ={01}, design PDA to accept the following languages:
@ {xIx0{0,3}
(b) {x|x0{0,3" and x = x"}
(¢ {0™"|nsm<2n}
(d) {0™"|3n<m< 7n}
Construct a PDA accepting{a"b®" |n>1} by empty store.
Obtain the PDA accepting{a™b"c" | m n>1} by empty store.
Obtain the PDA accepting{a™b"c" |[m n>1} by fina state.
GivenL ={a"b™|m<n}.Derive
(@) aCFG that acceptsL
(b) aPDA accepting L by empty store
(c) aPDA accepting L by final state.
Construct a PDA accepting L = {wew' :w{a, b} } by fina state.
Construct a PDA accepting L = {wew' :w{a, b}'} by empty store.
IfthePDA A={Q,%,I",,q,,Z,, F) acceptsL by final state, prove that
there exists another PDA B accepting L by empty store, i.e., T(A) = T(B)
=L.
Find PDA accepting the following sets by fina state
@ {xO{a,b" :n,(x)>n,(x)}
(b) xO{a b} :n, () <x,(X)}
Design aPDA recognizing the set L of all non-palindromesover { a, b} .
Construct a PDA equivalent to the CFG.
S-0BB, B-0S, B-1S B-0

Construct a CFG accepting L ={a™b" |[n<n} and construct a PDA
accepting L by empty store.

182

Theory of Automata, Formal Languages and Computation

16.

17.
18.

19.

20.

21.

22.

23.

24,

Construct a PDA accepting L by empty store where
L={a'b"a"|n=1 j=0

Construct a PDA accepting{a’b"c":n>1, j =1 by final state.
Constuct a CFG generating{a"b" | n=1} 0{a™b*" |m=>1}. Using this
CFG, construct a PDA accepting the given set by empty store.

Using Pumping lemma show that the language L ={a'b'c' |i =0} is not
context free.

Using Pumping lemma show that the language

L={a™b"cP|0sm<n< p}

isnot aCFL.
Using Pumping Lemma prove that the language L = {ww|w{0,3}" is
not aCFL.
Consider the set of all strings over {a, b} with no more than twice as
many a'sasb’'s.

{xO{a, b} | # a(x) < 2# b(x)}

(@) GiveaCFG for this set, and provethat it is correct.

(b) GiveaPDA for this set. Show sample runs on the input strings
aabbaa, aaabbb and aaabaa.
Consider the set

abc —{a"vc"|n=20}

the set of al strings of &' sfollowed by b’ sfollowed by ¢'s such that the
number of a's, b’sand ¢'sare not al equal.

(& GiveaCFG for the set, and prove that your grammar is correct.
(b) Giveanequivaent PDA.

Show that {a, b}" —{a"bnz | >0} is not context free.

SHORT QUESTIONS AND ANSWERS

What is PDA and NDPDA?

PDA means Push Down Automata and NDPDA means
non-deterministic Push Down Automata.
Define an NDPDA.

An NDPDA is defined by the 7-tuple

M=(Q2r,8,002F)

Pushdown Automata 183

where Q = Finite set of internal states of the control unit
> = input alphabet
Ir = Finite set of symbols called ‘ stack alphabet’.
5:Q x (ZO{A}) xI" - Finitesubsetsof Q xI" " isthe transition function.
g, = Initial state of the control unit JQ
Z = Stack start symbol
F 0Q - Set of Final states.
3. What isthe data structure used in a Push Down Automaton?
Stack isthe data structure used in a PDA.
4. What isthe general form of atransition function of an NPDA?
5:Q x (Z O{A}) xI" - Finite subsets of Q xI" . where & has now
three arguments:
(@) thestate
(b) either A, or asymbol from the input a phabet.
(c) symbol on the top of the stack.
5. Statethe requirements for execution of an NPDA.

() The state of the DFA isin
(b) What the remaining input is.
6. Given an instantaneous description of a PDA.
The instantaneous description of a PDA isatriplet (g, w, u), where

g = current state of the automaton
w = unrea part of the input string
u = stack contents (written as a string, with the leftmost

symbol at the top of the stack).
7. What arethetypesof movesthat are made while accepting stringswith
an NPDA?

(&) A-transition.
(b) Non-empty transition.
8. What do you mean by aA-transitionin PDA?
If youareinastateq,, xisthetop (leftmost) symbol in the stack, and

3(gy; A x) ={(q2,W,), ...}
then you can replacethe symbol x with the string w, and moveto g,.

9. What are non-empty transitionsin an NPDA?
If you areinthe stateq;, ‘a’ isthe next unconsumed input symbol, x
isthe top (leftmost) symbol in the stack, and

o(gy,a,x) ={(d,,W,),...}

then you can remove the ‘a from the input string, replace the
symbol x with the string w.,, and move to the state g,.

184

Theory of Automata, Formal Languages and Computation

10.

11

12.

13.

14.

15.

16.

17.

18.

State the meanings of |-, |— and |:while accepting strings with NPDA.
|- is used to indicate a single move of an NPDA

|-is used to indicate a sequence of zero or more moves

|i is used to indicate a sequence removal in a PDA.

What is meant by Empty Production removal inaPDA?

If the empty string does not belong to alanguage, thethereisno way
to eliminate production of the from A — A from the grammar. If the
empty string belongs to a language, then we can eliminate A from all
productions for the single production S - A. In this case we can
eliminate any occurrences of Sfrom theright hand side of productions.
What is meant by unit production removal in PDA?

Eliminating productions of theform A — B fromaCFG iscaled a
unit production removal in PDA.

What is meant by left recursion removal in PDA?
A variableA isleft recursiveif it occursinaproduction of theform

A - AX

for any xO(V OT)" . A grammar is left-recursive if it contains at

least one left-recursive variable. Every CFL can be represented by a
grammar that is not left-recursive.

What are the Norma Forms of CFGs?

(& Chomsky Normal Form.
(b) Greibach Normal Form.
How is an NPDA built from a CFL?

Any string of aCFL hasaleftmost derivation. NPDA isset up so that
the stack contents correspondsto this sentential form, every move of the
NPDA represents one derivation step.

How is the sentential form obtained while converting a CFG into an
NPDA?

The sentential form is obtained as
[The characters aready read] + [symbols on the stack] —[Final z (initial
stack symbol)]

What are the two ways in which deterministic pushdown finite acceptor
differs from a non-deterministic finite acceptor?
(& The transition function 6 is single-valued for a DFA, but
multi-valued for an NFA.
(b) An NFA may have A-transitions.
What are the ways in which a non-deterministic pushdown automaton
differs from a Pushdown automata

Pushdown Automata 185

10.

20.

21.

22.

23.

24.

(& Thetransitionfunctiondisat most single-valued for aDPDA,
multi-valued for an NPDA.

Formally: |6(q,a,b)|=0or |,
forevery qO0Q, adZ O{A}, andb0Or.

(b) Both NPDA and DPDA may have A-transitions, but a DPDA
may haveaA-transitiononly if no other transitionispossible.
Formally: 1f8(q, A, b) #0, thend(q, ¢, b) = O forevery cO .

State the Pumping Lemma for Context Free Grammars.

Let L be an infinite context-free language. Then there is some
positiveinteger ‘m’ such that, if Sisastring of L of length at least ‘m’,
then

(i) S=uwwxy(for someu, v, w, X, Y)

@ii) [vwx|<m

(iii) |vx|=1
(iv) uv'wiyOL, for all non-negative values of i.
State one usage of a Pumping Lemma

The Pumping Lemmacan be used to show that certain languages are
not context free.

What is a decision algorithm?

The set of stringsthat is accepted by afinite automaton M which has
‘n' stateis

(& non empty, if and only if M accepts some string of length less
than n.

(b) infinite, if and only if M accepts some string of length k where
n<k<2n

State the use of decision algorithm:

It is used to find out whether a finite automaton M accepts zero, a
finite number, or an infinite number of strings.
What are the ways to simplify a CFG to an NPDA?

(8 Empty Production Removal

(b) Unit Production Removal

(c) Left Recursion Removal.

How isa‘move’ of an NPDA denoted?
|- denotes a move of NPDA.

Chapter 4

Turing Machines

4.1 TURING MACHINE MODEL
4.1.1 What is a Turing Machine?

A Turing Machine is like a Pushdown Automaton. Both have a finite-state
machine as a central component, both have additional storage.

A Pushdown Automaton uses a “stack” for storage whereas a Turing
Machine usea a “tape’, which is actually infinite in both the directions. The
tape consists of a series of “squares’, each of which can hold asingle symbol.
The “tape-head”, or “read-write head”, can read a symbol from the tape, write
asymbol to the tape and move one square in either direction.

There are two kinds of Turing Machine available.

(& Deterministic Turing Machine.
(b) Non-deterministic Turing Machine.

We will discuss about Deterministic Machines only. A Turing Machine
does not read “input”, unlike the other automata. Instead, there are usually
symbols on the tape before the Turing Machine begins, the Turing Machine
might read some. all, or none of these symbols. Theinitial tape may, if desired,
be thought of as“input”.

“Acceptors’ produce only a binary (accept/reject) output. “ Transducers’
can produce more complicated results. Sofar all our previousdiscussionswere
only with acceptors. A Turing Machine also accepts or rejects its input. The
resultsleft on the tape when the Turing Machine finshes can beregarded asthe
“output” of the computation. Therefore a Turing Machineisa*“ Transducer”.

4.1.2 Definition of Turing Machines
A Turing Machine M isa 7-tuple
(Q’z’r’éiq()v#v':)

where Qisaset of states
> isafinite set of symbols, “input alphabet”.
I isafinite set of symbols, “tape alphabet”.
0 isthe partial transition function

Turing Machines 187

#0OT isasymbol called ‘blank’
g, UQistheinitial state
F OQisaset of fina states

As the Turing machine will have to be able to find itsinput, and to know
when it has processed all of that input, we require:

(@ Thetapeisinitially “blank” (every symbol is #) except possibly
for afinite, contiguous sequence of symbols.

(b) If thereareinitialy nonblank symbolson thetape, thetapeheadis
initially positioned on one of them.

This emphasises the fact that the “input” viz., the non-blank symbols on
the tape does not contain #.
4.1.3 Transition Function, Instantaneous Description
and Moves
The “Transition Function” for Turing Machineis given by
0:QxI -~ QxI x{L,R}

When the machineisinagiven state (Q) and readsagiven symbol (") fromthe
tape, it replaces the symbol on the tape with some other symbol (), goes to
someother state (Q), and movesthetape head one squareleft (L) or right (R).

An “Instantaneous Description” or “Configuration” of a Turing machine
requires.

(@) the state the Turing machineisin
(b) the contents of the tape
(c) the position of the tape head on the tape.

Thisiswritten as a string of the form

where the X' s are the symbols on the tape, g, is the current state, and the tape
head is on the square containing X, (the symbol immediately following d,).

The “Move” of a Turing machine can therefore be expressed as a pair of
instantaneous descriptions, separated by a symbol “-".
For example, if

3(ds, b) = (gg, G R)
then a possible move can be
abbabqgsbabb |- abbabcogabb

188 Theory of Automata, Formal Languages and Computation

4.1.4 Programming a Turing Machine

As we have the “productions’ as the control theme of a grammar, the
“transitions’ are the central theme of a Turing machine. These transitions are
given asatableor list of S-tuples, where each tuple has the form

(current state, symbol read, symbol written, direction, next state)

Creating such alist is called “programming” a Turing machine.

A Turing machine is often defined to start with the read head positioned
over the first (leftmost) input symbol. Thisis not really necessary, because if
the Turing machine starts anywhere on the nonblank portion of the tape, it is
simple to get to the first input symbol.

For theinput alphabet > ={a, b}, thefollowing program fragment doesthe
trick, then goesto state q.

(qo, a1 a1 L1 qo)
(do, b, b, L, qp)
(do. #,#,R,qy)

4.1.5 Turing Machines as Acceptors

A Turing machine halts when it no longer has available moves. If it haltsina
final state, it acceptsitsinput, otherwise it rejects its input.

A Turing machine T = (Q, %,I,9,q,,#,F) accepts a language L(M),
where

L(M)=(WOZ": goW }-x;q; x; for some q; OF,x;, X; ary,

with the assumption that the Turing machine starts with its tape head
positioned on the leftmost symbol.

A Turing Machine acceptsitsinput if it haltsin afinal state. There aretwo
ways this could fail to happen:

(& The Turing machine could halt in anonfina state or
(b) The Turing machine could never stop i.e., it enters an “infinite
loop”.
4.1.6 How to Recognize a Language
This machine will match strings of the form
{a"b":n=0}

g, isthe only “final state”.
g, (which has no available moves at all) serves as an “error state”.

Turing Machines

189

Current Symbol Symbol Direction Next
state read written state
Find the left end of the input
% a a L %o
Qo b b L Qo
Qo # # R q,
If leftmost symbol is“a”, eraseit, if “b” fail
a; a # R 87}
a; b # R Qs
Find the right end of the input
0, a a R 0,
0z b b R 0z
s7 # # L 0;
Erasethe“b” at the left end of the input
0z b # L Qo

The basic operation of this machineisaloop:

Oo: nove all the way to the left
q:: erase on ‘a’

g.: nmove all the way to the right
(s: Erase a ‘b’

Repeat

If the string is not of theform{a"b" :n>0}, it will finally either

(8 Seean‘a innonfinal state g,, and halt, or
(b) seea‘b’ infinal state q,, moveto nonfinal state q,, and halt.

4.1.7 Turing Machines as Transducers

To use a Turing machine as a transducer, treat the entire nonblank portion of
theinitial tape asinput, and treat the entire nonblank portion of the tape when

the machine halts as output.

A Turing machine defines afunction y = f (x) for stringsx, yO = if

quI*—qu

where g; isthe final state.

190 Theory of Automata, Formal Languages and Computation

A function index is“ Turing computable” if there exists a Turing machine
that can perform the above task.

Example 4.1.1: DesignaTuring machinethat acceptsthe set of all even
palindromes over {0,1} .

Eolution

There are various steps involved in processing even length palindromes. The
TM scansthefirst symbol of input tape (0 or 1), erasesit and changes state (q,,
or g,). TM scans the remaining part without changing the tape symbol until it
encounters b. The read/write head moves to the left. If the rightmost symbol
tallies with the leftmost symbol (which can be erased but remembered), the
rightmost symbol iserased. Otherwise TM halts. The read/write head movesto
the left until b is encountered. The above steps are repeated after changing the
states suitably. The transition table is as shown below.

Present Input Symbol
State
0 1 b

- Qo bRag, bRa, bRa,
a; ORaq, 1Raq, bLds,
0z ORaq, 1Rq, bLa,
U3 bLas
U4 bLgs
Os OLgs 1Lgs bRa,
Us OLge 1Lge bRa,
Oz

Example 4.1.2: Given Z ={0]1}, design a Turing machine that accepts
the language denoted by the regular expression 00 .

Eolution

Let usstart at theleft end of theinput, we read each symbol and check that it is
a 0. If it is, then we continue by moving right. If a blank is reached without
seeing anything else other than 0, we terminate and accept the string.

If the input contains a 1 anywhere, the string is not in L(00"), and so we
halt in a nonfinal state. In order to keep track of computation, two internal
statesQ ={q,, 0, } and thefinal state F = {q, } are enough.

Turing Machines 191

Transition function is taken as

&(dp, 0) = (00, 0, R)
&(qp, O) = (q;, O,R).

The head will move to theright, aslong as 0 appears under the read-write
head. If any timealisread, the machinewill haltin the nonfinal state g, since
8(0y.)) is undefined.

Example 4.1.3: Design a Turing machine that accepts

L={a"b"| n=0}.

Eolution

Assumethat g, isthe “final state”.
q, (which has no available moves at all) serves as an “error state”.

Current Symbol Symbol Direction Next
state read written state

Find the left end of the input

% a a L %
o b b L o
o # # R Oy

If leftmost symbol is“a”, eraseit, if “b", fail

Oy a # R 0,
Oy b # R o

Find the right end of the input

0, a a R 0,
07} b b R 07}
0 # # L s

Erasethe“b” at the left end of the input
0z b # L Uo

The basic operation of this machineisaloop:

Oo: Move all the way to the left
q:: Erase an ‘a’.

192 Theory of Automata, Formal Languages and Computation

g.: Move all the way to the right
gs: Erase a “b".
Repeat

If the string is not of the form{a"b" |n >0} it will finally either

(8 seean‘a’ innonfinal state g;, and halt, or
(b) seea‘b’ infinal state g,, move to nonfinal state g,, and halt.

B Example 4.1.4: What does the Turing Machine described by the

S-tuples (d,0,00,0,R), (do1 0;,0R), (d,B,0,,B,R), (9,,0,0,,0R),
(0,.1 g1 R) and (q,, B, g,, B, R) do when given abit string as input?

Eolution

If the tape contains at least one 1, the machine changes every other 1 to a0
starting at thefirst 1, and haltswhen it rechesthefirst blank symboal. If thetape
is blank initially the machine halts without changing the tape. If the nonblank
portion of the tape contains all 0s, the machine moves successively through
these Os and halts.

Example 4.1.5: Let T bethe Turing machine defined by the five tuples:
(qo; 01 q]_; 11 R)1 (qo; 11 q]_; O’ R)’ (q01 Bv q11 O’ R)’ (q17 O’ qZ’ 1’ L)’
(0,.29,,0R), (q;, B, q,,0 L). For each of the following initial tapes,
determine the final tape when T halts, assuming that T begins in initial

position.
(@ ~—|B|B|O|O|1|1|B|B
(y -~ |B|B|B|B|B|B|B|B

Eolution

(& The nonblank portion of the tape contains the string 1111 when
the machine halts.

(b) The nonblank portion of the tape contains the string 00 when the
machine halts.

4.2 COMPLETE LANGUAGES AND FUNCTIONS

A Turing machine has an output function, the contents of the input tape after
processing, a given input string can be viewed as the result of computation.
Therefore a Turing machine is seen as acomputer of functions, from integers
to integers.

Turing Machines 193

Let usnow look at the procedure to compute functions f (n,, n,, ne)
wheren,,n,, , N, are non-negative integers.
(8 Represent theintegersn,,n,, , N inunary i.e,, n; iswritten

as 0™ etc. The input (n,n,,...,n) is represented by
0™0™.....10™ where the 1's are used to separate the unary
representation of n,, n,, Ny

(b) After several moves, if the Turing Machine halts (either in a
final state or in any other state) and has 0™ in the input tape, then
F(n.n,, ,N)=m

Example 4.2.1: Design a Turing machine to add two given integers.

Eolution

Assumethat m and nare positiveintegers. L et usrepresent theinput as0"B0".
If the separating B isremoved and 0’ s come together we have the required
output, m+ nisunary.

(i) The separating B isreplaced by aO.
(ii) Therightmost Oiserased i.e., replaced by B.

Let us define M =({dg,0;,d,,d3,0,},{0},{0,B},d,0p,{qy})- O is
defined by Table shown below.

Tape Symbol
State 0 B
o (d0,.0,R) (.0 R)
Oy (0,.0R) (0,,B,L)
07 (g3, B,L) —
U (05.0,L) (44,B,R)

M starts from 1D g,0™B0", moves right until seeking the blank B. M

changes state to g,. On reaching theright end, it reverts, replacesthe rightmost
0 by B. It moves|eft until it reachesthe beginning of theinput string. It haltsat
thefinal state q,.

Example 4.2.2: Design a Turing Machine that copies strings of 1's.

Eolution

Follow the following steps:

194 Theory of Automata, Formal Languages and Computation

(& Replaceevery 1 by anx.

(b) Find therightmost x and replace it with 1.

(c) Travel totheright end of the current nonblank region and create a
1 there.

(d) Repeat steps (b) and (c) until there are no more x’s.

The Transition function is given by

3(do.D) = (do, X R),
d(do,0) = (g, 0, L),
o(d;, %) = (4.4 R),

5(d,.) = (9,4 R),

5(d,,0) = (q,.L L),

o(q.D) = (a4 L),

8(q,,00) = (95,4, R).

where g; isthe only fina state.

Example 4.2.3: Design a Turing Machine that multiplies two positive
integersin unary notation.

Eolution

ofof1{zf1(Oo|1|1]|2 o112 e 1{0(1(1f1(0f1|1|1
_— _—
y y y y

Assume that the initial and final tape contents are to be asindicated in figure
above. Multiplicationisvisualized asarepeated copying of the multiplicand y
for each 1 in the multiplies x, whereby the string y is added the appropriate
number of times to the partially computed product. The stepsinvolved in the
process are:

(i) Repeat the following steps until x contains no more 1's—find a1
in x and replace it with another symbol a. Replace the leftmost O

by Oy.
(i) Replaceall a'swithl's.

Example 4.2.4: Design aTuring Machine that recognizes the set of bit
strings which have a 1 as their second hbit i.e, the regular set
(000 D)".

Eolution

We would like to have a Turing machine, which, starting at the leftmost
nonblank tape cell, movesright, and determines whether the second symbol is

Turing Machines 195

al. If thesecond symbol is 1, the machine should moreinto afinal state. If the
second symbol is not a 1, the machine should not halt or it should halt in a
non-final state.

To construct such amachine, weinclude thefive-tuples(q,, 0, ¢;, 0, R) and
(90 1, 04, 1, R) to read in the first symbol and put the Turing machine in state
Ga-

Next, weinclude thefive-tuples(q,, 0, 0,, 0, R) and (g, 1, 05, 1, R) toread
in the second symbol and either moveto state g, if thissymbol isaO0, or to state
Qg if thissymbol isa 1.

We do not want to recognize strings that have a0 astheir second bit, so g,
should not be afinal state. We want g, to be afinal state. Therefore we can
include the 5-tuple (a,, 0, g, 0, R). Aswe do not want to recognize the empty
string nor astring with one bit, we also include the 5-tuples (q,, B, 9,, 0, R) and
(9, B, &, O, R).

The Turing machine T consisting of seven 5-tuples given above will
terminatein thefinal stateq,if and only if thebit string has at | east two bitsand
the second bit of theinput string isa 1. If the bit string contains fewer than two
bits or if the second bit is not a 1, the machine will terminate in the non final
state g,.

4.3 MODIFICATION OF TURING MACHINES

Two automataare said to be equivalent if they accept the same language. Two
transducers are said to be equivalent if they compute the same function.

A class of automata e.g., Standard Turing machines is equivaent to
another class of automata e.g., nondeterministic Turing machines, if for each
transducer in one class, an equival ent transducer can befoundin another class.

At each move of a Turing machine, the tape head may move either left or
right. We can augment thiswith a“ Stay option”, i.e., wewill add “ don’t move’
totheset {L, R}.

“Turing machines with a stay option are equivalent to Standard
Turing Machines.”

4.3.1 N-Track Turing Machine

An N-track Turing Machine is one in which each square of the tape holds an
ordered n-tuple of symbolsfrom the tape alphabet. This can be thought of asa
Turing machine with multiple tape heads, al of which move in lock-step
mode.

“N-Track Turing machines are equivalent to standard Turing
machines’.

196 Theory of Automata, Formal Languages and Computation

4.3.2 Semi-infinite tape/Offline/Multitape/ND Turing Machines

(& A Turing machine may have a“semi-infinite tape”, the nonblank
input is at the extreme left end of the tape.

Turing machines with semi-infinite tape are equivalent to
Standard Turing machines.

(b) An“Offline Turing Machine” hastwo tapes. Onetapeisread-only
and containstheinput, the other isread-writeandisinitially blank.
Offline Turing machines are equivalent to Standard Turing
machines’.

(c) A “Multi-tape Turing Machine” hasafinite number of tapes, each
with its own independently controlled tape head.

“Multi-tape Turing Machines are equivalent to Standard Turing
Machines’.

(d) A “Nondeterministic Turing Maching” is one in which the DFA

controlling the tape is replaced with an NFA.

“Nondeterministic Turing machines are equivalent to Standard
Turing Machines.”

4.3.3 Multidimensional/Two-state Turing Machine

A “Multidimensional Turing Machine” has a Multidimensiona “tape”, for
example, a two-dimensional Turing Machine would read and write on an
infinite plane divided into squares, like a checkerboard. Possible directions
that the tape head could move might be labelled {N,E,SW}. A
three-dimensional turing machine machine might have possible directions
{N,E, S,W,V, D} and so on.

“Multidimensional Turing Machines are equivalent to Standard
Turing Machines’.
A “Binary Turing Machine” is one whose tape alphabet consists of
exactly two symbols.

Binary Turing machinesare equivalent to Standard Turing Machines.

A “Two-state Turing Machine” is one that has only two states. Two-state
Turing machines are equivalent to Standard Turing Machines.

4.4 CHURCH-TURING’S THESIS

Alan Turing defined Turing machines in an attempt to formalize the notion of
an “effective producer” which isusually called as ‘algorithm’ these days.
Simultaneously mathematicians were working independently on the same
problem.
Emil Post - Production Systems
Alonzo Church - Lambda Calculus

Turing Machines 197

Noam Chomsky - Unrestricted Grammars
Stephen Kleene - Recursive function Theory
Raymond Smullyn - Formal Systems.

All of the above formalisms were proved equivaent to one another. This
led to

(@ Turing's Thesis (Weak Form): A Turing machine can compute
anything that can be computed by a genera-purpose digital
computer.

(b) Turing's Thesis (Srong Form): A Turing machine can compute
anything that can be computed.

The strong form of Turing's Thesis cannot be proved it states a
relationship between mathematical concepts and the “real world”.

4.4.1 Counting

Two sets can be put into a one-to-one corresponding if and only if they have
exactly the same number of elements.
Example:
{red, yellow, green, blue}
7 0 0 0

{apple, banana, cucumber, plum}

One-to-one correspondence with a subset of natural numbers can be done as:
{red, vyellow, green, blue}
! ! ! !
{1, 2, 3, 43

4.4.2 Recursive and Recursively Enumerable Language

There are three possible outcomes of executing a Turing machine over agiven
input.
The Turing machine may

(i) Halt and accept the input
(i) Hat and reject theinput, or
(iii) Never halt.

A language is “recursive’ if there exists a Turing machine that accepts
every string of language and rejects every string over the same alphabet that is
not in the language.

If a language L is recursive, then its complement L should also be
recursive.

198 Theory of Automata, Formal Languages and Computation

A languageis “recursively enumerable’ if there exists a Turing machine
that accepts every string of the language, and does not accept strings that are
not in the language. Strings which are not in the language may be rejected or
may cause the Turing machine to go into an infinite loop.

Recursively
Enumerable

Recursive
Languages

Languages

Every Recursive language is aso recursively enumerable. But it is not
clear if every recursively enumerable language is also recursive.

Turing Machines are not “recursive’. The terminology is borrowed from
recursive function theory.

4.4.3 Enumerating Strings in a Language

To enumerate a set is to place the elements of the set in a one-to-one
correspondence with the natural numbers. The set of all strings over an
alphabet is denumerable. Let us assume that astring isanumber isan|Z|-ary
number system. The stringsin alanguage from asubset of the set of all strings
over Z.But isit possible to enumerate the strings in alanguage?

If alanguageisrecursive, then there exists a Turing machine for it that is
guaranteed to halt. We can generate the stringsof £~ in ashortest first order to
guarantee that every finite string will be generated, test the string with the
Turing machine, and if the Turing machine acceptsthe string, assign that string
the next available natura number. We can aso enumerate the recursively
enumerablelanguages. We have a Turing machinethat will halt and accept any
string that belongs to the language; the trick is to avoid getting hung up on
strings that cause the Turing machine to go into an infinite loop. Thisis done
using “Time sharing”. Let usillustrate this now.

w. =0 N=0

for i: =1 to X, do {

add the next string in v to set W
initialize a Turing machine for this new string;
for each string in set Wdo {
Il et the Turing machine for it nmake one nore;
if the Turing machine halts {
accept or reject the string as appropri ate;
if the string is accepted {
N =N+ 1;

Turing Machines 199

let this be string N of the |anguage;
}

renove the string fromset W

}

4.4.4 Non-recursively Enumerable Languages

A Language is a subset of 3. A language is “any” subset of 3. We have
shown that Turing machines are enumerable. Since recursively enumerable
laguages are those whose strings are accepted by a Turing machine, the set of
recursively enumerable languages is also enumerable. The power set of an
infinite set is not enumerable i.e., it has more than X, subsets. Each of these
subsets represent a language. Hence there should be languages that are not
computable by a Turing machine.

According to Turing Thesis, a Turing machine can compute any effective
procedure. Therefore there are languages that cannot be defined by any
effective procedure. It is possible to find a non-recursively enumerable
language X by a process called “ diagonalisation”.

4.5 UNDECIDABILITY
4.5.1 Halting Problem

Theinput to a Turing machine is a string. Turing machines themselves can be
written as strings. Since these strings can be used as input to other Turing
machines.

A “Universal Turing maching” is one whose input consists of a
description M of some arbitrary Turing machine, and some input w to which
machine M is to be applied, we write this combined input as M + w. This
produces the same output that would be produced by M. Thisiswritten as

Universal Turing Machine (M +w) = M (w).

As a Turing machine can be represented as a string, it is fully possible to
supply aTuring machine asinput to itself, for example M (M). Thisisnot even
a particularly bizarre thing to do for example, suppose you have written aC
prettyprinter in C, then used the Prettyprinter onitself. Another common usage
is Bootstrapping—where some convenient languages used to write aminimal
compiler for some new language L, then used this minimal compiler for L to
write a new, improved compiler for language L. Each time a new feature is
added to language L, you can recompile and use this new feature in the next
version of the compiler. Turing machines sometimes halt, and sometimesthey
enter aninfiniteloop. A Turing machine might halt for one input string, but go
into an infinite loop when given some other string.

Thehalting problem asks: “It ispossibletotell, in general, whether agiven
machine will halt for some given input?’ If it is possible, then there is an

200 Theory of Automata, Formal Languages and Computation

effective procedure to look at a Turing machine and its input and determine
whether the machinewill halt with that input. If thereisan effective procedure,
then we can build a Turing machine to implement it.

Suppose we have a Turing machine “WillHalt” which, given an input
string M + w, will halt and accept the string if Turing machineM halts on input
wand will halt and reject the string if Turing machineM does not halt on input
w. When viewed as a Boolean function, “WillHalt (M, w)" halts and returns
“TRUE” inthefirst case, and (halts and) returns“FALSE” in the second.

THEOREM: Turing Machine “WillHalt (M, w)” does not exist.

Proof: Thistheorem is proved by contradiction.
Suppose we could build a machine “WillHalt”.
Then we can certainly build a second machine,
“LooplfHalts’, that will go into aninfinite loop if and only if “WillHalt”
acceptsitsinput:
Function LooplfHalts (M w):
if WIlHalt (M w) then
while true do { }
el se
return fal se;

We will aso define a machine “LooplfHaltOnltSelf” that, for any given
input M, representing a Turing machine, will determine what will happen if M
isapplied to itself, and loops if M will halt in this case.

Function LooplfHaltsOnltself (M:
return LooplfHalts (M M:

Finaly, we ask what happensif we try:

Function | npossi bl e:
return LooplfHaltsOnltself (LooplfHaltsOnltself):

This machine, when applied toitself, goesinto an infiniteloop if and only
if it halts when applied to itself. This is impossible. Hence the theorem is
proved.

Will this
program
halt?

Turing Machines 201

4.5.2 Implications of Halting Problem
(&) Programming

The Theorem of “Halting Problem” does not say that we can never determine
whether or not agiven program halts on a given input.

Most of thetimes, for practical reasons, we could eliminate infinite loops
from programs. Sometimes a “meta-program” is used to check another
program for potentia infiniteloops, and get thismeta-program to work most of
the time.

The theorem saysthat we cannot ever write such ameta-program and have
it work all of thetime. Thisresult isalso used to demonstrate that certain other
programs are also impossible.

The basic outline is asfollows:

(i) Ifwecouldsolveaproblem X, we could solvethe Halting problem
(ii) We cannot solve the Halting Problem
(iii) Therefore, we cannot solve problem X.

(b) Artificial Intelligence (Al)

It has been tried to use the Halting Problem as an argument against the
possibility of intelligent computers. The argument is as follows:

(i) There are things computer cannot do
(ii) We can do those things
(iii) Therefore, we must be superior to computers.

Thefirst premise given aboveis definitely TRUE. The second premiseis
generally supported by displaying a program which solves some subset of the
Halting Problem, then describing anicetrick whichisnot incorporated into the
program, that solves a dlightly larger subset. There may well be valid
arguments against the possibility of Al. Thisis not one of them.

4.5.3 Reduction to Halting Problem

In order to reduce a problem P to the Halting problem, look at the following
steps:

(i) Assume that you have an effective procedure—either a Turing
machine or any kind of algorithm to solve problem P.
(ii) Show how to usethe programfor P to solvethe Halting problem.
(iii) Conclude that problem P cannot be solved.

State Entry Problem

This problem otherwise called “dead code problem” is to determine whether
Turing machine M, when given input w, ever enters state g. The only way a

202 Theory of Automata, Formal Languages and Computation

Turing machine M halts is if it enters a state q for which some transition
functiond(q;, a;) isundefined. Add anew final state zto the Turing machine,
and add all these missing transitions to lead to state z. Now use the assumed
state-entry procedureto test if state z, is ever entered when M isgiveninput w.
This will let us know if the original machine M halts. We conclude that it
should not be possible to build the assumed state-entry procedure.

Some unsolvable Problems are as follows:

(i) Doesagiven Turing machine M halts on al input?
(ii) Does Turing machine M halt for any input?
(iii) Isthelanguage L(M) finite?
(iv) DoesL(M) contain astring of length k, for some given k?
(v) Do two Turing machines M, and M, accept the same language?

Itisvery obviousthat if thereisno algorithm that decides, for an arbitrary
given Turing machine M and input string w, whether or not M acceptsw. These
problems for which no algorithms exist are called “UNDECIDABLE" or
“UNSOLVABLE".

4.5.4 Post’s Correspondence Problem

Let 2 beafinite alphabet, and let A and B be two lists of nonempty strings over
%, with| A|=|BJ, i.e,

and B = (X, X5, Xg, «vee.. X)
Post’ s Correspondence Problem is the following.

Does there exist a sequence of integersiy, i,, i, such that m=1and

Example: Suppose A = (a, abaaa, ab) and B = (aaa, ab, b). Then the required
sequence of integersis2, 1, 1, 3 giving

abaaa a a ab = abaaa aaa b.
This example has a solution. It will turn out that Post’s correspondence
problem isinsolvable in general.

Example 4.5.1: Provethat if L, isnot recursive, and thereisareduction
from L, to L,, then L, isalso not recursive.

Eolution

Assumethat L, isrecursive, as decided by Turing machineM, and let T be the
Turing machine that computes the reduction T.

Turing Machines 203

Then the Turing machine TM,, would decide L,. But L, is undeciable—a
contradiction.

4.6 RICE'S THEOREM

A Turing machine (TM) is a way to describe a language and the decision
problem can be interpreted as belonging to the general class of problems:

“Given a Turing machine, does L(TM) have the property P”?

In this case P is the property of containing the null string.

THEOREM: “If Pisaproperty of languages that is satisfied by some but not
all recursively enumerable languages, then the decision problem.

D: GivenaTM, does L(TM) have property P is unsolvable.”

Proof: Assume that P isanontrivial language property. Starting with Turing
machine TM, an arbitrary instance of Accepts (0). (Which is the other
unsolvable problem), we need to find an instance TM' of D so that the answer
for TM and TM' are the same.

ThemachineTM' isconstructed so that thefirst thingsit doesit to moveits
tape head past the input string and execute TM on input [1 What TM' doeswith
its original input after that depends on the outcome of Accepts (0.

Wewould likeTM' to proceed with its original input asif its goa wereto
accept some original input asif its goa were to accept some language L, so
that it haltsif and only if the original inputisinL . Also wewould want TM' to
proceed asif it were accepted as a different language L.

In order to get everything right, we want L, to be alanguage satisfying P
and L to be alanguage not satisfying P and L to be alanguage not satisfying
P. This ensures that if TM' is a yes-instance of D if and only if TM is a
yes-instance of Accepts (0).

The problem that exists hereisthat if TM does not accept [, then it will go
into infinite loop. Then TM' could not accept anything. Therefore Ly is an
empty language. Thereforeif TM crashed on input [, then TM' a so crashes. If
O happensto be alanguage not satisfying the property P, then we have exactly
what we want.

The choice of thelanguageL, isarbitrary subject to the condition L, must
satisfy P; then we have such alanguage L, since P is nontrival.

Thereforeit isproved that if P isany nontrivial property not satisfied by the
empty language, then D is unsolvable, which provesthe Rice's Theorem. [

GLOSSARY

Turing machine: Finite-state machine with storage.

204 Theory of Automata, Formal Languages and Computation

Typesof TM: Deterministic TM, non-deterministic TM

Transition function of TM: 8:Q xI' - Q xTI" x{L,R}

Configuration of TM: Requires
(i) stateof TM
(if) contents of the tape

(iii) position of the tape head on the tape.

Moveof a TM: Pair of instantaneous descriptions, separated by |-

Programming a TM: Creating current state, symbol read, symbol written,
direction, next state,

Transducer: TM is used as a Tranducer by treating the entire nonblank
portion of the initial tape as input, and treating the entire nonblank
portion of the tape when the machine halts as outpuit.

N-Track Turing machine: One in whch each sgquare of the tape holds an
ordered n-tuple of symbols from the tape alphabet.

Semi-infinitetape TM: TM having an semi-infinite tape, with the non-blank
input at the extreme left of the tape.

Offline TM: TM having two tapes, one tape is read-only and has the input,
the other is read-write and isinitialy blank.

Multi-tape TM: TM having finite number of tapes, each having its own
independently controlled tape head.

Standard TM: Multi-tape TMs are called so.

Binary TM: One whose tape a phabet consists of exactly two symbols.

Turing Thesis (Weak form): TM can compute anything that can be.
computed by a general-purpose digital computer.

Turing Thesis (Strong Form): TM can compute anything that can be
computed.

Recursively enumerable (R.E.): Language is R.E. if there existsa TM that
acceptsevery string of the language and does not accept stringsthat are
not in the language.

REVIEW QUESTIONS

What is a Turing machine?

What are the types of Turing machines?

Give the definition of a Turing machine.

Define the term * Transition function’ of a TM.

Define the term ‘I nstantaneous description’ of a TM.
Definetheterm ‘move inaTM.

What are the requirements of the ‘ configuration’ of aTM?
How will you program a Turing machine?

Explain “Turing machine as acceptors’.

©COoONOO MWD PRE

Turing Machines 205

10.
11
12.
13.

14.
15.
16.
17.
18.
10.
20.
21.
22.
23.
24,
25.

How will you recognize alanguageina TM?

How are Turing machines used as Transducers?

Explain what do you mean by an N-Track Turing machine?
Explain the following terms

(@ Semi-infinite tape

(b) Offline Turing machine

(c) Multitape Turing machine

(d) Nondeterministic “Multidimensional Turing Machine”
What do you mean by “Multidimensional Turing Machine”?
What do you mean by abinary TM?

State the Church-Turing Thesis.

State the weak form and strong form of Turing’'s Thesis.
What do you mean by Recursively enumerable languages?
How will you enumerate strings in language?

What are non-recursively enumerable languages?

What do you mean by Undecidability?

What do you mean by the Halting problem?

What is an Universal Turing machine?

State the implications of Halting problem.

What do you mean by Post’s Correspondence problem?

EXERCISES

Design a Turing machine which recognizes the language consisting of
all strings of Oswhoselengthisapower of 2.i.e., it decidesthelanguage
L={02"|n>0}.

Design a Turing machine which recognizes the language
L ={w#w|wO{0L}.

Design a Turing machine which recognizes the language
L={a'b/c|ixj=k and i, j,k 21}

Design a deterministic Turing machine (DTM) to accept the language
L={a'b'c'|i=0}.

DefineaDTMsto accept thefollowing languages. Specify the5-tuplein
each. (Use multi-tape machine if necessary).

@ {x|x0{03}
(b) {x|xO{0}" and x=x"}
Design DTMs to compute the following functions. (Input number can

beinunary, i.e., nisencoded as 1").
(& Successor function: f :N - N where f (n)=n+1

206

Theory of Automata, Formal Languages and Computation

10.

11

12.
13.

14.

15.

16.

17.

18.
10.

20.

(b) f:NxN - Nsuchthat f(a,b)=[=a/b[]

() f:N - Nsuchthat f (n) = [fog, n[]

Define Nondeterministic Turing machines to accept the following
languages.

@ {xIxD{0g"}

(b) {x|x0{0L" and x=x"}

Define a multiheaded Turing machine, amodel in which each tape can
have k tape heads. Prove that a Deterministic Turing Machine (DTM)
with one work tape can simulate a two-headed Turing machine.
Design a Turing machine which computes the function
f (n, n,) = min(n,, n,) for al non-negative integers n, and n,.

Design a Turing machine which computes the function f (n) =3ifn=5
and f (n)=0ifn=0, 1, 2, 3or 4.

Construct a Turing machine which computes the function f (n) = n mod
5.

Design a Turing machine which recognizes the set{0"1"2" |n > }.
DesignaTM that recognizesthe set of all bit stringsthat contain an even
number of 1°,

Construct aTM that recognizesthe set of al bit stringswhich end witha
0.

Design a Turing machine with tape symbols 0, 1 and B that given a bit
string as input, replaces all but the leftmost 1 on the tape with Os and
does not change any of the other symbols on the tape.

DesignaTM with tape symbols0, 1 and B that replacesthefirst Owitha
1 and does not change any of the other symbols on the tape.

Design aTM that recognizes the set

{0*1"|n=0}.

Show that therecursiveness problem of Type-0 grammarsisunsolvable.
Show that the problem of determining whether or not aTM over { 0,1}
will print ever the symbol 1, with a given tape configuration is
unsolvable.
Show that there exists a TM for which the halting problem is
unsolvable.

SHORT QUESTIONS AND ANSWERS

What is a Turing machine?
A finite-state machine with storage is called a Turing machine.

What is the analogy between a Turing machine and a Push Down

Turing Machines 207

10.

Automaton?
Both have a finite-state machine as a central component, both have
additional storage.
What are the types of Turing machines?
(a) Deterministic Turing machine.
(b) Non-deterministic Turing machine.
Define a Turing machine.
A Turing machineisa7-Tuple

Q,z,I,9,q4.#,F)

where Qisaset of states

> isafinite set of symbols, “Input a phabet”
I" isafinite set of symbols, “ Tape a phabet”
O isthe partial transition function
#0OT isasymbol caled ‘blank’
g, OQistheinitial state
F OQisaset of final states

Define the Transition Function for Turing Machine (TM)

0:Q xI' - Q xI x{L, R} isthetrangtion function.

When a machine isin a given state (Q) and reads a given symbol (')
fromthetape, it replacesthe symbol on the tape with some other symbol
(1), goes to some other state (Q), and moves the tape head one square
left (L) or right (R).
State the requirements of an instantaneous description or configuration
of aTM.
TM requires:
(@) thestatethe TM isin
(b) the contents of the tape
(c) the position of the tape head on the tape.
How is move of a Turing machine expressed?
Itisexpressed asapair of instantaneous descriptions, separated by a
symbol |-.
What do you understand by “programming” a Turing machine?
Creating alist:
(current state, symbol read, symbol written, direction, next state) is
called * Programming’ a Turing machine.
What are the reasons for aTM not accepting its input?
(@ TheTM could halt in anonfinal state.
(b) TheTM could never stopi.e., it entersan “infinite loop”.
How is a Turing machine used as a Transducer?

208

Theory of Automata, Formal Languages and Computation

11

12.

13.

14.

15.

16.

17.

18.

10.

20.

To use a Turing machine as a Transducer, treat the entire nonblank
portion of theinitia tape asinput, and treat the entire nonblank portion
of the tape when the machine halts as outpui.

When isafunction f said to be “ Turing computable”?
A Turing machinedefinesafunction y = f (x)for stringsx, yO = if

qoXF-a; y

where q; isthefina state.
A function f is *Turing Computable” if there exists a Turing machine
that can perform the above task.
When are two automata said to be equivaent?

Two automata are said to be equivalent if they accept the same
language.
When are two transducers said to be equivalent?

Two transducers are said to be equivalent if they compute the same
function.

What do you mean by standard Turing machines?

At each move of a Turing machine, the tape head may move either
left or right. We can augment this with a‘stay’ option, i.e. we will add
“don’t move” totheset {L, R}.

Turing machines with a stay option are equivalent to Standard
Turing Machines.

What isan N-Track Turing machine?

A TM in which each square of the tape holds an ordered n-tuple of
symbols from the tape alphabet is said to be an N-Track Turing
Machine.

What is a semi-infinite tape Turing Machine?

A Turing machine having a semi-infinite tape, with the non-blank
input at the extreme left of the tapeis called so.
What is an offline Turing machine?

A Turing machine having two tapes, one tape being read-only and
hastheinput, the other being read-writethat isinitialy blank iscalled an
offline Turing machine.

What is a multi-tape Turing machine?

A Turing machine with finite number of tapes, each having its own
independently controlled tape head is called a multi-tape TM.
What are standard Turing Machines?

Multi-tape Turing machines are called standard Turing Machines.
What is a binary Turing Machine?

A Turing machine whose tape a phabet having exactly two symbols
isabinary Turing Machine.

Turing Machines 209

21.

22.

23.

24.

What isthe ‘weak form’ of Turing Thesis?

“ A Turing machine can compute anything that can be computed by a
general-purpose digital computer.” This is the weak form of Turing
Thesis.

What isthe ‘strong form’ of Turing Thesis?

“A Turing Machine can compute anything that can be computed”.
Thisisthe strong form of Turing Thesis.

When is alanguage said to be recursively enumerable?

A language is recursively enumerable if there exists a Turing
machine that accepts every string of the language, and does not accept
strings that are not in the language.

What is the Post’ s correspondence problem?

Let > be afinite alphabet, and let A and B be the lists of nonempty

strings over Z, with| A|=|BJ, i.e.,

A= (W, W, W)
and B = (X, X5y vnen X,)-

Post’ s correspondence problem is the following:

“Does there exist a sequence of integersiy, i,, ...i,, such that m=1
and

Chapter 5

Chomsky Hierarchy

5.1 CONTEXT SENSITIVE GRAMMARS AND LANGUAGES

A context-sensitive Language is a language generated by a context sensitive
grammar.

Definition 1: A context-sensitive grammar is one whose productions are all
of theform

XAY — Xvy

where Advand x,v, yO(V OT)".

“Context-sensitive” implies the fact that the actual string modification is
givenby A — v, whilethex andy provide the context in which the rule may be

applied.

Definition 2: A context-sensitive grammar is one whose productions are all
of theform

X->Y

wherex, yOV OT)", and |X|<| y.

This type of grammar is called “Non-contracting” as the derivation steps
never decrease the length of the sentential form.

This definition given above is mogtly used. The two kinds of grammar are
amost equivalent generating the same languages with only the exception: Onekind
of grammar permitslanguagesto contain theempty string, whilethe other doesn't.

A language L is context-sengitive if there exists a context sensitive
grammar G such that either L = L(G) or L =L(G) O{A}.

Example 5.1.1: Show that the language L={a"b"c"|n>1} is a
context-sensitive language.

Eolution

Let us prove this by showing a context-sensitive grammar for the language.

Chomsky Hierarchy 211

A kind of grammar is

S - abc|aAbc
Ab - bA,

Ac - Bhbcg,

bB - Bb,

aB - aalaa A

Let us see how this works by looking at the derivation of a*b>c®.

SO aAbcO abAc abBbcc
0 aBbbcc 0 aaAbbcc 0 aabAbcc
0 aabbAcc O aabbBbccc
0 aabBbbccc 0 aaBbbbcce
0O aaabbbccce.

Thisusesthe variables A and B. Sincethelanguageis not context-freg, itis
said to be context-sensitive language.

5.2 LINEAR BOUNDED AUTOMATA

A Turing machine has an infinite supply of blank tape. A linear-bounded
automaton isa Turing machinewhosetapeisonly ansquaresiong, where‘n’ is
the length of theinput string and a is a constant associated with the particular
linear-bounded automaton.

THEOREM (1): For every context-sensitive language L there exists a
linear-bounded automaton M such that L = L(M), i.e., M accept exactly the
strings of L.

THEOREM (I1): For every language L accepted by a linear-bounded
automaton that produces exactly L or L —{A}, depending on the definition
of context sensitive grammar.

5.3 RELATIONSHIP OF OTHER GRAMMARS
THEOREM (1): Every context-free language is context-sensitive.

Proof: The productions of a context-free language have the form A - v. The
productions of a context-sensitive language have the form xAy — xvy, wherex
and y are permitted to be A.

Hence the resuilt. O

THEOREM (I1): There exists a context-sensitive language that is not
context-free.

212 Theory of Automata, Formal Languages and Computation

Proof: The language {a"b"c" |n=0} is not context-free (which could be
proved using a pumping lemma).

It can be shown that it is context-sensitive by providing an approprite
grammar.

The productions of one such grammar is given here.

S aABC S aBC A- aABC
A_-aBC CB-BC aB- ab
bB - bb bC - bc cC - cc

THEOREM (I): Every context-sensitive language is recursive.

Proof: A context-sensitive grammar is noncontracting. Moreover, for any
integer n there are only a finite number of sentential forms of length n.
Therefore, for any string w we could set a bound on the number of derivation
steps required to generate w, hence a bound on the number of possible
derivations. The string w is in the language if and only if one of these
derivations produces w.

5.4 THE CHOMSKY HIERARCHY

The Chomsky Hierarchy, as originally defined by Noam Chomsky, comprises
four types of languages and their associated grammars and machines.

Language Grammar Machine Example
Regular lan- Regular grammar Deterministic a
guage —Right-linear grammar or

—L eft-linear grammar Nondeter-

ministic

finite-state

acceptor
Context-free Context-free grammar Nondeter- a'n"
language ministic

pushdown

automaton
Context-sensi- Context sensitive Linear- a'n"c"
tivelanguage grammar bounded

automaton
Recursively Unrestricted grammar Turing Any
enumerable machine computable
language function

Chomsky Hierarchy 213

5.5 EXTENDING THE CHOMSKY HIERARCHY

So far we have discussed about other types of languages besides those in the
“classica Chomsky hierarchy. For example, we noted that deterministic
pushdown automaton were less powerful than nondeterministic pushdown
automata. The table below shows a table of some of the language classes we
have covered that fit readily into the hierarchy.

Language Machine

Regular language Deterministic or Non-deterministic
finite-state acceptor

Deterministic context-freelanguage Deterministic Pushdown Automaton

Context-free language Non-deterministic pushdown Autom-
aton

Context-Sensitive language Linear-bounded Automaton

Recursive language Turing machine that halts

Recursively enumerable language ~ Turing machine

It should be noted that not all language classes fit into a hierarchy. When
linear languages are considered, they fit neatly between the regular languages
and the context-freelanguages. However there arelanguagesthat arelinear but
not deterministic context-free, and there are languages that are deterministic
context-free but not linear.

5.6 UNRESTRICTED GRAMMAR
The grammars in the Chomsky hierarchy allows productions of the form
o-PB

wherea and 3 are arbitrary strings of grammar symbols, witha # A.
These types of grammars as called “Unrestricted grammars’. The 4-tuple
notationG = (V, T, P, S) isused for unrestricted grammars al so.

L(G) ={w|wisin T" and SO w}
ﬁ denotes the reflexive and transitive closure of the relation O .

THEOREM (1): If LisL(G) for unrestricted grammar G = (V,T,P,S) , then L
isanr.e. language.

THEOREM (11): If L isanr.e. language, then L = L(G) for some unrestricted
grammar G.

214 Theory of Automata, Formal Languages and Computation

5.7 RANDOM-ACCESS MACHINE
A randon access machine is defined as follows;

Data Types: The only data type supported is the Natural Numbers0, 1, 2, 3,
......... But the numbers may be very large.

Variables: An orbitrary number of variables are alowed. Each variable is
capable of holding a single natural number. All variables are initialized to 0.

Tests: Theonly test allowed is <variable> = 0.
Satements: There are the following types of statements in the language:

(8) if <test>then <statement> else <statement>;
(b) while <test> do <statements>;

(c) <variable>: = <variable> +1; (increment)
(d) <variable>: = <variable> —1; (decrement)

It isto be noted that decrementing a variable whose valueis already zero
has no effect.

Statements to be executed in sequence (<statement>; <statement>;
<statement>; are allowed and parantheses are used to group a sequence of
statement into asingle statement. Thislanguageisvery equivaent in power to
a Turing machine. This can be proved by using the language to implement a
Turing machine, and then using a Turing machine to enulate the language.

Thislanguageis so powerful to compute anything that can be computed in
any programming language.

GLOSSARY

Context sensitive language: Language generated by a context-sensitive
grammar.
Context-sensitive grammar: It is one whose productions are of the form

XAy - XVy

where AV and x, v, yOV OT)".

Linear Bounded automata (LBA): ItisaTM whosetapeisonly ansquares
long, where ‘n’ is the length of input string and a is a constant
associated with the LBA.

Chomsky hierarchy: Has 4 types of languages viz.,

(@ Regular language

(b) Context-free language

(c) Context-sensitive language

(d) Recursively enumerable language.

Chomsky Hierarchy 215

Unrestricted grammar: Production of the form a — B where a,B are

s wdE

o

10.

11
12.

>~ w

arbitrary strings of grammar symbols, with a # A forms unrestricted
grammar.

REVIEW QUESTIONS

What do you mean by a context-sensitive grammar?

What do you mean by a context-sensitive language?

What do you mean Linear bounded automata?

Prove: “Every context-free language is context-sensitive’.

Prove. “There exists a context-sensitive language that is not
context-free”.

Prove: “Every context-sensitive language is recursive’.

Given an example for

() Regular language (b) Context-free language.

Give an example for

(8 Context-sensitive language (b) Recursively enumerable language.
What do you mean by Chomsky hierarchy of languages?

What are the machines corresponding to each of the following?

(& Recursively enumerable language

(b) Context sensitive language

(c) Context-free language

(d) Regular language.

What do you mean by unrestricted grammar?

What do you mean by a random access machine?

EXERCISES

Check whether the language given by
L={a"b"| n>1

is a context-sensitive language or not.
Check whether the language

L={1"0"|n>3

is a context-sensitive language or not.

Explain the Chomsky hierarchy of languages with an example.
Explain the concept of unrestricted grammar with examples.
Show that every context-free language is context sensitive.

216

Theory of Automata, Formal Languages and Computation

10.

Prove that exists a context-sensitive language that is not context-free.
Show that every context sensitive language is recursive.

SHORT QUESTIONS AND ANSWERS

What is a context-sensitive language?

A language generated by a context-sensitive grammar is called a
context-sensitive language.
Define a context sensitive grammar.

A context-sensitive grammar is one whose productions are all of the
form

XAy - XVy
where AOvand x,v, ydOV OT)".

Give an aternative definition of context-sensitive grammar.
A context-sensitive grammar is one whose productions are all of the
form

X—y

wherex, yOV OT)" and |X|<| Y.
What is meant by “non-contracting” grammar?

Grammar iswhich the derivation steps never decrease the length of
the sentential form is called a‘ non-contracting’ grammar.
When is alanguage said to be context sensitive?

A language L is context-sensitive if there exists a content-sensitive
grammar G, such that either L= L(G) or L= L(G) O{A}
Give an example for a context-sensitive language.

L={a"b"c" |n>1 isan example of a context-sensitive language.
What isalinear bounded automata?

A linear bounded automaton is a Turing machine whose tapeisonly
an squares long, where ‘n’ is the length of the input string and a is a
constant.
Say True or False: “Every context-free language is context-sensitive.”

TRUE.
Say True or False: “ There exists a context-sensitive language that is not
context-free.”

TRUE.
Say True or Fase “Every context-sensitive language need not be
recursive’.

FALSE, every context-sensitive language is recursive.

Chomsky Hierarchy 217

11

12.

13.

14.

15.

16.

17.

18.

10.

20.

21.

22.

Give an example of aregular language
ar.
Give an example of a context-free language?
a'o".
Give an example of a context-sensitive language
a"b"c".
Give an example of arecursively enumerable language.
Any computable function is an example.
What are kinds of regular grammars?
(& Right-linear grammar.
(b) Left-linear grammar.
Give an example of a machine which applies context-free language.
Nondeterministic Pushdown Automaton
Give an example of a machine which applies context-sensitive
language.
Linear Bounded Automaton
Give an example of a machine which applies recursively enumerable
language.
Turing machine.
What is the grammar corresponding to a recursively enumerable
language.
Unrestricted grammar.
What are the languages the Chomsky Hierarchy describes?
(& Regular language
(b) Context-free language
(c) Context-sensitive language
(d) Recursively enumerable language.

What are Unrestricted grammars?
The grammarsin the Chomsky hierarchy allows productions of the
form

a-B
wherea and 3 arearbitrary strings of grammar symbols, witha £ A.
These grammars are called * Unrestricted grammars”.

Mention the types of statements in the language of a random access
machine.
(@) if <test>then <statement> else <statement>;

(b) while <test> do <statement>;
(c) <variable>: = <variable> + 1; (increment)
(d) <variable>: = <variable> — 1; (decrement)

Chapter 6
Computability

6.1 FORMAL SYSTEMS
The necessary properties of a satisfactory formal system are as follows:

(8 Completeness. It should be possible either to prove or disprove any
proposition that can be expressed in the system.

(b) Consistency: It should not be possible to both prove and disprove a
proposition in the system.

Consistency becomes crucial if it becomes possible to prove and disprove
some proposition in the system, which means the same can be done for every
proposition in the system.

Inthelate 1800’ sthere were alot of mathematicianswho wereworking on
amethod of putting together all of mathematics, starting from the axions of set
theory.

In fact, sets can have other sets as members. In 1901 Bertrand Russel
discovered the Russel’ s Paradox:

Russel's Paradox

“Consider the set of al setsthat do not have themselvesasamember. Isthis set
amember of itself?’

This problem wastried to be resolved by the way of defining “type”. This
theory of types though not accepted fully have paved way for new
philosophies of mathematics.

Godel was able to express proofs as numbers like considering a computer
programto beavery large binary number. Godel proved thefollowing resullt:

“If it is possible to prove, within aformal system, that the system is
consistent, then the formal system is not, in fact, consistent.”

Equivalently, we can say,

“If aformal systemisconsistent, thenitisimpossibleto prove (within
the system) that it is consistent.”

Computability 219

This particular result shows that any attempt to prove mathematics
consistent is foredoomed to failure. It is till possible to prove a system
consistent by logical arguments outside that system, provided the outer system
is known to be consistent.

6.2 RECURSIVE FUNCTION THEORY

Itis seen that a sufficiently powerful formal system cannot be both consistent
and compl ete as proved by Godel. Simpl e arithmetic on integersis an example
of a system that is “sufficiently powerful”. It is aways preferred to give up
completeness rather than consistency, because in a consistent system any
proposition can be proven.

Ideally, we wanted to have an agorithmic theorem proving procedure to
distinguish between the provable propositions and unprovable ones. Alan
Turing invented Turing machinesin an attempt to solvethis problem. With the
halting problem, Alan Turing had shown that it is not possible to distinguish
between soluable and insolvable problems. Similar results were arrived at by
other scientists. Church invented “ Recursive Function Theory”.

6.3 PRIMITIVE RECURSIVE FUNCTIONS

This section describes the basic ideas behind recursive function theory.

The Recursive functions are described over the natural numbers| ={0, 1,
2,3 .. }. Recursive functions are looked at as “Pure Symbol Systems’.
Numbersarenot used in the system, rather, we use the system to construct both
numbers and arithmetical functions on numbers. Its a different numbering
system, inthe same way as Roman numeral sare different. The correspondence
isasgiven below.

2(x) =0, z(x)) =1 ((2(x))) =2......

In order to trandate to decimal, just count the number of s's surrounding
the central z(x).

(& Zero Function: z(x) = z(y), for al x, yOI.Thisisour “zerg”; it iswritten
as afunction so we don’t have to introduce constants into the system.

(b) Successor Function s(x): Thisfunctioninformally meansx + 1. Formally,
it does not return avalue. It just lies there, the result of s(X) is S(X).

(c) Projector Function:

Elagrody
Highlight

Elagrody
Highlight

Elagrody
Highlight

Elagrody
Highlight

Elagrody
Highlight

Elagrody
Sticky Note

Elagrody
Sticky Note
هو هنا بيعرفك أساسيات ال Recursive Fuction اللى من النوع Preemptive

(a) الدالة الصفرية ودائماً بتساوي بالصفر

(b) الدالة الوارثة يعنى كل مرة تزود واحد

(c) دالة المسقط ودى بتشوفى فيها العدد اللى جمب ال p كام وتختارى الرمز اللى بيساوى الرقم ده داخل الاقواس

Elagrody
Sticky Note

Elagrody
Highlight

Elagrody
Highlight

Elagrody
Pencil

220 Theory of Automata, Formal Languages and Computation

These projector functions are away of extracting one of the parameters and
discarding the rest. We define only P, and P, as only functions of no more

than hwo arauments are onlyv discrsed
~J 7

Definition: A total function f over Nisprimitiverecursiveif (i) itisany one of
the three initial functions [zero function, successor function and Projector
Function] or (ii) it'can be got by applying composition and recursion finite
number of times to the set of initial functions. This is dealt with in the
subsequent sections.

Example 6.3.1: How are the following functions defined.

(@) Zero function Z(x) =
(b) Successor function S(x)
(c) Projection function P," (x).

Eolution

(@ ZerofunctionZ(x)=0
(b) Successor function S(x) =x + 1
(c) Projection function P" (X, X,, X,) = X;

Example 6.3.2: How are the following functions defined?
@ nil (%)
(b) consa(x)
() conshb(x)

Eolution

@ nil () =A
(b) consa(x) = ax
() consb(x) =bx

Example 6.3.3: Find out the values of
(@ Z(80)
(b) P,'(2376)
© P;'(2367)
(d) S(78)

With Z as the zero function, S as the successor function and U as the
projection function.

Elagrody
Rectangle

Elagrody
Underline

Elagrody
Highlight

Elagrody
Highlight

Elagrody
Highlight

Elagrody
Sticky Note
امتى الدالة تكون Preemptive recursive؟؟

عندك شرطين :-

اول شرط:- تكون احد الدوال الثلاثة (zero, successor, projector)

ثانى شرط :- انك ممكن تحصلى عليها بتطبيق فكرة ال recusive على مجموعة من الدوالة الثلاثة اللى فاتت

Elagrody
Sticky Note

Elagrody
Sticky Note

Computability 221

Eolution

@
(b)

(©
(d)

Z(80) = 0since zero function Z(x) = 0.
We know that P." (x, X,, VX,) =X
Therefore we have

P,'(237,6)=3
P;'(236,7)=6

S(x)=x+1
Therefore (78) =78 + 1 = 79.

Example 6.3.4: Obtain the values of

@
(b)
(©

nil (ababab)
cons a(baba)
cons b(ababab)

with the usua definitions of functions over .

Eolution

@
(b)
(©

nil (ababab) = A
cons a(baba) = ababa
cons b(ababab) = bababab.

Example 6.3.5: Check whether the following functions are Total
functionsor not. If afunction isnot total, specify the argumentsfor which
the function is defined.

@
(b)
(©
(d)
(€)

Eolution

@
(b)
(©

f (x) = x/4over N
f(x)=x?-9over N
f(xX)=x+4over N

f (x) = x?over N

f (x) =5x> +2x* +6 over N.

f () = x/4over N.

The function is defined for all natural numbers divisible by 4.
f (x) = x? -9 over N.

The function is defined for all x=3.

f(x)=x+4over N.

The function is defined for all natural numbers.

222 Theory of Automata, Formal Languages and Computation

(d) f(x)=x?over N.

The function is defined for all natural numbers.
(e f(x)=5x3+2x* +6.

The function is defined for all natural numbers.

6.4 COMPOSITION AND RECURSION

If 95, 9,, 9; and h are previously defined functions, these functions can be
combined to form new functions. These functions can be combined only in
precisely defined ways.

(@ Composition: f (X, y) = h(g, (X, ¥),9,(X, y)). This alows us to use
functions as arguments to functions.

(b) Primitive Recursion: This is a structured “recursive routing’ with the
form:

f(x0) = g, (x)
f(s(y)) = (g, (x), 93 (F (X, ¥)))

“A primitive recursive function is a function formed from the
functions z, s, p, and p, by using only composition and primitive
recursion”.

The recursion should be guaranteed to terminate. In order to ensure this,
thefunction should carry along an extraparameter that is“ decremented” every
time the function is called [s(x) replaced by X], and halts the recursion when it
reaches “zero” (z(x)), i.e.,

F ey SX)) = e ey Xy,

The recursive function should appear only oncein the definitions (RHS of
the definition). Thisin fact, avoids various forms of “fancy” recursion.

Examples. The following examples show how these can be used to define
more complicated functions.

(&) Addition of two numbers: According to theform, itis:
add (x, z(x)) = g, (X)
add (x, (y)) = h(g,(x Y), g5 (add (x, ¥)))
By choosingg, = p,,0, = p,, 93 =sand h= p,, weget

add (x, z(x)) = py (x)
add (x,(y)) = p2(p.(x ¥), (add (x, ¥)))

Elagrody
Highlight

Elagrody
Underline

Elagrody
Highlight

Elagrody
Highlight

Computability 223

which simplifiesto
add (x, z(x)) = x
add (x,s(y)) = s(add (x, Y)).
As an example, add (3, 2) works asfollows:

add ((s((z(x)))), ((z(x))))
S(add ((((2(x)))), Az(x))))
(add(s(((2(x)))), z(x)))))
SCECCEE9))))2

(b) Multiplication of Two Numbers: The new featureisthe use of apreviously
defined function, add, in the definition of a new function. We skip the step of
playing around with the p, functions to pick out the right parts, and go to the
simplified form.

multiply (x, s(z(x))) = x
multiply (x, S(y)) = add(x, multiply (X, y))

(c) Predecessor of a Number: The important catch hereis that it will not be
ableto drop below zero, so effectively 0—1 = 0. In order to show this, wewrite
adot abovetheminussignand call it “monus’. Thefunctioniseasy to define:

pred (z(x)) = z(x)
pred ((x)) = X
(d) Subtraction:
subtract (X, z(x)) = X
subtract (X, s(y)) = pred (subtract (X, y)).
Example 6.4.1: Given

g =(Xy)=x+Yy,
g, = (X y) =3xy
0; = (X y)=12x

and h(x, y, z) = x + y+ zare functions over N. Obtain the composition of h
with g;, 9, Js-

Eolution

h(f,(x, y); f2(% Y); f3(x ¥)) = h(x + y,3xy,12x)
= X+ y+3xy+12x.

Therefore the composition of h with g,, g, and g, is given by afunction

f (X, y) =X+ y+3xy+12x.

224 Theory of Automata, Formal Languages and Computation

Example: Given f, =x2x3, f, =\, f, =5xx, al defined over =
with the pair (xy, ;) and g(X,, X,, X3) = 5X,X5; again defined over Z. Obtain
the composition of g with f, f, and f.

Eolution

9(f1, F2, f3) = 9OEXG, A 5x,X,)
= 5A (5%, %;)
= 25X, X,.
Therefore the composition of g with f;, f, and f; is given by
h(X,, X,) = 25X X,.

Example 6.4.2: Prove that the function f_,, (X, y) = x + yis primitive
recursive.

Eolution

A function f of (n + 1) variables is defined by recursion if there exists a
function g of ‘n’ variables, and afunction h of (n+ 2) variablesand f is defined
asfollows:

F (X Xpenneen Xp,0) = 9(X, X, v e X, (1)

F(X, %oy eennen X YD) = 9(X, X5, eenee Xny Vo F (X, %5, ennne X Y) (2

f.qq (X, y) isafunction of two variables. In order that f,, (X, y) isdefined by
recursion, we require afunction ‘g’ of asingle variable and a function ‘h’ of
three variables.

fogg (X0) =x+0=x 3
Comparing f 4 (X, 0) with the left hand side of (1), we have
9(x) = x= p(x) (4)
(Note that p is the projector function).
Also we have
fog (6 y+D) =x+(y+D = (x+y) +1=f (X y) +1 ©)

Comparing thiswith L.H.S. of equation (2), we have

h(x, Y, F (% Y) = fagq (X y) +1
= S f 59 (X Y)
= S(P5 (% Y oy (%,)

Let usassume h(x, Y, 2) = [p3 (X, ¥, 2)).

Computability 225

From (4) we have
9=p(x.
Therefore we have h that is got from the initial functions pS and s by

composition and f, isgot by recusion using g and h.
Hence we see herethat f_,, isgot by applying composition and recursion
finite number of timesto initial functions p;, ps ands.

Therefore f 4 (X, y) = x + yis“primitive recursive’.

Example 6.4.3: Show that the function f(x)=x? is primitive
recursive.

Eolution

Givenf (X) = X%
f(x+1)=(x+D%=x*+2x+1
= (%) + ((2(x)))) Loy (X) + (X))
Thuswe havef (x) shown to be obtained by recursion and addition of primitive
recursive functions.

Example 6.4.4: Prove that the function given by the signum function

noy = <70
% N L x>0
is primitive recursive.
Eolution
Given that the signum function
n(x) = EO x=0

=9 x>0

Now,
sgn(0) = z(0)

sgn(x +1) = s(z(p; (x,sgn(x))))
Therefore the given signum function is primitive recursive.
Example 6.4.5: Provethat the function

f (% y) = max (x, y)

is primitive recursive.

226 Theory of Automata, Formal Languages and Computation

Eolution

Given

f(x) = Max (x,y)
= y+(x—y)
where — represents “Monus’ given by
pred (z(x)) = z(x)
pred ((x)) = x
Therefore the given function f (x, y) is primitive recursive.

Example 6.4.6: Prove that the function R(x, y) = Remainder (xly) is
primitive recursive.

Eolution

Wheny =0, R(X, ¥) = R(x, 0) = 0. When y isincreased in its value by 1, the
remainder R(X, y) also increases by 1.
Wheny = x, we have R(x, y) = 0.

Therefore we have
R(x, y+1) = S(R(x,) * sgn (x— s(R(x,))).

where sis the successor function,— represents the monus function (defined in
the usual way) and sgn (X) represents the signum function.
Therefore we have the remainder function defined by

R(x0)=0
R(x, y+1) = S(r(x ¥))* sgn (x—S(R(x, Y))).
Hence the function R (X, y) = Remainder (x / y) is primitive recursive, as it
obtai ned by applying composition and recursion to known primitive functions.
Example 6.4.7: Show that thecharacteristic functionx ¢, (x) defined by
_ 0, x#0
Xig (X) = E,L x=0

is primitive recursive.

Eolution

Given the characteristic function

Computability 227

[0, x#0

X{O}(X)=%L <=0

e Xig 0 =1
X¢g (X+1) = X g SIN(P (X))

where predecessor function pi (x) is given by

(X)_Eb(—l X#0
PR=Z 0 x=0

Since we are able to represent the function as a combination of the primitive
functions, it is proved to be primitive recursive.

Example 6.4.8: Show that the function p(X), the predecessor function
given by

(X-1 x#0
Pr (X) = % 0 x=0
is primitive recursive.
Eolution
Given the predecessor function
(X-1 x#O0
Pr (X) = % 0 x=0
We have
P (0)=0

Pr(Y+1) = pZ (Y, Pr(Y))

(Note: pg represents predecessor function and pf represents projector

function).
Thus the given predecessor function p (x) is defined by recursion using
an initial function (projector function).

Hence we have the function to be primitive recursive.
Example 6.4.9: Provethat the function
g(x, y) = x”

is primitive recursive.

228 Theory of Automata, Formal Languages and Computation

Eolution

Giveng(x, y) = x”.
We ha\/eg(x, y)ly:O = g(X,O) = XO =1

and

xG(X, y)
pe (X Y, 906 V) * 3 (% Y, 9(X, ¥))

g(x, y+1)

Thus we have been able to represent the given function as a combination of
initial function. Therefore the given function is primitive recursive.

Example 6.4.10: Show that the function given by

Ox, x=0
Abs(xX) =0
% x<O0
is primitive recursive.
Eolution
Given the absolute value function as
Ox, x=0
Abs(x) =[O
% x<O0

We are able to write

Abs(x - y) = (x— y) + (y—X)

Hencethe functionis primitive recursive as we have been able to represent the
Absolute function as a combination of initial function/or function (monus)
defined in terms of initial function.

Example 6.4.11: Provethat the characteristic function of afinite subset
of Nis primitive recursive.

Eolution

Let usinitially prove that the characteristic function

_ 0, x#0
Xo (X)_E}l x=0

is primitive recursive.

Computability 229

ie Xiq ©0)=1
Xig X+1) = Xq SIN(Pr (X))

where predecessor function pi (x) is given by

(X)_Eb(—], x#0
9750 x=0

Hence X ;q (X) is primitive recursive.
Now, we have
Xtopaz,an = Xiag *Xgag 00 * Xtan -

Sincewehave provedthat X, isprimitiverecursiveand also thefact that the
sum of primitive functions is also primitive recursive, it is proved that the
characteristic function of a finite subset of N is primitive recursive. Hence
proved.

6.5 ACKERMANN'’'S FUNCTION

Ackermann’ sfunction is an example of afunction that is mu-recursive but not
primitive recursive. Mu-recursive functions are said to have the power of a
Turing machine. It is defined as follows:

AQ y)=y+1

A(x,0)= A(x-1))

AKX y) = A(X=1 A(x, y-1))
It is otherwise defined as

AQy)=y+1
AX+10) = A(x]
A(X+1 y+1) = A(X, A(x +1,)

A(X, y) can be computed for every (X, y). Hence A (x,y) isatotal function. But
Ackermann’s function is not primitive recursive but recursive.

Example 6.5.1: Calculate A(1, 1) and A(1, 2) where A(X,) represents
Ackermann’s function.

Eolution

We have Ackermann’s function given by
AQ,y)= y+1 D
A(x+10) = A(x,D) 2
Ax+1 y+1) = A(x, A(x+1Y)) ©)

230 Theory of Automata, Formal Languages and Computation

Therefore, to caculate A(1, 1), we have

AL = AQO+10+1)
= A0, A(L0)) (using(3))
= A0, A(02)) (using(2)
= A(0,2) (using (1))
A(LD)=3 (using (1))

AR2) = AL+ 1+1)
=ALARY (usng(3))

A(2) = AQ+1 0+1)
\ = ALAR0) (using(3)
oW, = ALALD) (using(2)
= AL ALLY)

= A0 AL2) (using(3))
= A(0,4)
A(2,1) = 5.

Therefore, A22) = Al ARY)
= A(LY)

A(L5) = AQ+14+1)

= AQAL4) (Using (3))
Now, =1+A14) (Using (1))

=1+ A0+1,3+1
=1+ A0, A(3))
=1+1+A(L3)
=1+1+1+A(12)
=1+1+1+4

A@L5) = 7.

Therefore A(2,2) = 7.

GLOSSARY

Formal system: Should be complete and consistent.

Completeness. Should be possible either to prove or disprove any
proposition that can be expressed in the system.

Consistency: Should not be possibleto both prove and disprove aproposition
in the system.

Russdl’sParadox: Consider the set of all setsthat do not have themselves as
amember. Isthis set amember of itself?

Computability 231

Primitive Recursivefunction: Total functionisprimitiverecursiveif (a) itis
any one of threeinitial functions (zero function, successor function and
Projector function) or (b) it can be got by applying composition and
recursion finite number of timesto the set of initial functions.

Initial functions: Zero function, successor function and projector function.

Composition of functions: Allows us to use functions as arguments to
functions.

f (% y) =h(g, (X ¥),9,(% Y))
Ackermann’sfunction:
AQ y)=y+1
AX0) = A(x—-11
A% y) = AX-L A(x y-1))

REVIEW QUESTIONS

What are formal systems?

Define (a) Completeness (b) Consistency in Formal Systems.
State the Russel’ s Paradox.

What are recursive functions?

Give examples for recursive functions.

What is a primitive recursive function?

Give examples for primitive recursive function.

Explain composition of functions.

What do you mean by primitive recursion?

What is Ackermann’ s function?

©COoNOOA~MWDNPRE

H
©

EXERCISES

1. Obtain the values of
(@ Z(90)
(b) p;(23786)
(© pi(234567)
(d) S82).

2. Obtain the values of
(& nil (abababab)
(b) cons a(ababab)
(c) cons b(abababa)

232

Theory of Automata, Formal Languages and Computation

© O N

10.

11
12.

13.

Determine whether the following functions are total functions or not. If
afunction is not total, specify the arguments for which the function is
defined.

€) f(x):gover N

(b) f(x)=x*-250ver N

(© f(x)=3x*+2x+50ver N

(d) f(x)=x+8over N.

Given g,(x y)=x+2y, g,(x y)=2xy and g,(x y)=6x and
h(x, y, 2) =2x + y + zarefunctions over N. Obtain the composition of h
with g;, g, and gs.

Given f, =2x2x3, f, = A, f5 = 2xX, al defined over =. With the pair
(%1, 1) and g(x,,X,,X3) =15x,X; again defined over Z. Obtain the
composition of g with f;, f, and ;.

Show that the function f;; (X, ¥) = Xyis primitive recursive.

Show that the function f(x, y) = Min (x, y) is primitive recursive.

Show that the function Q(x, y) = Quotient (X/y) is primitive recursive.

: 2x-1 x#0 .
Show that the function p(x) = O 0 . « OIS primitive recursive.
o U =

Check whether the function g(x, y) = x¥ is primitive recursive or not.

Show that the function f (x) = x/2is partial recursive function over N.
Prove that the function
O 4x if xis perfect square
f(x) =0 pertect 54
Mx+1 otherwise
is primitive recursive.
Compute A(2, 4) and A(3, 3) when A(X, y) is Ackermann’s function.

SHORT QUESTIONS AND ANSWERS

What are the properties of aformal system?

(& Completeness

(b) Consistency
Define the term ‘ completeness’ of aformal system.

It could be either to prove or disprove any proposition that can be
expressed in the system.
Define the term ‘ consistency’ of aformal system.

It should not be possibleto both prove and disprove apropositionin
the system.

Computability 233

10.

11

12.

What is Russdl’ s Paradox?
“Consider the set of all sets that do not have themselves as a
member. Isthis set amember of itself?’

What is Godel’ s proof of numbers about.
“If it is possible to prove within aformal system that the system is
consistent, then the formal system is not, in fact consistent.”

What are the different primitive recursive functions?
(& Zerofunction

(b) Successor function
(c) Projector function
What is a zero function?

z(x) = z(y), for al x, yOlI
Thisis our “zero”, it is written as a function so we don't have to

introduce constants into the system.

What is a successor function?
Thisfunction informally meansx + 1. Formally, it does not return a
value.

What is a Projector function?

P (X) = X
P (% y) = X
(% Y) =Y

These functions are a way of extracting one of the parameters and
discarding the rest.

What is a primitive recursive function?

A Tota function f over Nisprimitiverecursiveif (a) it isany one of
the three initial functions [zero function, successor function and
projector function] or (b) it can be got by applying composition and
recursion finite number of times so the set of initial functions.

What do you mean by composition of functions?

Use of function as arguments to functions represent composition of

functions.

f (X y)=h(g; (X ¥),9,(x ¥))
What is primitive recursion?
Thisisastructured “recursive routing” with the form

f(x0) = g, (x)
f(x«y)) = h(92(x, y), 95 (f (x, ¥)))

A primitive recursive function is formed from the functions z, s, p,
and p, by using only composition and primitive recursion.

234 Theory of Automata, Formal Languages and Computation

13. Give examplesfor primitive recursive functions
@ fag (X Y)=Xx+Yy
(b) f(x)=x"
x=0
x>0
14. Arethefollowing functions primitive recursive?
(@ R(X, y) = Remainder (x/y).
(b) f(x y)=Max(xy)

(© san(x) = é’i’

(@ YES
(b) YES
15. Arethe following functions primitive recursive?
(Xx-1, x#0
a X) =
@ Pe=0 0" [g
0, x#0
(B) X ()= Eﬂ-’ x=0
(@ YES
(b) YES
16. Give an example of a function that is mu-recursive but not primitive
recursive.

Ackermann’s function.
17. Define the Ackermann’sfunction.
AQ y)=y+1
A(x +10) = A(x,D
AX+1, y+D) = A(x, A(X+1 y))

18. Is Ackermann’s function recursive/primitive recursive?

It isrecursive not primitive recursive.
19. What isaformal system?

A system which is complete and consistent isaformal system.
20. What aretheinitial functions?

(@ Zero function.

(b) Successor function.

(c) Projector function.

Chapter 7

Complexity Theory

7.1 INTRODUCTION

There are two kinds of measures with Complexity Theory: (@) time and
(b) space.

(i) Time Complexity: It is a measure of how long a computation takes to
execute. Asfar as Turing machineis concerned, this could be measured asthe
number of moveswhich are required to perform acomputation. Inthe case of a
digita computer, this could be measured as the number of machine cycles
which are required for the computation.

(i) Space Complexity: It is ameasure of how much storage is required for a
computation. In the case of a Turing machine, the obvious measure is the
number of tape squaresused, for adigital computer, the number of bytesused.

It is to be noted that both these measures functions of a single input
parameter, viz., “size of the input”, which is defined in terms of squares or
bytes. For any given input size, different inputs require different amounts of
spaceandtime. Thusit will be easier to discuss about the“ average case” or for
the “worst case”. It isusualy interesting to look at the worst-case complexity
because

(& It may bedifficult to define an “ average case’
(b) Usualy easier to compute worst-case complexity.

Order Statistic

In Complexity theory, equations are subjected to extreme simplifications.

If an algorithm takes exactly 50n® +5n? —5n +56 machine cycles, where
‘n’ isthesizeof theinput, then we shall simplify thisto O(n®). Thisiscalled the
“order statistic”.

It is customary to (a) drop all terms except the highest-ordered one
(b) drop the co-efficient of the highest-ordered term.

For very large values of n, the effect of the highest-order term completely
swamps the contribution of lower-ordered term. Tweaking the code can
improve the coefficients, but the order statisfic is a function of the agorithm
itself.

236 Theory of Automata, Formal Languages and Computation

Example 7.1.1: Given P(n)=a, +an+a,n”*+---+a,n". Show
that

P(n)=0(n™).
Eolution
Letby =|ag], b, =|a,], b, =la.l|.

Then for n>1,

where M :|ao|+|al|+ +|a

Therefore P(n)=0O(n™).

ml-

Example 7.1.2: Find the order of the following polynomials:
(@ f,(n)=5n°+3n+1
(b) f,(n)=n>-400n°

Eolution

@ (f(n)=0(n%).
(b) f,(n)=0(n).

7.2 POLYNOMIAL-TIME ALGORITHMS

A polynomial-time algorithm is an algorithm whose execution time is either
given by a polynomial on the size of the input, or can be bounded by such a
polynomial. Problems which can be solved by a polynomia-time algorithm
are called “tractable” problems. Asan example, most algorithmson arrayscan
usethearray size, n, astheinput size. In order to find thelargest element in any
array requires asingle passthrough the array, so the algorithm which doesthis
isof O(n), or itisa“linear time” agorithm.

Sorting algorithms take O(n log n) or O(n?) time. Bubble sort takes linear
timein the least case, but O(n®) timein the average and worst cases. Heapsort
takes O(n log n) timein all cases. Quicksort takes O(n log n) time on average,
but O(n?) time in the worst case.

As far as O(n log n) is concerned, it must be noted that the base of the
logarithmsisirrelevant, asthedifferenceisaconstant factor, whichisignored.

All programming tasks we know have polynomial solutions. It is not due
to the reason that all practical problems have polynomial-time solutions.

Complexity Theory 237

Rather, it is because the day-to-day problems are one for which there is no
known practical solution.

7.3 NON-DETERMINISTIC POLYNOMIAL TIME ALGORITHMS
A nondeterministic computation is viewed as:

(i) when a choice point is reached, an infalible oracle can be
consulted to determine the right option.

(i) When a choice point is reached, all choices are made and
computation can proceed simultaneously.

A Non-deterministic Polynomial Time Algorithm is one that can be
executed in polynomial time on a nondeterministic machine. The machine can
either consult an oracle in constant time, or it can spawn an arbitrarily large
number of parallel processes, which is obviously a nice machine to have.

Summary to common time complexities:

Complexity Verbal Description Feasilality
o(1) constant time feasible
O(log n) log time feasible
O(n) linear time feasible
O(nlogn) log linear time feasible
o(n?) quadratic time sometimes feasible
o(n®) cubic time less often feasible
oE@") exponential time rarely feasible

7.4 INTEGER BIN PACKING

Assume we are given a set of n integers. Our task isto arrange these integers
into two piles or bins, so that the sum of the integersin one pileisequal to the
sum of the integersin the other pile.

For example, given the integers

{19, 23, 32, 42, 50, 62, 77, 88, 89, 105, 114, 123, 176}

These numbers sum to 1000. Can they be divided into two bins, bin A and
bin B, such that the sum of the integersin each bin is 500?

Thereisan obvious nondeterministic algorithm: For each number, putitin
the correct bin. Thisrequires linear time.

Thereisalso afairly easy deterministic algorithm. There are 13 numbers
(n =13), so form the 13-hit binary number 0000000000000.

238 Theory of Automata, Formal Languages and Computation

For i ranging from 1to 13: if biti iszero, put integer i into bin A; if biti is
one, put integer i into bin B. Test the resultant arrangement.

If wedon’t have asolution yet, add 1 to the binary number and try again. If
wereach 1111111111111, wewill stop and concludethat thereisno solution.

Thisis fairly simply algorithm; the only problem is that it takes O(2")
time, that is, “ exponentia time”. In the above example, we may need to try as
many as 2" arrangements. Thisisfinefor all small valuesof n (such as 13), but
becomes unreasonable for large values of n.

We could find many shortcuts for problems such as this, but the best we
can do is improve the coefficients. The time complexity remains O(2").
Problems that require exponential time are referred to as “Intractable”
problems.

There are many variants to this problem.

» We can have multiple bins.

» Wecan haveasingle bin, and the object isto pack as much as possible
into it.

» Wecan pack objectswith multiple dimensions (volume and weight, for
example).

7.5 BOOLEAN SATISFIABILITY

Assumewe haven Boolean variables, viz., A, B, C, and anexpressionin the
propositional Calculusi.e., we can use and, or and not to form the expression.
Isthere an assignment of truth values to the variables, (for example, A =true,
B = true, C = false), that will make the expression true?

Here is a nondeterministic algorithm to solve the problem: For each
Boolean variable, assign if the proper truth value. Thisis alinear algorithm.
We can find adeterministic algorithm for this problem in much the same way
as we did for the integer bin problem. Effectively, the idea is to set up a
systematic procedure to try every possible assignment of truth values to
variables. The agorithm terminates when a satisfactory solution is found, or
when al 2" possible assignments have been tried. Again, the deterministic
solution requires exponential time.

Example 7.5.1: Check whether the boolean formula
O=(xx0y)0(x02)
is satisfiable or not.

Eolution

A Boolean formula is satisfiable if some assignment of Os and 1s to the
variables makes the formula evaluate to 1.
Whenx=0,y=1and z=0, we have

Complexity Theory 239

0= @101 0001

101
1

O

Therefore the Boolean formulais satisfiable.

Example 7.5.2: Check whether the formula
xOy)bxOy) OOy OxOy)
is satisfiable or not?

Eolution

(Hint: Proceed in the same way as the previous problem).

7.6 ADDITIONAL NP PROBLEMS

The following problems have a polynomial-time solution, but an
exponential-time solution on a deterministic machine. There are literally
hundreds of additional examples.

(& The Travelling Salesman Problem (TSP): A salesman starting in Texas,
wants to visit every capital city in the United States, returning to Texas as his
last stop. In what order should he visit the capital cities so asto minimize the
total distance travelled?

(b) The Hamiltonian Circuit Problem: Every capital city hasdirect air flights
to at least some capital cities. Our intrepid salesman wants to visit al the
capitals, and return to his starting point, taking only direct air flights. Can he
find a path that lets him do this?

(¢) Linear Programming: We have on hand X amount of butter, Y amount of
flour, Z eggs etc. We have cookie recipies that use varying amounts of these
ingredients. Different kinds of cookies bring different prices. What mix of
cookies should we make in order to maximize profits?

7.7 NP-COMPLETE PROBLEMS

All the known NP problems have a remarkable characteristic: They are all
reducible to one ancther. What this meansisthat, given any two NP problems
Xand,

(@ There exists a polynomial-time agorith to restate a problem of
type X as a problem of typeY, and

(b) Thereexistsapolynomial-time agorithmto trandate asolution to
atype Y problem back into a solution for the type X problem.

240 Theory of Automata, Formal Languages and Computation

This is what the “complete” refers to when we talk about NP-complete
problems. What thismeansisthat, if anyone ever discoversapolynomial-time
algorithm for any of these problems, then there is an easily-derived
polynomial-time algorithm for all of them. Thisleads to the question.

Does P=NP?

No one has ever found a deterministic polynomial-time algorithm for any
of these problems (or the hundreds of otherslike them). However, no one has
ever succeeded in proving that no deterministic polynomia time algorithm
exists, either. The status for some years now is this: most computer scientists
don'’t think apolynomial-time algorithm can exist, but no oneknowsfor sure.

GLOSSARY

M easur es of complexity: Time and space

Time complexity: Measure of how long a computation takes to execute.

Space complexity: Measure of how much storage is required for a
computation.

Kinds of complexity analysis. (a) average case (b) worst case (c) best case

Polynomial time algorithm: An algorithm whose execution time is either
given by a polynomial on the size of the input, or can be bounded by
such a polynomial.

Heapsort complexity: O(nlogn) at al times.

Quicksort complexity: O(nlog n) time an average, O(n?) time in the worst
case.

Nondeter ministic Polynomial time algorithm: Onethat can be executed in
polynomial time on a non-deterministic machine.

NP problem: How a polynomial-time solution, but an exponentia time
solution on a deterministic machine.

TSP: Travelling salesman problem.

REVIEW QUESTIONS

What is meant by complexity theory?

What do you mean by Time complexity?

What do you mean by space complexity?

Define order-statistic in complexity theory?

Define O-notation (Big O).

What do you mean by Polynomial Time algorithms?
What do you mean by non-polynomial time algorithms?

NGk~ wWDNRE

Complexity Theory 241

10.
11

12.
13.
14.
15.
16.

State some of the common time complexities.
Discuss the feasibility of the following complexicities

(&) O(1) (b) O(log n) (c) O(n) (d) O(nlogn)
(e) O(n) (f) o(n°) (9) O(2") (hoE")
What are heuristic algorithms?

Explain the following intractable problems

(&) Integer Bin packing

(b) TSP

What do you mean by Boolean satisfiablity?

What are P-class problems?

What are NP-class problems?

When are problems said to be NP-compl ete?

Give examplesfor

(@ classP

(b) class-NP Problems.

EXERCISES

Prove the following
(@ n?+100logn is O(n?)
(o) n!isO(n")
(c) 3" is O(n!)
Given f(n)=5n°+n and g(n)=0(n?). Is the statement
f (n) —g(n) = O(n) valid?
Determine the order of the following polynomials
(@ f,(n)=100n*+3n-1
(b) f,(n)=5n°-4n* -200n°.
Discuss the feasibility of algorithms with following time complexities.
(@ O(logn) (b)) O(nlogn) (c) O(n*)
Discuss the feasibility of algorithms with following time complexities.
(@ O(n’) (b)OR") (c)O(n!)
Explain Boolean satisfiability with an example.
Verify whether the following formula
(xOy)0Ox0Oy)

is Boolean satisfiable or not.

242

Theory of Automata, Formal Languages and Computation

10.

11

12.

SHORT QUESTIONS AND ANSWERS

What are the measures of Complexity Theory?

(& Time (b) Space
What is meant by time complexity?

It isameasure of how long a computation takes to execute.

What is meant by space complexity?

It isameasure of how much storage is required for a computation.
How do you measure space complexity in a Turing machine?

It is the number of tape squares used.

How do you measure space complexity in adigital computer?

It is the number of bytes used in a digital computer which is a
measure of space complexity.

What are the different cases of complexities?

(8) avergecase

(b) best case

(c) worst case.

What is order statistic?

In complexity theory, eguations are subjected to extreme
simplifications.

If an algorithm takes exactly 50n° +5n? - 5n + 56 machine cycles,
where ‘n’ isthe size of the input, then we shall simplify thisto O(n®).
Thisis called “order statistic”.

Determine the order of the polynomials
(@ f,(n)=10n° +6n+1
(b) f,(n)=n°-2n
(@ f,(n)=0(n%)
(b) f,(n)=0(n°)
What is a Polynomia time algorithm?

An agorithm whose execution time is either given by a polynomial
on the size of the input or can be by bounded by such polynomial is a
polynomial time algorithm.

What are tractable problems?

Problems which can be solved by a polynomial time algorithm are
called tractable problems.

What do you mean by saying that an algorithm is an O(n) algorithm?

It meansit is alinear time algorithm.

What are the time complexities of sorting algorithms?

O(nlogn) or O(n?).

Complexity Theory 243

13.

14.

15.

16.

17.

18.

19.

20.

21.

Mention the time complexities of a bubble sort in (a) best case
(b) average case and (c) worst case?

(8 Bestcase: O(n)

(b) Averagecase: O(n?)

() Worst case: O(n?).
Mention the time complexities of Quicksort algorithm in (a) best case
(b) average case and (c) worst case.

(8 Bestcase: O(nlogn)

(b) Average case: O(nlog n)

() Worst case: O(n?)
Discuss the feasibility of the following complexities:
@0R") (b)O(n®) (c)Oo(n®).

(@ O(2") - rarely feasible

(b) O(n®) - lessoften feasible

() O(n?) - sometimes feasible
Discuss the feasibility of the following complexities.
(@ O(nlogn) (b)O(n) (c)O@)

(& O(nlogn) - feasible

(b) O(n) - feasible

(c) O - feasible
What is a non-deterministic Polynomia Time algorithm?

It is the one that can be executed in polynomia time on a

non-deterministic machine.
What are the view points of a non-deterministic computation?
(& When a choice point is reached, an infalible oracle can be
consulted to determine the right option.
(b) When a choice point is reached, al choices are made and
computation can proceed simultaneously.
Name some of the intractable problems.
(8 Integer Bin packing
(b) Knapsack problem
(c) Travelling Salesman Problem
What is ‘integer bin packing’ problem?

Assume we are given aset of nintegers. Our task isto arrange these
integersinto two pilesor bins, so that the sum of the integersin one pile
isequa to the sum of the integersin the other pile.

What is Boolean satisfiability?

A Boolean formulais satisfiable if some assignment of Os and 1sto

the variables makes the formula evaluate to 1.

244

Theory of Automata, Formal Languages and Computation

22.

23.

24,

25.

Name some of the NP problems.
(@ Travelling salesman problem
(b) Hamiltonian Circuit problem.
What isthe TSP problem?

“A salesman starting in a certain city, wants the visit every capital
city in a country, returning to the city where he started. In what order
should be visit the capital cities so as to minimize the total distance
travelled?’ Thisisthe TSP.

Mention a remarkable characteristic of all NP Problems.

All NP problems are reducible to one another.
IsP=NP?

No one has proved or disproved that P = NP.

Chapter 8

Propositions and Predicates

8.1 PROPOSITIONS

Mathematics is the study of the properties of mathematical structures. A
mathematical structure is defined by a set of “axioms’. An “axiom” isatrue
statement about the properties of the structure.

“Logic” isthediscipline that deals with the methods of reasoning. It gives
aset of rules and techniquesto determine whether agiven argument isvalid or
not. True assertions which can be inferred from the truth of axioms are called
“theorems’. A “proof” of atheorem is an argument that establishes that the
theorem is true for a specified mathematical structure.

A “proposition” or “statement” is any declarative sentence which is true
(T) or false (F). We refer to T or F as the truth value of the statement.
Propositional calculusis the calculus of propositions.

Some illustrations below explain the concept well.

(@ Thesentence“3+ 3=6" isastatement, sinceit can be either true
or false. Sinceit happensto beatrue statement, itstruth valueisT.

(b) Thesentence“2=0" isaso astatement, but itstruth valueisF.

() “It will rain tomorrow” is a proposition. For its truth value, we
shall have wait for tomorrow.

(d) “Solve the following equation for y” is not a statement, since it
cannot be assigned any truth value whatsoever. It isanimperative,
or command, rather than a declarative statement.

(e) Theliar'sParadox: “Thisstatementisfalse” getsusinto abind:
If it weretrue, then sinceit isdeclaring itself to befalse, it must be
false. On the other hand, if it were false, then its declaring itself
faseisalie soitistrue! Inother words, if itistrue, thenitisfase,
andif itisfalse, thenitistrue, and we go around in circles. We get
out of this bind by refusing to accord it the privileges of
statementhood. In other wordsit is not a statement. An equivalent
pseudo statement is“| am lying”, so we call thisliar' s paradox.

Such sentences are called “ self-referential” sentences, since they refer to
themselves.

246 Theory of Automata, Formal Languages and Computation

Weusethelettersp, g, 1, S, for propositions. Thus for example, we
might decidethat P should stand for the proposition“The earthisround”. Then
we shall write

p: “the earth is round”
to expressthis. We read this

p isthe statement “the earth is round”.

8.1.1 Connectives

In order to make use of some keywords like and, ‘or’, ‘not’, etc. which are
called “sentential connectives’, it isrequired to have some ground rules before
making use of them. Let us now discuss about the different forms of
connectives.

(8 Negation (NOT): The negation of p is the statement ~p, which is read as
“not P’. Itstruth value is defined by the following truth table.

p ~p
T F
F T

where p isthe statement, T and F represent ‘ True' and ‘False’ respectively.

[llustration
(i) Given p="3+3=6",wehave
~ p="3+3%£6".
Note that ~p isfalsein this case, since pistrue.
(i) If p="2=0", thenwe have
~ p:"1£0".
~ pistrueinthiscase, sincepisfase.
(iii) 1If p="Iloved either Nirmalaor Padmagja’.
then we have
~ p: “I loved neither Nirmala nor Padmaja’.

Here pisahypothetical statement (but which wastrue!)
(iv) If p="All thedoctorsin thistown are crooks’, then we have

~ p="“Not all the doctors in this town are crooks’
or
~p ="“At least one of the doctorsin this town is not acrook”.

Propositions and Predicates 247

It is very important to be careful while negating a statement involving the
words “All” or “Some”. The use of these “quantifiers’ is the subject of
“Predicate calculus’. ~pisalso writtenas- p.

(b) Conjunction (AND): The conjunction of p and q is the statement pq,
whichisread as“p and g", whose truth value is defined by the following truth
table.

p q pOq
T T T
T F F
F T F
F F F

If p and q columns are listed, all four possibile combinations of truth
valuesfor p and g, and in the p 00 q column we find the associated truth value
for pOq.

lllustration

@i If p=*“lamclever”
and q="Youarestrong”.
Therefore we have

pdq="l am clever and you are strong”.

@iy If p="“Thegaaxy will a last wind up in ablack hole”’
andq="3+3=6", then we have

pdq: “Thisgaaxy will at last wind upin
ablack holeand 3+ 3=6".

and pO(~ q): “Thisgalaxy will at last windup in
ablack holeand 3+ 3#6."

(iii) If p="“Thischapterisboring”.
and g =“Logicisaboring subject”.

Let us see how the statement “ This chapter is definitely not boring even
though logic is a boring subject” is expressed in logical form.

Thefirst clause is the negation of p, so is~p. The second clauseissimply
stating the (false) claim that logic is a boring subject, and thus amounts to g.

The phrase “even though” is a colourful way of saying that both clauses
areture, and so the whole statement isjust (~ p) Oq.

248 Theory of Automata, Formal Languages and Computation

(c) Digiunction (OR): Thedisunction of p and qisthe statement p g, which
isread as“p or q°, whose truth value is defined by the following truth table.

p g pOq
T T T
T F T
F T T
F F F

Notethat the only way for the whole statement to befalseisfor both p and
g to be false. Hence we say that p0q means“p and g are not both false”.

Illustration

(i) If p:lamclever
and q: You are strong

then pOq =1 am clever or you are strong.

Mathematicians have settled on “Inclusive or”: pdgmeansp is
true or qistrue or both are ture.
@iy If p:Thebutler didit.
and q : The cook did it.
then we have

pOq: either the butler or the cook did it.

(iii) If p: Thebutler did it
g: Thecook did it
r : Thelawyer did it, then we have

(pdq) O(~ r): Either the butler or the cook did it,
but not the lawyer.

(d) Implication (Conditional/ if then): Theconditional pd q,readas"if
p, theng” or “pimpliesq”, is defined by the following truth table.

m T 4 4 |©
m 4 71 4 |
— 4 m 4 | O

Propositions and Predicates 249

Thearrow [0 isthe“ conditional” operator,andin p 0 qthestatementpis
called the “antecedent” or “hypothesis’, and q is called the “consequent”, or
“conclusion”.

lllustration

() If pand g are both true, then p O qgistrue. For example, “if 2+2 =4, then
the sun rises in the East”

Here p:“2+2=4"and ¢:"“thesunrisesintheeast’.
(ii) If pistrueand qisfalse, then p O gisfase. For example:

“Whenitrains, | carry anumbrella’. Herep: Itisraining; q: | carry an
umbrella.

If itisraining then | carry an umbrella. Now there are lot of days when it
rains (p istrue) and | forget to bring my umbrella(q isfalse). On any of those
daysthe statement p 0 qisclearly false.

(e) Biconditional (If and only if........): The Biconditiona p = g, which is
reed as“pif andonly if p” or “pisequivaent toq” isdefined by the following
truth table.

p q p=q
T T T
T F F
F T F
F F T

From the truth table, we see that for p = g to be true, both p and g must
have the same truth values; otherwise it isfalse.
The statement p = qis defined to be the statement (pO q)d(q O p).
For this reason, the double headed arrow < iscalled the “biconditional”.
Each of the following is equivalent to the biconditional p = q
(i) pifandonlyifq
(ii) pisnecessary and sufficient for .
(iii) pisequivalenttoq.

lllustration

(i) The statement “2 + 2 =6 if and only if Gregory is Alexander the Great”, is
true since the given statement hasthe form p = g, where

p:"2+2=6" and

g: "Gregory is Alexander the Great"

250 Theory of Automata, Formal Languages and Computation

Since both statements are fal se, the biconditional p = qistrue.
(ii) Consider the statement:

“l teach mathematics if and only if | am paid a large amount of
money”.

Some of the equivalent ways of phrasing this sentence are:

“My teaching Mathematics is necessary and sufficient for me to be
paid alarge amount of money”.

“For me to teach Mathematics it is necessary and sufficient that | be
paid alarge sum of money”.

Example 8.1.1: Express the following statements in symbolic form,
with

p : Jalaney is good.
g : Padmagjais good.

(& Jalaney isgood and Padmajais not good.

(b) Jalaney and Padmaja are both good.

(c) Neither Jalaney nor Padmaja are good.

(d) Itisnot truethat Jalaney and Padmaja are both good.

Eolution

@ pO-q
(b) pOq
(© - pO-q
(d -(pO0q)

Example 8.1.2: Expressthe following statementsin symbolic form.

(& Jack and Jill went behind the hill

(b) If either NaveenatakesMaths or Nirmalatakes Physics, then Anju
will take English.

(c) If thereisaticket available, | will travel by thistrain

(d) Thereiseither afault with Rgju or Mohan.

Eolution

(@ p: Jack went behind the hill
g : Jill went behind the hill.
Then we have the given statement in symbolic form as

pUq

Propositions and Predicates 251

(b) p: Naveenatakes Maths
g: Nirmalatakes physics
r : Anju takes English
Then the given statement is written as

(pOg)Or

(c) p:Ticketisavalable
g: | will travel by thistrain.

ptq

isthe given statement in symbolic form.
(d) p: Thereisafault with Rgju.
g: Thereisafault with Mohan.

pUq

isthe given statement is symbolic form.

Example 8.1.3: Given
p: Triangle PQR isisosceles
g: Triangle PQR is equilateral
r: Triangle PQR is equiangular.

Tranglate each of the following into a statement in English.

@ gqg-p
b) ~p=-qg
© gqer
(d) pO7q
(e rd p

Eolution

@ g-p
Triangle PQRis equilateral if and only if it isisoscles
(b) ~p=-q
Triangle PQRis not isoscilesif and only if it isnot equilateral.
© g=r
Triangle PQRis equilateral if and only if it is equiangular
(d) pO-gq
Triangle PQRisisosceles and it is not equilateral.
(¢ rip
If Triangle PQR is equiangular then it isisosceles.

252 Theory of Automata, Formal Languages and Computation

Example 8.1.4: Given

p:ltiscold;
g:12+5=200
and r:ltrains.

Express the following in symbolic form.

(@ Itiscoldonlyif 12 +5=200.

(b) A necessary condition for it to be cold isthat 12 + 5 = 200.
(c) A sufficient condition for it to be cold isthat 12 + 5 = 200.
(d) Itrainsand 12 + 5isnot 200.

(e) It never rainswhen 12 + 5 = 200.

Eolution

@ p=q
(b) p=q
(© g=p
(d) rO-p
(e qO -

Example 8.1.5: Let

p : pricesare high,
g : wages are increasing.

Express the following in verbal form.
@ pUq ()~ pO-q (© - (pUa)
(d) p-q (¢~ (= pO-Qq).

Eolution

(@ pOq: Pricesare high and wages are increasing

(b) - pO- q: Pricesarenot high and wages are not increasing

(¢) = (plq): Itisnotthat prices are high and wages are increasing

(d) pO- qg: Pricesare high or the wages are not increasing

(e = (= pO-q): Itisnot that prices are not high or wages are not
increasing.

Example 8.1.6: Determine the truth of the following:

(& 5<6and6isapositiveinteger.

(b) 5>6or6isapositive integer

(c) If 5> 6, then 100 isaprime number
(d) If 10> 6, then 100 is a prime number.

Propositions and Predicates 253

Eolution

@T; T, ©T. @F
Example 8.1.7: If p,q, r arethree statements, with truth values‘ True’,

‘True', ‘False’ respectively, find the truth values of the following:

@ pOq (b) pOr (© (pOag)Or (d) pO(=r1)
© (pO-q)O0CE=nr @ pOr (9 pO (= (rO9).

Eolution

Given p:T;, q:T;, r:F

(@ pUdq

p q plq

True

T T T
(b) pOr

p r pOr

False

T T T
(©) (pUaq)Ur

p q r plq | (pOaq)Or

False

T T F T F
(d) pO(=r1)

P r -r | pO(=r)

True

T F T T
(€ (pO-a)0(=1)

p | =g | pU-q| =r | (pU=-q)O(=T)

False

T F F T F
f pOr

p r pdr

False
T F F

254

Theory of Automata, Formal Languages and Computation

(@ pO (@<= (r0y9)

p

q

r

S

ris qe (r(=)y

pO (O (rd9)

T

T

F

F

T T

True

T

Example 8.1.8: Construct the truth table for
(= pUag)O(-qUp).

Eolution

P g |-p ~qd -~pdg| -q0p [(-p0qgO(-q0p)
T| T F F T T T
T|F | F| T F T F
F T | T F T F F
F F| T T T T T

Example 8.1.9: Determinethe Truth Tablefor - (= pO- q).

mTmH4d|o

mH4mH|e

-1 4 m T

P ~-dq [~p0-q -(-pO-q
F F T
T F T
F F T
T T F

B Example 8.1.9: Using truth tables, show that if P = Q is true, then
PO Qand QO P are both true. Conversely, show that if P 0 Q and
Q O P arehothtrue then P = Qistrue.

Eolution

P Q P-Q|POQ| QOP

T T T T | —o
T F F F T

F T F T F

F F T T | —

Propositions and Predicates 255

From® and @, itisobviousthatif P = Qistrue, thenP 0 QandQ O P
istrue.

From the above truth table, from ©® & @, it is seen that if P 0 Q and
QO Paretrueaso P = Qistrue.
8.1.2 Tautology, Contradiction and Contingency

(a) Tautology: A Tautology isapropositiona form whose truth valueis true
for al possible values of its propositional variables.

Example: p0- p.

(b) Contradiction: A contradiction or absurdity isapropositional form which
isawaysfase.

Example: pO- p.

(c) Contingency: A propositional form which is neither a tautology nor a
contradiction is called a contingency.

Example 8.1.10: Showthat P O Q hasthesametruthvalueas— P 0Q
for al truthvaluesof Pand Q, i.e, showthat (P O Q) = (- POQ) isa
tautology.

Eolution

P Q -P |POQ -POQ| (POQ) - (~POQ)
T T F F T T
T F F F F T
F T T T T T
F F T T T T

Fromthetruthtableitisclearthat P 0 Qhasthesametruthvalueas- P 0Q.
Also it isseen that (PO Q) = (- POQ) has al truth values to be
“True”. Thereforeit isa“Tautology”.

Example 8.1.11: Establish whether the following propositions are
tautologies, contingencies or contradictions.

(@ PO-P

(b) PO-P

(9 PO=(=P)

d -(POQ) = (-POU=-Q)

256 Theory of Automata, Formal Languages and Computation

Eolution

(a) PO~ P.
P -P | PO-P
T F T
F T T

All truth values are True.
Therefore, it isa“Tautology”.

(b) PO-P
P ~P | PO-P
T F F
F T F

All truth values are False.
Therefore, it isa“contradiction”.

(© PO-(=P)

P =P | ~(=P)| PO-(=P)
T F T T
F T F T

All truth values are “ True”.
Therefore, it isa“Tautology”.

(d) - (POQ) - (-PU=-Q)

P Q POQ -(POQ) ~P-Q-P0-Q -(POQ) =
(-PO-Q)

TIT| T F F F F T

TIF| F T F T T T

F T F T T F T T

F Fl F T T T T T

All truth values are “ True”.
Therefore, it isa“Tautology”.

Example 8.1.12: Establish whether the following propositions are
tautologies, contingencies or contradictions.

Propositions and Predicates 257

(a.) —l(PDQ)w (—l PD_lQ)
(b) (POQ) < (-QO =P)
(0 (POQ) = (-QO -P)
(d [POQOR)O[(POQ)DL(PUR)L

Eolution

(a.) - (PDQ) = (—l PO~ Q)
Tautology

(b) (POQ) = (-QO=P)
Tautology

(© (POQOEQOP)

P

QQOP| (POIQDOQOP)

T

m T H+|T
m-4dm 4|0
- 4 n 4 O
e e R

F
F
T

Some values are True, some are False.
Therefore, it isa“Contingency”.

(d [POQER)ID [(POQ)I(PIOR)
It can be shown to be a“tautology”.

Example 8.1.13: Let P bethe proposition “It is snowing”.
Let Q be the proposition “I will go to town”.
Let R be the proposition “I have time”.

(@ Usinglogical connectives, write a proposition which symbolizes
each of the following:

(i) If itisnot snowing and | have time, then | will go to town.
(ii) 1 will gototown only if | have time.
(iii) Itisn’'t snowing.
(iv) Itissnowing, and | will not go to town.

(b) Write a sentence in English corresponding to each of the
following propositions:

() Q = (RO~ P)

(i) ROQ

(i) QO R)T(ROT Q)
(iv) = (ROQ).

258 Theory of Automata, Formal Languages and Computation

Eolution

@ () -POR)IQ
(i) ROQ
(i) = P
(iv) PO-Q
(b) () Q<= (RO-P).
| will go to town, if and only if | have time and it is not
snowing.
(i) ROQ.
| havetime and | will go to town.
(i) QU R)O(RDO Q).
I will gototownif | havetimeandif | havetime, | will goto
town.
(iv) = (ROQ).

Itisnot that | havetime or | will go to town.

Example 8.1.14: How many rows are needed for the truth table of the
formula(pd-q) = ((-rQO9 O t)?

Eolution

Givenp, g, r, s, t aspropositions.
0 Number of rows needed in Truth Table= 2° = 32.

Example 8.1.15: If p;, p,,...... p, are primitive propositions and
O(p, Poyeeeees p,) isaformulawhich contains at least one occurrence of
each p, (1< i< n), how many rows are needed to construct the truth table
ford?

Eolution

Given p;, Py, P, as propositions. Therefore number of rows needed in
Truth Table = 2" (for n elements).

8.1.3 Logical Identities

If two propositional forms are logically equivalent one can be substituted for
the other in any proposition in which they occur. Table below shows alist of
important equivalences, which are called “identities.” The symbolsP, Q, and
R represent arbitrary propositional forms. The symbol “1” isused to represent
either a “tautology” or a true proposition. Similarly, “0”" represents a false
proposition or a contradiction.

Propositions and Predicates 259

Table. Logical Identities

1. P (POP) |dempotence of O
2. P = (POP) |dempotence of O
3. (POQ) = (QOP) Commuitativity of O
4. (POQ) = (QOP) Commutativity of O
5. [(POQ)OR] = [POQOR)] Associativity of O
6. [(POQ)OR] = [POQOR)] Associativity of O
7. —-(POQ) = (-PO-Q) E DeMorgan's Laws
8 -(POQ) = (-P0-Q [

9. [POQQUR)] = [(POQ)O(POR)] Distributivity of Oover O
10. [POQOR)] = [(POQ)O(POR)] Distributivity of Oover O
11. (PO =1
12 (PO =P
13. (POO) - P
4. (PO0O) =0
15. (PO-P)=1
6. (PO-P)=0
17 P==(=P) Double Negation
18 (POQ) - (-POQ) Implication
199 P=Q =[(POQOWRDO P)] Equivalence
20. [(POQ)OR]=[PO (QU R)] Exportation
2. [(POQOMPO-Q)=-P Absurdity
2. (POQ<=(-Q0O-P) Contrapositive

All the above identities can be proved by constructing truth tables.
The following table gives alist of tautologies which areimplications.

Table. Logical Implications

PO (POQ) Addition
(POQO P Simplification
(POMPOQIOQ Modus Ponens

Modus Tollens
Digjunctive Syllogism
Hypothetical Syllogism

[(POQO-QIO~P
[-POMPOQILQ
[(POQUEQDRIO (PO R)
(POQUIIQRORT (PO R)]
[(POQOROS)ONPOR)O (QOS)]
[(P-QOR<-RIO (P ~R)

© N wDdNE

260 Theory of Automata, Formal Languages and Computation

Example 8.1.15: Statethe converse and contrapositive of thefollowing
Sstatements:

(@ If itrains, | am not going.

(b) I'will stay only if you go.

(c) If you get 8 pounds, you can bake the cake.

(d) 1 can't completethetask if | don't get more help.

Eolution

(& Converse If | don't go, then it rains.
Contrapositive: If | go, then it does not rain.

(b) Converse: If you go then | will stay
Contrapositive: If you go | will not stay

(c) Converse: If you can bake the cake you get 8 pounds.
Contrapositive: If you cannot bake the cake you don’t get 8
pounds.

(d) Converse: | don't get more help if | can’t complete the task.
Contrapositive: | can complete thethetask if | get more help.

Example 8.1.16: For each of the following expressions, use identities
tofind equivalent expressionswhich useonly Oand - and areassimpleas
possible.

(@ POQO-R
() PO[(-QOR)O P]
(9 PO QO P)

Eolution

@ POQOU-Re - (-PO-Q)O-R
< 2 (-PO-Q)OR)
= = (-PO-QOR)
() PO[(-QOR)O] = =~ (=PO-[(-QOR)DO P])
e 2 (PO~ (=(=-QOUR)IP)]
= = (=PO(-QOR)O- P)]
(o POQQOP)- PO ((=QOP)
= - PO(-QOP)
= (-POP)O-Q
= 10-Q
=1

Example 8.1.17: For each of the following expressions, use identities
to find equivalent expressions which use only Oand - and areassimpleas
possible.

Propositions and Predicates 261

@ (POQO-P
(b) [PO QU-R)]O-POQ.

Eolution

@ (POQU-P = =[-(PUQ)UIP]
~ =[~PO-QOP]

(b) [PO QOU-R)JU-POQ
= [-POQO-R)]O(- POQ)
- -POQO-R)O-POQ
o (+PO0-POQ)IQO(~POQ) (-~ RO(~ PIQ))
-~ (~POQ)OQ0O-P)I(-POQO~R)O
[(QO- P)AO- R)]
- - (PO-Q).

Example 8.1.18: Establishthefollowing tautologiesby simplifying the
left side to the form of theright side:

@ [(POQUP) <1
(o) - (- (POQT-~P)<0
© [(PO-P)O=POP)] <0

Eolution

(@ [(POQD P]= - (POQ)OP
-~ =PO0-QOP
- (PO-~P)0-Q
~10-0Q
-1

(b) ~(=(POQUO =P
- = [(POQ)0- P]
= = [PO=-P)0Q]
- =[10Q]
=[]
=0
© [(PO-P)O-PO P)
- [(-PO-P)O(POP)]
- 2 POP
-0

Example 8.1.19: Using the truth table of O, relate the following
assertion to the logical operator [: “If you start with a false assumption,
you can prove anything you like".

262 Theory of Automata, Formal Languages and Computation

Eolution

m T 4 4| 0T
mTH4m 40
4 4 m 4 0O

Suppose P isfase.

ThenP O Qistruefor any proposition Q. If weknow P O Q astrue, and
accept P astrue, then we can infer the truth of Q.

Q may or may not be true (as seen in truth table).

Example 8.1.20: The Sheffer stroke, or nand operator, isdefined by the
following truth table;

P Q PIQ
0 0 1
0 1 1
1 0 1
1 1 0

Nand isan acronym for not and, P|Q islogicaly equivalentto - (P OQ).

Show that @PIP==P
(b) (PIP)|QIQ) = PLQ
© (PIQI(PIQ) = PLQ.

Eolution

P Q POQ | -(PUQ)
T T T F
T F F T
F T F T
F F F T

PIQ -« - (POQ). (NAND).

Propositions and Predicates

263

@ P|P < - P (Toprove)
Weknow P|Q - - (POQ)
P|P = = (POP)
= = P.
Hence proved.

(b) (PIP)IQIQ) = PLQ (To prove)
We have from (a), P[P <« = P
QQ = -Q
(PIP)| QIQ)
- aP|-Q
< (=PO-Q)
= POQ.
Hence proved.

© (PIQI(PIQ) - POQ (Toprove)
PlQ=-(PLQ)

(PIQ)I(PIQ)
= [~ (POQ)I[-~ (POQ)

- [(POQ)T(POQ)
- (POQ)
P OQ.

LA A

Hence proved.

Example 8.1.21: Establish the following implications:

@ -POMPLDQ
() -(POQOP
(o -QUMPIOQUO-P

Eolution

@-PO(POQ)

- [~ (POQ)O[~ (POQ))]

P Q -p |POQ -PO(POQ)
T T F T T
T F F F T
F T T T T
F F T T T

O ItisaTautology.
Hence proved.

264 Theory of Automata, Formal Languages and Computation

(b)-(POQUOP

P Q POQ -(PIQ) | -~(POQOP
T T T F T
T F F T T
F T T F T
F F T F T

O It isatautology.
Hence proved.

P Q -QPOIQ =P =-QOIFPOQ -QOMPOQO-P
TIT|F | T F F T
TIF| T F F F T
FIT F T T F T
FIF T T T T T

O It isatautology.
Hence proved.

Example 8.1.22: Show that
(POQ)O- (-PO(=QO-R)O(-PO-Q)O(=PO-R)

is atautology.

Eolution

(POQO-(POEQO-R)O(=PO-QU(-PI=R)
= (POQ)I- (-PU=-(QUR) U~ (POQ)O(=~ (POR))
= (POQO(POQOR) O~ (PUQ) U~ (POR)
= [(POQ)O((POQ)U-[(PUQ) (PR
= [(POQ)U(PUR) U= (PO(QURY))
= [POQOR)]O-[POQUR)]
=T

Hence the given formulais a tautology.

Example 8.1.23: Showthat (P - Q)O(R - Q)and (POR) - Qare
equivalent formulae.

Propositions and Predicates 265

Eolution

(P-QU(R-Q) = (-PIQ)DI(-RIQ)
-~ (-PO-R)OQ
- - (POR)OQ
-~ (POR) - Q

Hence proved.

Example 8.1.24: Provethat
- (POQ)- (- PO(-POQ)DO (- POQ).

- (POQ) - (-PO(-POQ))
(POQ)O[- PO(~ POQ)]
(POQ)O(- POQ)
(POQ)O-POQ
(POQ)O-P)OQ
(PO-P)O(QO-P)OQ
(TOQD- P)OQ
(QO-P)0Q

QO-P

~POQ

Oooooogoood

Hence proved.

Example 8.1.25: Show that SOR is tautologicaly implied by
(POQOMP - RO - 9S).

Eolution

Assumethat (P OQ)O(P - R)O(Q - S) hasthetruth value T.

(POQ), (P - R)and(Q - S)all havetruthvalueT. Asthetruth vaue of
P OQisT, either P has Truth value T or Q have truth value T.

Suppose P has the value T. As P - R has truth value T, R should have
truth value T. On the other hand suppose Q hasthetruthvalueT. AsQ — Shas
truth value T, Sshould have truth value T. Thus either R hastruth value T or S
hastruth value T, i.e.,, ROShastruth value T.

Therefore (POQ)O(P - R)O(Q - S) is tautologically implied by
SOR.

8.2 LOGICAL INFERENCE

RuleP : A premise may beintroduced at any point in the derivation.

RuleT : AformulaSmay beintroducedinaderivationif Sistautologically
implied by any one or more of the preceding formula in the
derivation.

266 Theory of Automata, Formal Languages and Computation

RuleCP : If wecan derive Sfrom Rand a set of premises, then we an derive
R - Sfrom the set of premises aone. (Deduction Theorem).

Rules of Inference

Implications:

I POQO PO e
Simplification

, PoQoqg O™)

I, POPOQQ -
addition

, QOpog g adion

5 -POP-Q

6 QI P-Q

- -(P-QUOP

g ~(P-Q)=-0Q

9 P,QO POQ

10~ P,POQO Q (disunctive syllogism)

P,P - Q0O Q (ModusPonens)

- QP -Q0O -P (ModusTollens)

1 P-QQ-ROP- R (Hypothetica Syllogism)
u POQP-RQ-ROR (dilemma)

1

|

1

N

w

Equivalences

m

, -~ P« P (doubleNegation)

E, POQ<QOP(.
0 (Commutative laws
E, POQ - QUOP ()
E, (POQ)OR « POQOR) O o
0 (Associative laws)
Es (POQ)OR « POOR) O ()
Ee POUOR) - (POQ)O(POR) O L
O (Distributive law
E, POQUOR) = (POQ)O(POR) ()
E, -~(POQ ~-PO-Q[
O (DeMorgan'slaws)
E, ~(POQ --PO-QQ
E, POP<P
E, POP<P
E, ROMPO-P)-R
E, ROPO-P)<R
E, ROMPO-P)-T

Propositions and Predicates 267

ROMPO-P) = F
P.Q<-POQ
~(P-Q)=PO-Q
P.Q<=-Q--P
P-Q-R) <= (POQ-R
~(P=Q«P<=-Q
P-Q=(P-QUQ-P)
(P=Q) < (POQU(-PLI-Q)

=
[$2]

=
(2]

m m m m m m
6 & N

-
R

BI'I'I

Example 8.2.1: Show that R O Sfollows logically from the premises
COD,(COD) - =H,~H - (A0~ B)and (AO= B) » (ROS).

Eolution

1 COD - =-H P

2. -H- (AO-B) P

3. CcaOD - (AO-B) Using Hyp. Syll in (1), (2)
4, (AO-B) - (ROS) P

5. (COD) - (ROS) Using Hyp. Syll. in (3), (4)
6. cab P

7. ROS Modus Ponens

Example 8.2.2: Show that SR istautologically implied by

(POQO(P - RIQ- S).
Eolution

1. POQ =

2. -P-Q (- P- P« (-POQ))

3. Q- S P

4, -P-S (2), (3), Hyp. Syll.

5. -SSP (From(4),using(P - Q = = Q - = P))
6. P-R P

7. -S-R (5), (6) & Hyp. Syll.

8. SOR

Example 8.2.3: Show that RO (P 0Q) is avalid conclusion from the
premisesP 0Q,Q - R, P - Mand- M.

268 Theory of Automata, Formal Languages and Computation

Eolution

1 P- M P

2. - M P

3. - P (1), (2), Modus Tollens
4. POQ P

5. Q Simplification of (4)

6. Q-R =)

7. R Modus Ponens

8. RO(POQ) (-P,Q0O POQ)
Hence proved.

Example 8.2.4: Demongtrate that S is a valid inference from the
premisesP - - Q,QU0R,~ S - Pand- R.

Eolution:

1 QUOR P

2. - R P

3. Q (1), (2), Dig. Syll.

4, P--Q P

5. - P (3), (4), Contrapositive, Modus Tollens
6. -S> P P

7. S (5), (6), Modus Tollens

Example 8.2.5: Showthat-Q,P - QO - P.

Eolution

1. P-Q P
2. -~Q-=-P T, (1) and contrapositive[P -~ Q = = Q — - P]
3 ~Q P

4. - P T, (2), (3) and Modus Ponens. [P - Q,P O Q]

Example 8.2.5: Showthat R 0 Sisavaid conclusionfromthe premises
cob,cOD - =-H,-H - (AO-B)and (AO-B) - (ROS).

Propositions and Predicates 269

Eolution

1 cob P
2. COD- -H P
3. - H (2), (2), Modus Ponens
4, -H - (AO-B) P
5. AO-B (3), (4), Modus Ponens
6. (AO-B) - (ROS) P
7. ROS (5), (6), Modus Ponens

Example 8.2.6: State whether thefollowing argument isvalid or not. If
valid, give proof. If not valid, give counter example.

If ababy is hungry the baby cries.

If the baby is not mad, then he does not cry.

If ababy is mad, then he has ared face.

Therefore, if ababy ishungry, then he has ared face.

Eolution

H : Baby ishungry

C : Baby cries
M : Baby is mad
R: Baby hasared face.
Given: H-C
-M-=C
M- R
OH-R
Verification:
1 H-C Premise
2. -M-=C Premise
3. C-M (2), Contrapositive
4, H- M 1), (3), Hyp. Syll.
5. M- R Premise
6. H-R (4), (5), Hyp. Syll.

Example 8.2.7: State whether the following argument is valied or not.

“If Nixonisnot re-elected, then Tulsawill loseitsair base. Nixon will
bere-elected if and only if Tulsavotesfor him. If Tulsakeepsitsair base,
Nixon will be re-elected. Therefore, Nixon will be re-elected”.

270 Theory of Automata, Formal Languages and Computation

Eolution

R: Nixon isre-elected
L : Tulsawill lostitsair base
V : Tulsavotes for Nixon

Given:
@ -R-L O
2 RoV EPremises
® -L-R {
OR

(1) and (3) are equivalent.
(-L-ROR-V)OR

l_
Py
<

(-L-R)| RoV) (-L- RO (-L-R)O
(RoV) | (RoV)OR

T T

T T M A A A A
T A AT T A A
M 474747 -A
A~ A4 4 477 H -
i e e e M o A e |
A T T 4 M T 7
— =4 4 4 4 4

Therefore the given implication is“not a Tautology.” Therefore the argument
isnot valid.

Example 8.2.8: For each of the following sets of premises, list the
relevant conclusionswhich can bedrawn and therules of inferenceused in
each case.

(@) | am either fat or thin, I’'m certanly not thin.

(b) If I runl got out of breath. I'm not out of breath.

(c) If thebutler did it, then hishands are dirty. The butler’ shands are
dirty.

(d) Blueskiesmakemehappy and gray skiesmake mesad. Theskyis
either blue or gray.

Propositions and Predicates 271

Eolution

(@ F:lanfat
T:1 amthin @ FOT| P
FOT @ -7 P
-T 3 F @, (2), Dis. syll.
OF (7Q,PUQDO P)
Conclusion: | am Fat
() R:lrun
B :1 get out of breath @ R-B| P
R- B @ -8B P
- B 3 -R @, (@), Mal - Tolens
0-R -QP-Q0-P)

Conclusion: | didn’t run
(c) B:Butlerdidit
H: Hands are dirty.

B-H
H

Conclusion: Hypothesis

(d) B:Blueskies
H : Make me happy

G : Gray skies
S: Makes me sad
1 B-H P
2. BOG P
3. B (2), Smplification
4, H (1), (3), Modus Ponens
5. G- S P
6. BOG P
7. G (6), Simplification

Conclusion: | am either happy or sad.

Example 8.2.9: For each of the following set of premises, list the
rel evant conclusionswhich can bedrawn and therules of inferenceusedin
each case.

272 Theory of Automata, Formal Languages and Computation

(& If my program runs, then | am happy. If | am happy, the sun
shines. It's 11.00 p.m. and very dark.

(b) All trignometric functions are periodic functions and al periodic
functions are continuous functions.

Eolution

P: My program runs

| am happy
. Sun shines

It's 11 pm.
Itisvery dark

i
wamnt

P-H
H-S
P-S
TU=S
- sOC
- S

- P

- H
-PO-H

© © N U M wDNE

P_H
H - SO Hypotheses
CO- SH

P
P

D). ()
P

Simplification

(3), (6), Modus Tollens
(2), (7), Modus Tollens
Conjunction

Conclusion: | am not happy and my program does not run.

(b) T: Trignometric functions
P : Periodic functions
C : Continuous functions

T-P
P.C

0T - C

Conclusion: All Trignometric functionsare continuousfunctions.

Example 8.2.10: Construct a proof for each of the following
arguments, giving all necessary additional assertions. Specify the rules of
inference used at each step. (Theword “or” denotesthe“logical or” rather

than the “exclusive or”.

(@) It is not the case that IBM or Xerox will take over the copier
market. If RCA returns to the computer market, then IBM will
take over the copier market. Hence, RCA will not return to the

computer market.

Propositions and Predicates

273

(b) (My program runs successfully) or (the system bombsand | blow
my stack). Furthermore, (the system does not bomb) or (I don’t
blow my stack and my program runs successfully). Therefore, my

program runs successfully.

Eolution

(& IBM: IBM will take over the copier market
Xerox: Xerox will take over the copier market
RCA: RCA returnsto the computer market

» - (IBM OXerox)
(@ RCA - IBM

0 - RCA
Proof:
1. - (IBMO xerox)
2. RCA - IBM
3. - |BM O= xerox
4, - 1BM
5. = RCA

P

P

(1), DeMorgan’'s Law
(3), Simplification

(2), (4), Modus Tollens

(b) S My program runs successfully

B: System bombs
BS | blow my stack

~BO(~BSOS)
SO(BOBS)

os

e,
X
Q
S

SO(B OBS)

~ BO(~ BSOS)
(SOB)O(SOBS)
(-BO-BS)0(~-BOS)
SOB

-~ BOS

SO-B
(SOB)O(SO- B)
SO(BO- B)

10. SO0

11. S

© O N OWDNRE

Hence proved.

(To prove)

P

P

Distributivity of (1)
Distributivity of (2)
(3), Simplification
(4), Smplification
(6)

(5), (7), Con;.

274 Theory of Automata, Formal Languages and Computation

Example 8.2.11: Determine which of the following arguments are
valid-contruct proofs for the valid arguments.

(& AOB (b) ACB

AOC AOC
gcoB gcoB
(dyADO (BOC)
© AOB gg “A:
ADC o
acioB D
OBO-B
Eolution
(a) Given
AOB
AOC
gcoB
1. AOB P
2. A-C
3 A (1), Simplification
4, C (2), (3), Modus Ponens
Therefore the given argument is INVALID.
(b) Given
AOB
AOC
ocoB
1. AOB P
2. AOC P
3 =-B-A (2), Implication
4. -B-C (2), (3), Hyp. Syll.
5 BOC (4), Implication
Hence the argument is VALID.
(c) Given
Al B
AOC

gcioB

Propositions and Predicates

275

A/B/ C A.B A-C | (A-BO C-B| (A-B)0O
(A-C) (A-C)
OoCcC-B
T T|T T T T T T
T|T|F T F F T T
T F|T F T F T T
T F|F F F F T T
F T/ T T T T F
F| T|F T T T T T
FIlFlT T T T F
F|F|F T T T T T
O Not a Tautology
O Argument isINVALID.
(d) Given:
A - (BOC)
D--C
B--A
A
D
OBO-B
1. A- (BOC) P
2. A P
3. BOC (1), (2), Modus Ponens
4 D--C P
5 D P
6. -C (4), (5), Modus Ponens
7. B-o-A
8 -(-A--B (7), Implication
9 A--B (8), Simplification
10. - B (2), (9), Modus Ponens
11. B (3), Simplification
12 BO-B (10), (11), Conjunction

O Argument isVALID.

276 Theory of Automata, Formal Languages and Computation

Example 8.2.12: Determinewhether thefollowing argumentisvalid or

not. Give the proof if it isvalid.

“1f today is Tuesday, then | haveatest in Computer Scienceor atestin
Economics. If my Economics Professor issick, then | will not have a test
in Economics. Today is Tuesday and my Economic Professor is sick.

Therefore, | have atest in Computer Science”.

Eolution

T: Today is Tuesday

CS | have atest in Computer Science
E: | have atest in Economics

EP: Economics Professor is sick.

1 T - (CSOE)

@ EP--E
©)) TUOE
0cs

1. T (CSOE) P
2. EP - -E P
3. TUOE P
4. T (3), Simplification
5. CSOE (2), (4), Modus Ponens
6. E (3), Simplification
7. -E (2), (6)
8 CS (5), (7), Dig. Syll.

O The Argument isVALID.

8.3 PREDICATES AND QUANTIFIERS

Assertionswhich areformed using variablesin a“template” that expressesthe
property of an object or arelationship between objectsarecalled “ Predicates’.

Example:

(i) “Heisdark and ugly” iswritten as
“xisdark and ugly”.

(ii) “Naveenalivesin Maryland and
Menon Lakshmi livesin Texas’ iswritten as
“x livesin Maryland and
ylivesin Texas’.

Propositions and Predicates 277

Predicates are used in Control Statementsin high level languages.

Predicates may be either “constants’ or “variables’. Vaues of the
individual variables are drawn from a set of values caled “Universe of
discourse”.

In order to change a predicate into a proposition, each individual variable
of the predicate should be “bound”. There are two ways of doing it.

(i) Thefirst way to bind an individua variable is by assigning avalueto it.

Example P="a+b=6".
which is denoted by P(x,).
If a=2,and b =3, then
P(2, 3) isfalse.

(i) The second way to bind an individual variableisby “quantification” of the
variable.

It can be done either by “universal” or “extential”.
“For all values of x, the assertion P(x) istrue.”

“For al x, P(x)" is written as “H, P(x)”, where B is a “Universal
Quantifier”.

“There exists a value of x for which the assertion P(x) istrue’. This
statement iswritten as® [, P (x)” where Oiscalled “ External Quantifier”.

The proposition B, P(x) is equivalent to the conjunction
POOPROPR)OP(4)

for the universal consisting of integers 1, 2, 3, and 4.
The proposition [, P(x) is equivalent to the digunction

POOPROPR)OP((4)
The proposition ! xP(x) is equivalent to the proposition

[POO-PERO-PE@OP@O-POO-~PEA)]
OPE@O-P@Q O~ P@)]

Note that the sequence B, H, can always be replaced by H, H,, and the
sequence U, [, can always be replaced by [, [, , though the order in which
individual variables are bound cannot always be changed without affecting the
meaning of an assertion.

Example 8.3.1: Let §x, Y, 2) denotethe predicate“x+y=2". P(X, y, 2)
denote“x Oy = Z' and L(X, y) denote“x <y”. Let the universe of discourse
be the natural numbers N. Using the above predicates, express the
following assertions. The phrase“thereisan X’ doesnot imply that x hasa
unigque value.

278 Theory of Automata, Formal Languages and Computation

(8 Forevery xandy, thereisazsuchthatx+y=2z
(b) NoxislessthanO.

(¢ Foradlx,x+0=x.

(d) Foralx,x—y=yforadly.

(e) Thereisanx suchthat xy= yfor aly.

Eolution:

S(X V¥,2): x+y=2z
P(x, y,2):x-y=2z
L(x y): x<y

Universe of Discourse : N.

@ 5,8,0,x+y=2ieH,0 0,<(xV2)
(b) E,(=L(x0) or - O,[L(x0)]

(©) B, S(x0,x)

(d) E Hy P yx)

(e O:E, PXyY)

Example 8.3.2: Show that 0,0, P(x,y) and 0,0, P(xy) are
equivalent by expanding the expressionsinto infinite diunctions.

Proof: To prove: 0,0, P(x, y) = U, 0, P(x, y).

0,0, P(x, y)=[0, PO O[O, PQ wIO[E, PR Y] -.....
=[P(0,00OPOYIPO2)]
[PLO)OPALY OPL2)]

P20 OPRYOPR2)]

= [P(0,0)OPL0)OP20) C......]
OPOD)OPELYOPRY O.....]
P(0,2) OPL2)OP22) [.....]

[O,Px0]0[0,PxD]OO,P(X2]......
0, 0P (X y).

Hence Proved. O

Example 8.3.3: Determinewhich of thefollowing propositionsaretrue
if the universe is the set of integers | and Cdenotes the operation of
multiplication.

(@ B,0,[xLy=0]
(o) O OyxOy=1]

Propositions and Predicates 279

(© O, B [xy=1
(d) Oy B [xly=x]

Eolution

@ 5,0,[x0y=0]
y =0 makesit TRUE.

(b) 0,00 y[xOy=1] False

(© O, HIxby=1
1y=1
20y=1

1
==0lI.
y 2
False.

(d) HyExIxty=x]
1a=1
21=2

y=1 makesit true.

Example 8.3.4: Let the universe be the integers. For each of the
following assertions, find a predicate P which makestheimplication false.

@E,0yP(xy) 0 Oy, P(x,)
(b) O'yH, P(x, y) O 5, 0NyP(x y)

Eolution
@H,0yP(xy 0O yH P(xy)
x+y=0
LHS x+(-)=0
x=1
x+(-2)=0
X=2
RHS 'y, x=1,
1+y=0
y=-1
Oy, x=22+y=0
y=-2

P(x,y) is (x+y)=0.

280 Theory of Automata, Formal Languages and Computation

(b) 'y 5, P(x, y) O 5, 0NyP(x,y)

xy=0
LHS: (I) y=0 RHS X(0)=O
y=0 x=123 ...
i) y=0
Ol
P(x, y) isxy=0.

Example 8.3.5: Specify the universe of discourse for which the
following propositionsaretrue. Try to choose the universeto beaslargea
subset of integers as possible.

(8 0,[x>10]
(b) S[x=3]

(© 5,0,[x+y=439]
(@ 0,5 [x+y<0].

Eolution

(@ Universe of discourse: “All Integers greater than 10”.
(b) Universe of discourse: “The Universe has 3 only”.
(c) Universe of discourse: |

(d) Universe of discourse: |

Example 8.3.6: Let the universe of discourse consists of theintegers 0
and 1. Find finite digunctions and conjunctions of propositions which do
not use quantifiers and which are equivalent to the following:

@ B, P0OXx)
(b) ©
() B,0,P(xYy)
(d O
(e) O,0,P(Xy)

Eolution

U=01

(@ 5, P(0,x) = P(00)0(0).

(b) E,8,P(xy)=P00)OIPOYIPELO)OPAI
() B0, P(xy)=[P00)LPOD]T[PEO)LPEI]
(d 0,8, P(xy)=[PO0CPELO]CI[POILLPEI]
(® 0,0,P(xy) =P(©0)0PO)OPELODIPEY.

Propositions and Predicates 281

Example 8.3.7: Consider the universe of integers|.

@
(b)
(©

Eolution

@
(b)
(©

Find a predictate P(x) which is false regardless of whether the
variable x isbound by B or [1

Find a predicate P(x) which is true regardless of whether the
variable x isbound by B or [1

Isit possible for a predicate P(x) to be true regardless of whether
the variableisbound by 5, (] or [!?

P(x):x=x+1
P(X)=x#x+1
Yes.

P(x): x #x +1listrue regardless of whether the variable is bound
by & 0 or O

Example 8.3.8: Consider the universe of integers and let P (X, vy, 2
denotex—y = z Transcribethefollowing assertionsinto logical notation.

@
(b)
(©)
(d)

(€)

Eolution

@
(b)
(©)
(d)
()

For every xand y, thereissomezsuchthatx — y= z

For every x and y, thereissomezsuchthat x — z=y
Thereisanxsuch that foraly, y—x=y.

When 0 is subtracted from any integer, the result is the original
integer.

3 subtracted from 5 gives 2.

P(x, y,2:x-y=2z

5,8, 0,P(x V2
B, H, 0, P(X VY2
O By P(Y. X)
P(x,0,x)

P(532)

8.4 QUANTIFIERS AND LOGICAL OPERATORS

The transcription of mathematical statements involves predicates, quantifiers
and logical operators.
Assume that “Universe of discourse” is| and let
E (X), x—even
O (x), x-odd
P (X), xfprime
N (X), X non-negative.

282 Theory of Automata, Formal Languages and Computation

(i) Everyinteger iseven or odd.
O, [E(X) DO(X)]
(ii) Theonly even primeistwo
BIE)OPX) O x=2]
(iii) Not all primes are odd.
=8, [P(x) 0 OX)], O,[P(x) 0= O(X)].

(iv) If aninteger isnot odd, then its even.

H[~0(x) 0 E(X)]

The quantifiers may go anywhere in the transcription of mathematical
Statements.

Let P(x, Y, z) denote “xy=Z' for the universe of integers. Informal
statements of propositions frequently omit the universal quantification of
individual variables.

(i) “If x=0, then xy = x for al vlaues of y”
E(x=00 8, P(x, y,X)]

(ii) “If xy=xforeveryy, thenx=0".
E[8, P(x yx) 0 x=0]

Propagation of negations through quantifier sequences is useful in
constructing proofs and counterexamples.

Asan example, consider thereexistsazsuchthat x +z=vy, for every pair of
integersx and y. Thisis stated as.

B By O,[x+z=1y]
Thisistruefor universe of integers |, but not true for the natural numbers
N. We establish the falsity for the universe N by showing that its negation is
true.
The negation has the form
- B, EyDz[X+ z=y]
which is difficult to interpret.
The equivalent form
0,0, 8y = [x+z=y],or 0,0, 8, [x+z#Y]

is more tractable and can easily be shown to be true for the nonnegative
integers by choosing x >y.

Propositions and Predicates 283

Logical Relations

el
POOONOURAWNE

e
w N

B, P(x) O P(c), wherecisan arbitrary element of universe.
P(c) O O,P(x), wherecisan arbitrary element of universe.
Elx_' P(X) = 7 DXP(X)

H,P(X) = = P(x)

00~ P(X) = =B, P(x)

[E,P(¥)0Q] = E,[P(x) 0Q]

[E,P() 0Q] = E,[P(x)0Q]

[EP(x) 08,Q(X)] < E,[P(x) DQ(X)]

[E,P(x) OE,Q(X)] = H,[P(x) UQ(X)]

[0,P(x)0Q] - 0,[P(x) 0Q]

[0,P() 0Q] < O,[P(x) 0Q]

0,[P(¥) 0DQ(X)] = [L,P(x) UO,Q(X)]

[0,P() 00,Q()] = [H,P(x) DQ(X)]

Example 8.4.1: Let P(x, y, Z) denote xy = z E(X, y) denote x = y; and
G(x, y) denote x > y.
Let theuniverse of discoursebetheintegers. Transcribethefollowinginto
logical notation.

@
(b)
(©)
(d)
()
(f)
(9)
(h)
(i)
()
(k)

Eolution

@
(b)

(©

If y=1, then xy = x for any x.

If xy#0,thenx#0and y#0

If xy=0,thenx=00ry=0.

3x=6if andonly if x=2.

Thereis no solution to x* = y unless y=>0.

X < zisanecessary conditionfor x<yandy <z
x < yand y< xisasufficient condition for y = x.
If x<yandz<O0,thenxz<yz

It cannot happen that x =y and x <.

If x <y then for some zsuch that z< 0, xz > yz
Thereisan x such that for every y and z, xy = xz.

If y=1, thenxy=xforany x.
Hy[E(vD) O B, [P(x % x)]]
If xy#0,thenx#0and yz0.
B, 5, [-P(Xxy0) U - E@O y U= E(X0)]
If xy=0,thenx=0,andy=0.
5,8, [P(x y0) O E(O y) DE(x,0)]

284 Theory of Automata, Formal Languages and Computation

(d 3x=6ifandonlyif x=2
B [P3B x6) = E(x2)]
() Thereisnosolutiontox? =y unless y=>0.
-~ (xy) = = [G(y0) DE(Y0)]]
(f) x<zisanecessary conditionforx<yandy<z
H, By B, [[-G(x y)O-~G(y, 2] 0 = G(x, 2)]
(9) x< yand y<xisasufficient condition fory = x.
B Hy [~ Gx y) O~ G(y,x)]1 0 E(y.)]
(h) Ifx<yandz>0,thenxz>yz
B, 8, 5,[(G(y.x)0G(0,2) O H, B, [[P(x,zu) OP(y, zV)]]
0 G(u,v)
(i) It cannot happenthat x=yand x<y.
- B By [E(x y) OG(y, X)]
(i) Ifx<ythenfor somezsuchthat z<0, xz>yz
B, [(G(y,x) 00,60, 2]0 8, 5, [[P(X zu)TOP(y, z V)]
O G(uy,v).
(k) Doityourself.
Example 8.4.2: Let the universe of discourse be the set of arithmetic
assertions with predicates defined as follows:

P (X) denotes “x is provable’.

T (X) denotes “x istrue’.

S(X) denotes “x is satisfiable’.

D (x, Y, 2) denotes“zisthe disjunction x O y’

Trandlate the following assertions into English statements.
@ B[P0 T
(b) EL[T(x) 0~ S(x)]
(© OT(x)0-PX)]
(d) B, 8, B{[D(x y,2)0P(z)]0 [P(x) OP(YI}
(€ E{T()0 8,8, [DXy.20T(2}

Eolution

@ HJ[PX U T(X)]
If x is provable, then x istrue.

Propositions and Predicates 285

()
(©
(d)

(€)

YT () 0= S(x)]

If x istrueor it is unsatisfiable.

O T 0= P(X)]

There is some x, for which x istrue and it not provable.

H 5y B {[D(x ¥, 2 OP(2)] 0 [P(x) OP(Y)}

If the assertion z = x Oy and the assertion p(2) is provable, then
either x isprovable or y is provable.

AT 0 8y 8, [D(x y, 20 T(2]}

If every arithmetic assertion istrue, then the assertion z= x [yis
true.

Example 8.4.3: Write the following using logical notation. Choose
predicates so that each assertion requires at least one quantifier.

@
(b)
(©)
(d)

()

Eolution

@
(b)
(©

(d)
(€)

Thereis one and only one even prime

No odd numbers are even.

Every train is fasten than some cars.

Some cars are slower than all trains but at least one train is faster
than every car.

If it trains tomorrow, then somebody will get wet.

P (X): xisprime

E (X): xiseven

O P(x) OE(X)]

P (X): xisodd

E (X): xiseven

- 0,[0(x) DE(X)]

T(X): xisatran
C(y):yisacar

F (X, y): xisfaster thany.

BT 0 O, (C(y) OF (x y))]

E.0,[CO-FXNOLO,[TC)OFX Y]
R: It rains tomorrow.
W(X): x will get wet.

RO O [w(x)].

Example 8.4.4: Find an assertion which is logically equivalent to
H,P(x) but uses only the quantifier [0 and the logical operator - .
Similarly, express [0, P(x) in terms of Dand —. Similarly, express [, P(x)
interms of Band —.

286 Theory of Automata, Formal Languages and Computation

Eolution

(i) BP(X) = = (=5, P(X)

(i) O,P(x)

=

<

<=

)

= (0= P(X)
- Dxﬁ P(X).
= (= LP(X)
= (B~ PK)
= QX - P(X)

Example 8.4.5: Find an assertion which is logically equivalent to
O xP(x) but which uses only the quantifiers & and [together with the
predicate for equality and logical operators.

Eolution

OXP(x) = L, [P(X) OB, [P(y) 0 y=X]

Example 8.4.6: Find whether the assertion

BP0 Q)10 [E, P(x) O B,Q(X)]

istrue or not.

Eolution:

P(X)

QX

BP0 Q(x) BP0 5,Q(x)

T

e I e o B B B |

L e T B o e A |

T

-~ 4 4 477 A+
- 4 4 47 T -H

The assertion is“TRUE”".

Example 8.4.7: For a universe containing only the elements 0 and 1,
expand O, [P(X)0Q(x)] and [0, P(x) OO, Q(X)] into propositions
involving P(0),P(2), ... etc.,, and without quantifiers. Rearrange the
terms of the expansion to show that

Propositions and Predicates 287

0, [P0 0Q()] U [0 P(x) 0 0, Q(X)]

Eolution

O, [P(¥) Q)] = [(PO) TPO)]C[(PE) DQ)]
= [[PO)TQO)]IP@]L[(P0) Q(0) IQM)]
= [[PO)DPO]OQO)IPO]TIPO) DQWM]
Q) DQMI]
= [[PO)DPO]OQO) BQM)]]
= O,P(x)00,0Q(x) (for this universe).

Hence proved.

Example 8.4.8: For each of the following sets of premises, list the
rel evant conclusionswhich can bedrawn and therules of inferenceusedin
each case.

(@ All cows are mammals. Some mammals chew their cud.

(b) All evenintegersaredivisible by 2. Theinteger 4 iseven but 3is
not.

(c) What'sgood for the auto industry is good for the country. What's
good for the country is good for you. What's good for the auto
industry isfor you to buy an expensive car.

Eolution

(@ C(x):isxisacow.

M(X): x isamammal.
D(x): x chew their cud
0IC() - M ()]
O, M (x) - D(x).

(b) E(X): xisaneven Integer.
D(X): xisdivisible by 2.
E(x) - D(x).

(©) A(X):xisgood for the auto industry
C(X): x isgood for the country
Y(X): x is good for you.

b ="You buying an expensive car” (constant)

V[AX) - C(x)] D)

W[C () - Y ()] 2

A(b) 3)

By US, A(b) — C(b) (4)

C(b) ~ Y (b) ()

288

Theory of Automata, Formal Languages and Computation

(3), (4), Modus Ponens, C(b) (6)
(5), (6), Modus Ponens, Y (b) (7
By conjunction, C(b) Y (b)

Conclusion: Itisgood for the country and for you to buy an expensive car.

Example 8.4.9: Determine the vaidity of the argument: “It is not the
case that some trigonometric functions are not periodic. Some periodic
functions are continuous. Therefore, it is not true that all trigonometric
functions are not continuous”.

Construct proof, if itisvalid.

Eolution

T(X): x isa Trigonometric function.
P(x): x isaperiodic function
C(X): x is a continuous function.

ALTX) - 2PX)] H-T(x) - P(X)
OPX - C(x OPX - C(x
0- (ET(K) - -C(X 0(0-TK - CX)

1. B-TX - P(X) P

2. -T(a)- P(a) us, (1)

3. 0,P(X)-C((X

4 P@-C(a (3),ES

5, =T(a)- C(a) (2), (4), Implication
6. O0,-TX - C(x (5), EG

O AssertionisVALID.

Example 8.4.10: Show that (H,)(H,)P(x y) - (= X)(E,)P(x y) is
logicaly vaid.

Eolution

a s wDdh e

E)E)PXY) P

Ey))P(@y) us, (1)
P(ay) UG, (2)
(LIP(ay) EG, (3)
(0)E, P(ay) UG, (4)

Propositions and Predicates 289

Exgmple 8.4.11: Prove that (H,)(0,)P(x, y) - (0,)(0,)P(x y) is
logically valid.

Eolution

L EH)O)YPKXY) P

2. (0y)P @y us, ()
3. P&y ES, (2)
4, (0y)P @y (3), EG
5 (E)@E)PXY) (4), EG

Example 8.4.12: Show that - P(ab) follows logicaly from
(E)EY(PX, y) - W(x, y)) and ~ W(a, b).

Eolution

L E)EYPXY) - WXY) P

2. (E,)(P(xb) - W(x b)) (1), US

3. P(ab) - W(ab) (2), US

4. - P(ab)OW(a b) P.Qe--POQ

5 -W(abh) P

6. -P(ab) T, (5),-P,POQO Q

8.5 NORMAL FORMS
Let us show how to find the formula given the Truth Table.

OooOOooooogogoo

P Q| RIf(PQR

T T T

T T F

T F T

T E F 4 Truth values are
F . T True

F | T F

F F | T

F F F

o [l o]

290 Theory of Automata, Formal Languages and Computation

f(P,QR)=(POQOR)I(PI-QOR)O(PO-~QO7r)
OG- PO-QOR)

Formula obtained here is a “digunction” of terms, each of which is a
“conjunction” of “statement variables’ and their “negations’.

A product of statement variables and their negationsiscalled “ elementary
production”. A sum of variables and their negations is called “elementary
sum”.

Disjunctive Normal Form

A formula which is equivalent to a given formula and which has a sum of
elementary productsis called “digunctive Normal Form” of the formula.

Conjunctive Normal Form

A formula which is equivaent to a given formula and that has a product of
elementary sumsis called “conjunctive Normal form” of the formula.

Procedure to find disjunctive Normal form

(i) If the connective » and ~ appear in the given formula, obtain an
equivalent formulain which —» and ~ does not appear.

a - Bisreplaced by (- a Op)
anda - Bisreplaced either by

@OB)O(-ad=p)
or
(=aOp)O(=B 0a)

(ii) Using DeMorgan’ slaws, an equivalent formulacan be obtained in
which the negation is applied to statement variables only, if the
negation applied to aformulaor part of the formulawhichisnot a
statement variable.

(iii) Applying the distributive law until a sum of elementary products
is obtained.
This is the “Digunctive Norma Form”, after applying the
|dempotent law and suitable re-ordering.
In the Normal Form, the elementary products which are
equivalent to “F’ (False), if any, can be ommitted.

Example 8.5.1: Obtain adigunctive normal form of

POGP - QOQ~ ~R)).

Propositions and Predicates

2901

Eolution

PO(-P- QOEQ- -R))

POG-P - (QI(-QORY)
PO(-P - [(QUI-Q)UQUR)]
PO(-P - [TOQUOR)]
PO(-P - (QOR))

PO[- (- P)O(QUOR)]
PO[PO(QOR)]
(POP)O[POQOR)]
POQOR)

POPOQOR

POQOR. (Answer)

(A A A A A

Example 8.5.2: Obtain the disunctive Normal form of

PO(-PO-QOR)
Eolution

PO(-PO-QUR)
(PO-P)O(PO-Q)I(POR)
- PO(PO-Q)U(PUR)

- = QUO(POR)

- PO-QOR (Answer).

8

Example 8.5.3: Obtain the digunctive normal form of
(~PO0-Q) - (-POR)
Solution:

(~-P0-Q)- (- POR)
= [[-(-PO-Q)O(-POR)]
-~ [(POQ)O(-POR)] (Answer).

Example 8.5.4: Obtain the digunctive normal form of

(PO-QOR)T(P - Q)
Eolution

(PO-QOR)D(P - Q)
= (PO-(QOUR)O(-PUQ)
= (PU(=QUR)O(=PUQ)
-~ (PO-QO(POR)I(-PLQ)
-~ (PO0-QU-P)I(PO-QUQ)I(PUR)

292 Theory of Automata, Formal Languages and Computation

- (TO-Q)O(POT)O(POR)
- 7QOPO(POR)
- (POR)OPO-Q (Answer)

Example 8.5.5: Obtain aDigunctive Norma Form of

P-(P-QU-(=QO~P))
Eolution

P- (P-QUO-(-QU-P))
- P [(-POQ)OQOP)
< = PO[(-POQ) BQUP)]
= [-POGPOQ)NO-POOP)
= [-POCPOQ)O(-POQ)I(F)
= [(=PO-P)O(-POQ)U[(- PLQ)]
= [-PO(POQ)O(-POQ)
= [-PO-P)O(-POQ)]I(=-PLQ)
= [~ POQIO[- POQ]
= = POQ (Answer)

Example 8.5.6: Obtain the Conjungtive Normal Form of

- (POQ) » (POQ)
Eolution

- (POQ) - (POQ)
< [-(PUQ)O(POQ)U[- (= (POUQ)) O~ (PLQ)]
= [(-PO-Q)U(POQ)D[(POQ)L(- PU-Q)]
- [(PO-POQO-~Q)I(POQ)I(~ PO~ Q)
-~ (POQ)O(-PO-Q) (Answer)

GLOSSARY

Logic: Discipline which deals with methods of reasoning.

Proposition (statement): Any declarative sentence which istrue (T) or false
(F).

Truth Value: T or F are the truth values of a statement.

Liar’'sParadox: Thisstatement isfalse.

Connectives. AND, NOT, OR,

Negation: ~ P or = P (NOT P)

Conjunction: AND (pOq)

Disunction: OR (pdQq)

Propositions and Predicates 293

Implication: Conditional pO q

Biconditional: If andonly if p = q

Tautology: Propositional form whose truth value is true for al possible
values of its propositional variables.

Contradiction: Propositional form that is always false.

Contingency: Propositional form which is neither a tautology nor a
contradiction.

ModusPonens: (PO(P O Q) O Q

ModusTollens: [(PO Q) DO-Q]0O =~ P

Digunctive Syllogism: [- PO(POQ)|O Q

Hypothetical Syllogism: [(P O Q)O(QU R)]O (PO R)

Predicates. Assertionsformed using variablesin a“template” that expresses
the property of an object or a relationship between objects are
predicates.

REVIEW QUESTIONS

What do you mean by a proposition?
Give examples for proposition.
State the liar’ s paradox.
What are connectives? Give examples.
Explain the following:
(a) Negation (b) Conjunction (c) Digunction
(d) Implication (€) Biconditional.
6. Givethe Truth Tablesfor:
(a) Negation (b) Conjunction (c) Digunction
(d) Implication (€) Biconditional.
7. Explain theterms:
(a) Tautology (b) Contradiction (c) Contingency
8. What arelogical Identities? Give afew of them.
9. Explain thefollowing:
(& Modus Ponens
(b) Modus Tollens
(c) Digunctive Syllogism
(d) Hypothetical Syllogism
10. What are Predicates and Quantifiers?
11. Explain the following:
(@ Digunctive Norma Form
(b) Conjunctive Normal Form
12. State the procedure to find Digunctive Normal Form.

s wdE

294

Theory of Automata, Formal Languages and Computation

EXERCISES

Which of the following sentences are propositions? What are the truth

values of those that are propositions?

(& x+y=y+xforevery par of real numbersxandy

(b) Answer this question

(o) y+2=17

(d 7+5=10

(e 3+2=5

(f) Bombay isthe capita of India.

(9) ISPEX isinlovewith ‘L’JALAJABATVMU

Write the negation of each of the following propositions?

(@ Summerin Kodaikanal is hot and sunny.

(b) 7+8=15

(c) Thereisno air pollution in Karuppur

(d) Today isfriday.

Let p and q be the propositions

p: | drive over 85 km per hour

g: | get a speeding ticket.

(& | donot driver over 85 kmph

(b) 1 will get aspeeding ticket if | drive over 85 kmph.

(c) Driving over 85 kmph is sufficient for getting a speeding ticket.

(d) Whenever | get a speeding ticket, | am driving over 85 kmph.

Obtain atruth table for each of the following propositional forms:

@ (- paq

(b) - (pUa)

© (=pda

(d) (pUa)dr

(e (pO(=pP)O p

Determine whether each of the following implicationsis true or false.

@ If2+2=6,then3+3=8

(b) If elephantscan fly, then2+2=6

(c) If 2+ 2=6, then elephants can fly.

For each of the following sentences state if the sentence means if the

“or” is an “inclusive or” (disunction) or an “exclusive or” which of

these meanings of “or” do you think isintended

(& Dinner for two includes two items from menu list | or three items
from menu list I1.

(b) To take Applied Physics, you should have taken a coursein
Mathematics or a coursein physics.

Propositions and Predicates 295

10.

11

12.
13.

14.
15.
16.

17.
18.

19.
20.
21.
22.
23.

24.
25.

Write down each of thefollowing statementsintheform“if p, thenq” in
English.
(& Your guaranteeisgood, only if you bought your PC lessthan 1

year ago.
(b) If you drive more than 800 kilometres, you have to buy diesel.
State the converse and contrapositive of each of the following
implications.
(& A positiveintegerisaprimeonly if it hasno divisorsother than 1

and itself.
(b) 1 goto classwhenever thereisatest.
Construct atruth tablefor each of thefollowing compound propositions.
(@ (pUag)dr
(b) (pOa)DOr
© (pOg)O=r
Construct a Truth table for each of the following compound
propositions.
@ (p->)O(=p-r)
(b) (p-O(=p-r)
© -p-(@Q-r)
Show that - (pOq) and - pO-q are logicaly eguivaent by
constructing Truth Table.
Show that the propositions p — qand— pOqarelogically equivalent.
Show that the propositions pO(qOr) and (pOq)O(pdr) are
logically equivalent.
Show that = (pO (- pdq))and - pO- qarelogicaly equivaent.
Show that p= - (= p).
Rewrite the statement: “It is not true that | am not happy” in ssimpler
form.
Show that = (pdq) = (= p) d(- q) (De Morgan’s Laws)
Given p: The president is a Democrat

g: The president is a Republican

Express (&) = (pUaq) (b) (= p)I(= q).
Show that the statement pd (- p) isatautology.
Show that (pOq) O[(-~ p) O(= q)]isatautology.
Show that the statement (pd q) O[(- p) O (- q)] isacontradiction.
Simplify the statement = ([pO (-)] Or).
Consider: “Youwill get an A if either you are clever and the sun shines,
or you are clever and it rains’. Rephrase the conditions more simply.
Show that p - q = (- p) dqusing Truth Table construction.
Verify the“ Switcheroo Law” using Truth Table. p -~ g = (- p)Oag.

296 Theory of Automata, Formal Languages and Computation

26. Using the Switcheroo law p — g = (7p) Oq transform the following
statement into adigjunction: “If 0 = 1, then | am the queen of Texas.”
27. Check whether the followings statements are equivalent or not.
(@) IfitisTuesday, this must be Mexico.
(b) That thisis Mexico is a necessary condition
(c) Itsbeing Tuesday is sufficient for thisto be Mexico.
28. Verify whether commutative law holds good for the “conditional” i.e.,
p - qisthesameasq - por not?
29. Provethevalid argument:
(pOr) - (sOt)

p
ot

30. Provethevalid argument:

a- (bOc)
-b
O-a

31. Provethevalid argument:

32. Check the validity of the argument:

So T
(pUq) - —r
2s-(~g-1)
p
dq

33. Prove and comment on the argument:
pO(= p)
Op

34. Show that the argument
pP-q
q

isnot valid.

Propositions and Predicates 297

35.

36.

37.

38.

39.

4]1.

Check whether the following argument is valid. If it is, then give a
proof, if it is not, then give a counterexample.

“Heat dissipation accompanies every irreversible chemica reaction.
Therefore, if achemical reaction isreversible, it dissipates no heat”.
Check whether the following is valid.

If itis, then give aproof; it it is not, then give a counterexample.

“It the moon ismade of red chease, then elephantscan fly and circlesare
round. The moon isindeed made of red cheese. Therefore el ephants can
fly”.

Prove the valid argument

(p0q) - (rO09
pq
Or0Os

Check the validity of the following arguments:

(@ - (rdy (b) pUq
(pHq) - (rds) p-r
0-(pOq) Or

(© p- (q0Or)
p

ar

q

Let P(X) denote “x spends more than six hours every wesk is class’,

wherethe universe of discoursefor x isthe set of students. Express each

of the following quantificationsin English.

@ OPX)

(b) E,P(x)

© 0-PK)

(d) B~ PX)

Given P (X): x can speak Hindi

Q (X): x knows computer language “Small Talk” express each of the

following sentences in terms of P(x), Q(x), quantifiers and logica

connectives. Universe of discourse is the set of al students at your

school.

(8 Thereisastudent at your school who can speak Hindi and who
knows small talk.

(b) Thereis a student at your school who can speak Hindi but who
does not know small talk.

Use quantifiers to express the associative law for multiplication of real

numbers.

298

Theory of Automata, Formal Languages and Computation

42.

47.

49,

50.

51.

52.

Prove that the statements
= 0 Hy P(xy) and B,0, = P(xy)

have the same truth table.
State the truth values of the following:
@ OxP(x) - O PX
(b) B,P(X) - O'xP(x)
() O=P(x) - - H,P(x)
Show that O, P(x) 08, Q(x) and B, (P(x)0Q(x)) are not logically
equivaent.
Show that B, P(x) 0 0,Q(x) and H, 0, (P(x) DQ(Y)) are equivalent.
Obtain the principal disjunctive normal form and principal conjunctive
normal form of

PoQ
Obtain the PDNF of the following
(@ -POQ
(b) (POQ)U(-PLQ)L(QLR).

Obtain the digjunctive normal form of

PO-P- QU(E=Q~ R))

Derive the digunctive normal form of
P-((P-QUOEQ-R))
Obtain the conjunctive normal form of
(-P-RUOQ~R)

State whether the following argument is valid or not. Give proof if it is
valid. Otherwise give counter example.

Babies areillogical.

Nobody is despised, who can manage crocodiles.

Ilogical people are despised.

Therefore babies cannot manage crocodiles.

If the colonel was out of the room when the murder was committed, then
he could not have been right about the weapon used. Either the butler is
lying or he knows who the murderer was. If Lady Sharon was not the
murderer, then either colonel wasin theroom at the time or the butler is
lying. Either the butler knows who the murdered was or the colonel was
out of theroom of the time of the murder. The policeman deduced that if
the colonel was right about the weapon, they Lady Sharon was the
murderer. Was he right?

Propositions and Predicates 299

10.

11

SHORT QUESTIONS AND ANSWERS

Define a mathematical structure.

It is defined as a set of axioms.
What is an axiom?

An oxiom is atrue statement about the properties of the structure.
What islogic?

Logic is the discipline that deals with the method of reasoning. It
gives a set of rules and techniques to determine whether a given
argument isvalid or not.

What are Theorems?

True assertions which can be inferred from the truth of axioms are
caled ‘Theorems'.

What is meant by ‘proof’ of a Theorem?

Proof of atheoremisan argument that establishesthat thetheoremis
true for a specified mathematical structure.
What is a proposition or a statement?

Any declarative sentence which is true (T) or false (F) is caled a
proposition or a statement.

What do you mean by truth value of a statement?

Wereferto T (True) or F (False) asthetruth value of the statement.
Give examples for statements (propositions).

@ 3+3=6

(b) It will rain tomorrow.

What isLiar’s paradox?

(@ “Thisstatement isfalse’.

(b) “l'amlying”.
Statement (b) is a pseudostatement equivalent to (a).
Such a self-referential sentenceisaliar’ s Paradox.
Give examples of sentential connectives

And, or, not.
Draw the truth table of Negation.

300 Theory of Automata, Formal Languages and Computation

12. Draw thetruth table of conjunction (AND).

p q pOq
T T T
T F F
F T F
F F F

13. Obtain the Negation of the statements:
(& Not al the doctorsin thistown are crooks.

(b) I loved neither Padmaja nor Naveena.
(& All thedoctorsin thistown are crooks.
(b) 1 loved either Padmaja or Naveena.
14. Obtain the conjunction of the statements.
(& p:1amrich.
g: You areold.
(b) p:8+8 =17
g: Sun risesin the east.
(@ pOg:*“lamrichandyouareold’.
(b) pOqg:8+8=17and Sunrisesinthe East.
15. Sketch the truth table of disunction (OR).

p q pOq
T T T
T F F
F T T
F F F

16. Obtain the disunction of the statements
p: Ravi did it
g: Ram did it.
p dq: Either Ravi or Ram did it.
17. What is meant by implication? Sketch the Truth Table.
pO qread as“if p, then g” isan implication.

Propositions and Predicates 301

18.

19.

20.

21.

22.

23.

24,

The Truth Tableis as follows.

m T 4 4 |©
m 4 1 4 | o
— 4 m 4 | O

What is the Truth Table of Biconditional ?
Biconditional means“qif and only if p”. or “pisequivalentto q”.

p=q

m T 4 4 |©
m 4 1 H|Q
= 1 T -+

What do you mean by Tautology?

A Tautology isapropositional form whosetruth valueistruefor al
possible values of its propositional variables.

Example: P O- P.
What do you mean by contradiction?

A contradiction or absurdity isapropositional form whichisaways
fase.

Example: P 0= P.
What do you mean by contingency?

A propositional form which is neither atautology nor a contradiction
is called a contingency.

What are the representations for tautology and contradiction?
Tautology — 1

Contradiction — 0.
What is Modus Ponens?

(POPOQIDQ
What is Modus Tollens?
[(POQO-Q]O = P.

302 Theory of Automata, Formal Languages and Computation

25. What isdigunctive syllogism?
[-POMPOQIOQ
26. What is Hypothetical Syllogism?
[(POQUEQEURIO(POR)
27. What do you mean by contrapositive identity?
(POQ) = (TQ0O 7P).
28. Explainthelogical identity: Exportation.
[(POQUR] - [PUQOR)
29. Explainthelogica identify: Absurdity
(POQOMPDO-Q)]=-P
30. Explainthelogical identity: Equivalence
(P-Q<=[(POQUEQOP)
31. Explainthelogical identify: Implication
(POQ) = (-PUQ)

32. Statethefollowing rules of inference
(& Hypothetical Syllogism
(b) Digunctive Syllogism
@ P-QQ-ROP-R
(b) ~P,POQOQ
33. Statethefollowing rules of inference
(& Modus Ponens
(b) Modus Tollens
@ P,P-QOQ
(b) -Q,P-Q0O - P.
34. What is double negation?

-=P <P
35. State De Morgan’slawsin terms of Equivalences.
= (POQ) = = PO~Q
= (POQ) = = PO-Q
36. State Distributive Lawsin terms of equivalences.

POQOR) « (POQ)TI(POR)
POQOR) « (POQ)O(POR)

Propositions and Predicates 303

37.

38.

39.

State Associative Lawsin terms of equivalences.

(POQ)OR « PO(QOR)
(POQ)OR = POQOR)

State Commutative laws in terms of equivalences.

POQ - QOP
POQ - QOP

What are Predicates?

Assertionsformed using variablesin a“template” that expressesthe
property of an object or a relationship between objects are called
Predicates.

Answers to Exercises

CHAPTER O

1

o o

11
13.

18.

10.

(@ No (b)No (c)Yes

2. (A Yes (b)No (c)Yes
3.
4. Supposethat x O A. Since AB, thisimpliesthat x 0 B. Since B OC,

(@ True (b) True (c) False

we have x OC. Sincex O Aimpliesthat x OC, it follows that A O C.
@1 (1 (2 (d)3

@ {e{a}}

(b) {¢{a}.{b}.{a b}}

© {o{a.{{a} {o{a}}

@2 (b)l16

@ {(@ay).(by)(cy).(dy), (a2, (b2,(c2),/(d 2}

(b) {(y.a),(y.b),(y.c)(v,d).(za),(zb).(z0) (zd)}
The set of triples (a, b, ¢) whereaisan airlineand b and c are cities.

oxA={(xy|xUead yUA
=@e={(x yIxOAand yle¢
:AX(p

mn

@1{0,1,2,3,4,5, 6}

(b) {3}

(© {1,24,5)

(d) {06}

@BOA

(b) AOB

(0 AnB=¢g

(d) Nothing, sincethisis awaystrue

(e A=B

@{123n

(b) {1}

Answers to Exercises 305

25.

26.

28.
29.

30.
31.
32.

33.
35.

36.

A? ={0 a a%}

B* = {ababab}

AB ={ab, aab}

A ={0aa?...... }={a"|n=0}

B ={(ab)"[n>0}

B ={(ab)"In=3

2t =5 {0

(@ L, 0L, ={ab,bc aa, ac, cb}

(b) L nL,={aa}

© L -L={xyIx0OL OydLy}

(d) L,L, ={abaa, abac, abch, bcaa, bcac, beeb, caaa, caac, cachy}

A=, A=A"O0A OA. ...

At =, A =AOAOA% ...

A={a, aa}, B={a} and C = {aa}, to prove that
ABNnC)OABNn AC.

AB ={aa, aaa}, AC = {aaa, aaaa}
AB n AC ={aaa},BnC=¢ABNC)=¢
0 A(BBnC)OABn AC.
(a) 155 (b) 100
(& Weknow, AnBOA
If AOB,thenAnB=A
OAO(AnB)=A
(b) An(AOB)=(An A O(ANnB)
= AO(AnB)
= A(by (a))
(0 XU(A-B) = xOADxOB
= xXOAOxOB
- xO(AnB)
B,[x0(A-B)]=B,[x0(An B)]
0A-B=AnB.
(d AD(AOB)=(AOA)n (AOB)
=U n (AOB)
= AOB.
(e An(AOB)=(AnA)J(AnB)
=0 (AnB)
= AnB.
(& No (b) No (c) No.

306 Theory of Automata, Formal Languages and Computation

38. (a) only
40. Only (@) and (d) are onto functions.
41. (@ Yes (b)No (c)Yes (d)No.
46. (&) Bijection
(b) None
47. {(1,2), (2, 2), (3, 3), (4.4)}
48, feog= x? +8x +14
gof =x?+2
49. (@ R={(3,3),(6,2),(9 1)}
(b) Domain={3, 6, 9}
Range={3, 2, 1}
50. (@ R={(3,2),(52),54%,(7,2),(7, 4%,(7,6),(9 2),(9 4, (9 6),
(9 8)}
(b) Doman={3,5,7, 9}
Range={2, 4, 6, 8}
51. (a) Transistive
(b) Reflexive, symmetric, transitive
(c) Symmetric
(d) Antisymmetric.
52. (a) 2"™V /2
(b) 2"3"" Y2
(C) 3n(n—1)/2
(d) 2n(n—l)
(e 2"™V)2

(f) 2n2 -2 [Zn(n—l)

53. Risreflexive if and only if (a,a) OR for al aO A if and only if
(a,a) DR if and only if R™ isreflexive.

54. No, Example R ={(13), (31}

56. (@) {(a,b)|bdividesa}
(b) {(a,b)|adoes ot divide b}

57. (@) Symmetric, transitive
(b) Reflexive, symmetric, transitive
(c) Antisymmetric

58. L(G) ={b, aaa}

59. G=(V,T,SP)whereV={0,1,8 T={0, 1}, Sisthe start symbol and
productions are

S - 0s1
S- A

Answers to Exercises 307

60. G;:V={S0%,T={01.
ProductionP: S - 0S,S - S1,S - A
G,:V={S A0L, T={0F
ProductionsP: S - 0S5,S - 1A, S-1 A- 1A A- 1S A
61. G=(.,T,SP)
v={0,1,2,S A B}
T={0,1,2
S= Starting state
ProductionsP: S - 0SAB, S - A, BA - AB,
OA- 01 1A-11 1B-12 2B - 22
62. @ S-00S, S A
() S-» AS5,S- ABS,S- AAB- BABA- ABA-0B-1
(0 S- ABS,S- AAB- BABA- ABA-0OB-1
(d S- ABS5,S-T,B-U,T - AT, T - A
U-BUU-BAB-BABA- ABA-0B-1

n .
69. LetP(n)bey 305’ = 36" -1/ 4
=
n .
Basis: P(0) istrue time since Z3E5' =3=3(5"'-1)/4
=0

n .
Induction: Assumethat 3(5' = 36™ -1)/ 4
=0
n+1 _ On O
Then 23%] :D23[5]D+3E5n+1
1=0) =0 O
- 3(5n+1 _1)/4+3[5n+1
=3(5™ +45™ -1)/4
=3(5™? -1)/4.
72. Postages are 5 cents, 6 cents, 10 cents, 11 cents, 12 cents, 15 cents, 16
cents, 17 cents, 18 cents and al postages of 20 cents or more.

CHAPTER 1
1. (@

308 Theory of Automata, Formal Languages and Computation

© (Do LI (Do
(d () a a
B—> @’ @' @O

a

(i) a a
H— @’ @'

"
(e) &
a,b @
b
2 1 0 0,

A b
a
o {do a. O
G U {d., a5}
O 0 O

Answers to Exercises 309

5. L={0",0"01,0"1/n=>0}

6. M*'=({[O.[a0].[eh].[0].[do: A). [Go» G][O O]
[do, %, 9.1} .{a, B}, 8, [ao].{[a,].[do. i],
(A, 9,].[d0, 0y, 01}
which is the DFA of theform M’ = (Q', £,8', gy, F') with & given by
the table below.

a b

(O] (O] (O]

[al (a5, 0.l (O]

[au] (O] [a]

[aa] (O] [a]

(9o, a1l [a, @) [,

[dor G [a, @) [,

[d, @l [O] [a]

[Go» Ghr 0L (G Ol (Gl
7.
8.

9. (8 baaaba

310 Theory of Automata, Formal Languages and Computation

(b) (aabb)” +b(bab) (ba) b+ (ab)’

() a'ba’
10.
11.
State g h
Input Input
S St S3 1 0
St St S 1 1
S, S; S, 0 0
S3 St S 0 0
S, S; S, 0 0
12. Start
14. (a) 1100

(b) 00110110
(© 11111111111
15.

Answers to Exercises 311

16.
17.
f
Input
State 0 1 g
S S &) 1
S, S, S 1
S S S 0
18. (@ 11111 (b) 1000000 (c) 100011001100
0
10.

20. (@ L,={1"|n=012......}

(b) L,={103

(© L,={0",0"10x|n=0,12, ...and xisany string}
21.

312 Theory of Automata, Formal Languages and Computation

22,
State f
Input

0 1
S %, S S
S S3
S Sy
S3 S3
Sy S3 S3

23. L={0",0"010"1|n=>0}

24. (@) L={0,01, 11}
() L={A000{0™"|m=,n=1
() L={10"|n=0} O{10"10™ |n,m=0}
25. (a) {0, 10,11} {0, 1}"
() OM"|m=0and n>3}
26. (9

Start @

Answers to Exercises 313

28.

29.

30.

32.

(© Start

(& A 1followed by any number of Os

(b) Any number of copies of 10, including null string
(c) Thestring O or the string 01

(d) Any string beginning with O.

(e) Any string not ending with 0.

Start 0 @ 1

1

G=(V,T,SP)
G={S,AB0L

T={03
S-0AS-1B,S- AA-O0AA-IB,

(@ 001
(b) (001)(00(©OOIL) 0000

314

Theory of Automata, Formal Languages and Computation

35.

36.

38.

Assume L ={0°"1"} is regular. Assume Sis the set of states of afinite-
state machine recognizing the set. Let Z = 021" where3n>|4. Then by
pumping lemma, Z = 0%"1" = uww, I(v) 21, and uv'w{0?"1" [n=0}. It
is obvious that V cannot contain both 0 and 1, since V* could then
contain 10. Therefore Visall Osor al 1s, and so uv®w containstoo many
Osortoomany 1s, soitisnotin L. Thisisacontradiction which showsL
isnot regular.

Assume that the set of palindromes over {0, 1} isregular. Assume Sis
the set of states of afinite-state machine that recognizesthe set. Let Z =
0"10", whenn> | S|.

Apply the pumping lemma to get uv'wIL for all positive integers i
where I(v) 21, and I(uv) €| and z=0"10" = uvw. Then v must be a
string of Os (since|n|>|4), souvwisnot apaindrome. Thereforethe set
isnot regular.

(ab O a)*

Answers to Exercises 315

39. (ad b)* aba

7. LetS, and S; be the start symbols of G, and Gg respectively. Let Sbea
new start symbol.
(8 AddSand productionsS - S, andS - Sy
(b) Add Sand production S - S, Sg
(c) AddSand productionS - AandS - S, S.
8. (a) Type2, nottype3
(b) TypeO, not typel
(c) Type2
(d) Type3
(e) Type2, nottype3

316 Theory of Automata, Formal Languages and Computation

10.

TN
S/A|\A \a
a/ ’ a/ \a

14.

23. (& Yes
(b) No.

CHAPTER 3

12. Defining A= ({9,q:}.{a,b}.{z,,a b},d, 0q, z,,{q;}} disgiven by
0(q, & z,) ={(0, az,)} 0(q, b, z,) = {(a, bz,)}
9(q,a,a) ={(q,aa)} 0(q, b, b) ={(a, bb)}
(0, a,b) ={(a,1)} =06(q, b, a)
o(q.tha) ={(as.0)}

A accepts the given set by final state.

14. M =({q},{01,{S,B,01,d,q,S,0}disdefined as

(0,04 S) = {(q,0BB)}

9(a, [B) = {(0,0S), (a.1s), (0.0)}
0(9,00) = {(a,0)}
(a.11) = {(a.0)}

15. G=({S}.{a b},P,S)

P:S- a%,S- aS,S- a
A({a}.{a,b}.{S a0}, 0, S 1)

where 3(q,[S) ={(q,a%), (q,aS), (a, a)}
0(q,a,a) = 6(a, b,b) ={(q, ()}

Answers to Exercises 317

CHAPTER 4

1

M= (Qv Z,I‘I,é, O c1a(:cept ’ qreject)

2 ={0

r={0,x £}

q, — Start state

Oaccept — SCCEPL State

Oreject — rEj€Ct State

0 is described by the state diagram shown below.

(%.0%.0R) (%*,%,B,R) (85, *r 85, %0 L)
(5,05.0L) (81s.1L) (5,B%,BR)
(8.15,B,R) (50s,B,R) (s.B %,B/L)
(%,B.%,B,L) ($%.05.1L) (s,,0,5.,1,L)

(%15.0R) (s1s1R) (s, B,s,B,L)
(5,054 L) (s4,*,s;,B,L) (s5,0,5,BL)

($.1s,B,L)

where B = Blank cell, L = Left and R= Right

13. (%0%0R),(%151R),(3.08.0R),(81%.LR).(%,B,%,B,R).
14. (90,8.0R),(%1%0R).(5.08.0R).(81%0R).(8,B:s,B,R)
15. (%0%0R),(151R),(3.050R).(8150R)

16. (05.LR).($19LR)

20. Since the universal Turing machine that simulates every Turing
machine, the present problem is equivaent to the Halting problem of
Turing machines, therefore, it is unsolvable.

CHAPTER 6
1. @ 0

318

Theory of Automata, Formal Languages and Computation

(b)
(©)
(d)
@
(b)
(©
@
(b)
(©
(d)

3

3

83

A

aababab

babababa

Function is defined for al natural numbers divisible by 9.
Function is defined for all x=5

Function is defined for al N.

Function is defined for al N.

13. A(2,4)=1L A (3,3)=37.

CHAPTER 8

1

@
(b)
(©)
(d
(e)
()
(9)
@
(b)
(©)
(d)
@
(b)
(©)
(d)

Yes T

No

No

Yes, F

Yes, T

Yes, F

Yes, T

Summer in Kodaikanal is not hot or it is not Sunny
Thereisair pollution in Karuppur.
7+8#15

Today isnot friday.

-p

p-q

pP-q

qg-p

(& True

(b)
(©
@

(b)
@

(b)

True

True

If your guaranteeisgood, then you must have bought your PC less
than 1 year ago.

If you drive more than 800 kilometers, then you haveto buy diesel.
Converse: A positiveinteger isa primeif it has no divisors other
than 1 and itself.

Contrapositive: If a positive integer has a divisor other than 1 and
itself, then it is not prime.

Converse: If | goto class there will be atest.

Contrapositive: If | do not goto class, then therewill not be atest.

Answers to Exercises 319

16.
18.

10.

21.
22.
23.
26.
27.
28.
36.
38.

39.

4]1.

46.

47.

49,

| am happy.
(@) The President is not both a Democrat and a republican.

(b) Either the President isnot aDemocrat, or heisnot aRepublican, or

heis neither.
p - p pO(= p)
T F T
F T T

Since there are only T's in the pO (= p) column, we conclude that

pd(= p)isatautology.

Hint: Show that al the entriesin the last column are al F's.

(= p)tab(=r)

Youwill getan A if you areclever and either the sun shinesor it rains.

Either 0#1, or | am the Queen of Texas.

Yes

No (verify using Truth Table construction).

valid.

(a Vvadid

(b) Vvadid

(o) vdid

(@ Thereisastudent who spendsmorethan 6 hoursevery weekday in
class.

(b) Every student spends more than 6 hours every weekday in class.

(c) Thereis student who does not spend more than 6 hours every
weekday in class.

(d) No student spends more than 6 hours every weekday in class.

@ 0,(P(x)0Q(x)

(b) O, (P(x)0-Q(x))

0,8, 0, (x0y) 2= xQyx)

(@ True

(b) Fase, unlessthe Universe of discourse hasjust one element

() True

PDNF:(POQ)O(- PO-Q)

PCNF:(P 0- Q) (~ P OQ)

@ (POQD(-POQO(-PO~Q)

(b) (POQUR)O(POQO-R)O(-POQOIR)I(-POQI-R)

POQOR

(POQU(=PUQO(=PO=-Q)

University Question Papers

THEORY OF COMPUTING
GROUP |
(ANSWER ALL QUESTIONS)

1. The positive closure operator denotes
(@ Proper suffix (b) Proper prefix
(c) Oneor moreoccurrance (d) thelength of string is zero

2. Type 3 Grammars are known as
(& Regular Grammar (b) Context Sensitive Grammar
(c) Context Free Grammar (d) Unrestricted Grammar

3. If agrammar produces more than one parse free for a sentence, the
grammar is known as
(8 Left Linear Grammar (b) Ambiguous Grammar
(c) Context Free Grammar (d) Regular Grammar

(4) Which is the data structure used to implement the Push Down

Automata?

(@ Linked List (b) Queue

(c) Stack (d) Array
5. Thegraphical representation of derivation is known as

(@) Derivation Tree (b) Derivation structure

(c) Linear Graph (d) Cedlular Automata
6. An unrestricted language can be accepted by

(@) Finite Automata (b) Turing Machine

(c) Push Down Automata (d) Cédlular Automata
7. The grammar with the productions
S - aA and A - ¢ (s-epsilon) belongs to
(@ Regular Grammar only (b) Context-Free Grammar only
(c) Regular Grammar and context-free grammar
(d) Context sensitive grammar.

University Question Papers 321

10.

11

12.
13.
14.
15.
16.
17.
18.
19.
20.

Thefunctionswhich are computableby aTuring Machineareknown as
(@) Partial Recursive Functions (b) Enumerable Functions

(c) Partia Functions (d) Finite-Automata

In adigraph, if al the vertices have the same outer degree, then it is
known as

(8 Connected Graph (b) Euler Graph

() Hamiitonion Graph (d) Regular Graph

GROUP I

Which Automation is used for accepting Regular Expressions? Write
the definition for it.

Define “ prefix” and “suffix” of astring.

When an NFA becomes a DFA?

What is CNF? and What is GNF? Define.

Write the definition of Context-Free Grammar.
Define “Unit Production” and “Null Production”.
Write the definition of “Turing machine”.

What is meant by Recursively Enumerable language?
What is meant by Partial Recursive Function?

When a“digraph” becomes a“regular graph”?

SEMESTER EXAMINATIONS
(NOV./DEC. 1999)

M.Sc. — COMPUTER TECHNOLOGY — | SEMESTER

THEORY OF COMPUTING

Time: 3 hours Max. Marks: 60

Instructions

1
2.

1

Answer ALL questions from Part A and FIVE questions from Part B.
All questions must be answered in same answer book.

PART A

Define regular expression.

322

Theory of Automata, Formal Languages and Computation

©OoN O AW

10.

11

12.
13.

14.

15.

16.

Show that the CFG with the following productions is ambiguous.
S - a|Sa|bSS|SH| S|

When NFA becomes DFA?

List the properties of Finite State Machine.

Define tree automata.

What is priority rewriting?

Define Kleene closure.

What is star free sets?

State the two methods used by PDA to accept alanguage.
Define Rabin tree automation.

PART B

Construct DFA accepting each of the following languages.

(@ WD{a b} eachainW isimmediately proceded andimmediately
followed by “ab”.

(b) WDO{a b} :W has“abab” asa substring.

Construct and explain specia automatafor the given string “abbaab”.

Design a Push Down Automata to accept the strings of the grammar.

G:E- rEr|eEe€le

Explain the sequence of moves.

Find star heights of the following regular expressions.

@ (a@b o) (b) (c@b))

(© (@ Ob Oab) (d) (abb a)’

Write markov algorithm to find the following.

(8 Reverse of the given string “abcd”

(b) Whether a given decimal number isdivisible by 3.

Construct NFA accepting thefollowing languages over al phabet { 0, 1}

(8 Theset of all strings with 3 consecutive 0's (zeroes).

(b) Thesetof al strings such that every block of five consecutive sym-
bols contains atleast 2 zeroes.

() Theset of al strings ending in oo.

END

University Question Papers 323

THEORY OF COMPUTATION

Time: 3 hours Marks : 60

Instructions:

Answer any Six questions each carry 10 marks.

1 (@
(b)
2. (9
(b)
3. (@
(b)
4. (@
(b)
(i)
(if)
(iii)
5 ()

(b)

State and provethe principle of mathematical induction using two
examples other than Q no. Ib.

Prove using mathematical induction ‘ For every n> 1 the number of
subsetsof {1, 2,n} is2n.

Prove that the language accepted by any Finite Automation is
regular.

Construct aminimal DFA for the regular expression

((ab) b/ ab*)*

Write short notes on Pumping lemma.

State and Prove the properties of Context Free languages.
Distinguish between deterministic Pushdown Automata and
Non-deterministic Pushdown Automata.

Let G be the Context free grammar with productions

S aS/ALS/c
Let G, bethe Context free grammar with productions
S -T/U T albT/c U - aS;/aTbU

Show that G is ambiguous.

Show that G and G, generate the same language.

Show that G, is unambiguous.

Construct a Turing machine to accept a palindrome over |ab|.
Draw thetransition diagram and trace the movesfor the any string.
Doesevery Turing machine computesapartial function? Explain.

6. StatetheRice' stheorem and post correspondence problem and give the
proof of Rice'stheorem.

7. (8

(b)

Show that alanguageL 0 =" isrecursively enumerable (i.e. canbe

accepted by someTM) if and only if L canbeenumerated by some
TM™.

Distinguish halting problem and Unsolvability.

324

Theory of Automata, Formal Languages and Computation

THEORY OF COMPUTING
GROUP |

(ANSWER ALL QUESTIONS)

Let aand bbetwo regular expressionsthen(a” O b")” isequivalent to
(@ alb (b) (aOb)

© (bOa) d (o Da)

Every context free Grammar can be transferred into an equivalent
(@ Greibach Normal Form (GNF)

(b) Chomsky Normal Form (CNF)

(c) Either (A) or (B)

(d) None of the above

Finite state machine — recognizes palindromes

@ can (b) may

(c) Can't (d) may not

Pushdown machine represents

(& Type3regular grammar (b) Type 2 context free grammar
() Type 1 context sensitive grammar

(d) Type 0 phrase structural grammar

The Turing machine is computable if final state contains

(@) transition function (b) notansition function

() halt state (d bothBandC

Match the following

1. BNF @ S- afha, Ao A

2. CNF (b) S- aAA A- bBB

3. ONF (0 S- AAA- a

(A) 1-a 2-b, 3-c, (B) 1-b,2-c,3a

(©) 1-a2-,3b (D) 1-c,2-b,3-a

Which is the data structure used to implement the PDA?

(@ Linkedlist (b) queue

(c) stack (d) Array

A connected graph as a strongly regular colouring if and only if itisa
() digraph (b) cayley graph

(c) regular graph (d) cellular Automata

Which isthe following is amodel of massive parallelism.

(@) Finite Automata (b) Linear Bounded Automata

(¢) Turing machine (d) Cellular Automata

University Question Papers 325

10.

11
12.

13.

14.

15.
16.
17.
18.
10.
20.

The free abelian group of ranked with the standard set of free generator
isthelattice of integer co-ordinate prints of euclidean space R® denoted
as2isis

(@) triangular tessellation (b) Torus

(c) Torustessellation (d) 2D-euclidean grid

THEORY OF COMPUTING
GROUP I

Draw the NFA that recognize the following set 01°/00"1.

Construct a Turing machine that recognizes the set of all bit strings that
endwitha‘0'.

Derive the string aaabbbcce from S - ABSc, S — Abc, BA - AB,
Bb - bb, Ab - ab, Aa - aa.

IstheGrammar ‘'S - AB,B - ab, A - aa, A - a,B - b ambiguous?
Prove.

Define Pushdown Automata.

What isaunit production & €- (epsilon) production?

State the church’s Hypothesis.

State the Halting problem.

State some practical application for linear cellular automata.

Draw 3 examples for cayley graph.

THEORY OF COMPUTING
GROUP |
(ANSWER ALL QUESTIONS)

The grammar with the productions
S - aA/bB, B - b, A - ¢ (e-epsilon) belongsto

(& Regular grammar only (b) Context free grammar only
(¢) Regular and Context free only

(d) Context sensitive only

State the regular expression recognized by the transition diagram

326 Theory of Automata, Formal Languages and Computation

()10 (i) 0*1* (i) {0, *{10} (iv) (101)*

(A) (i) only (B) (i) & (ii) only
(©) (i) & (iii) only (D) (i) & (iii) only
3. The context free grammar defined by ab* is
@ S- Sl/a () S- XY,X > axY - by

(c) C- SS/baa/abb,S-~¢ (d S- aS,S- bS
4. Find the useless symbol in the given CFG

S- AB/CAB - BC/AB,A- aC - aB/b

@A (b) B (cC (d) all of the above.
5. The grammar that does not have an equivalent deterministic automata
for anon-deterministic oneis
(8 Finite state automata (b) Turing machine
(¢c) Pushdown automata (d) None of the above
6. A CFGisambiguousif
(& Thegrammar contains useless Non-Terminals.
(b) It produces more than one parse tree for some sentence.
() Some productions has two Non-Terminals side by side.
(d) Thegrammar contains only terminals on the right side.
7. Which of the following isamodel of massive paralelism
(@ Cdlular automata (b) Turing machine
() Linear bounded automata (d) Finite automata
8. When aconnected graph has a strongly regular coloring
(@) If thegraphisadigraph
(b) If the graphisaCayley graph
(c) If thegraphisaEuler graph.
(d) If the graph isaHamiltonian graph.

9. Maitch thefollowing

(@ BNF () S— AAA_BBB-a
(b) CNF (i) S— aAAA_ bBB,B - b
(©) GNF (i) S— afa, A~ SAA- b
@ a-i,b-iii,c-ii (b) a-ii,b-iii,c-i
© a-i,b-ii,c-iii (d) a-iii,b-i,c-ii.

10. If ‘@ and ‘X asconfiguration with finite support and ‘X' be an arbitrary
configuration then the convolution a*x is given by.

University Question Papers 327

THEORY OF COMPUTING
GROUP I

11. Describein English the sets accepted by the finite automata along with
the regular expression for the following transition diagram.

12. List the application of finte automata.
13. Show that the following context Free Grammar generates the language
of al strings over {0, 1} withtwiceasmany 1'sas0’s.

S - SS/OTT/TOT/TTO
T - 1S/S1S/S1/1

14. Isthefollowing grammar ambiguous. Justify
S- AB,A- aAle B - ab/bB/e.

15. Givethe new set of productions after removng the unit productions for
the following CFG.

S- AAA- B/BB, B - abB/b/bb

16. Construct two different NFA for the RE a’.

17. Isunsolvability a halting problem. Justify.

18. When a‘digraph’ becomes regular?

19. Define cellular automata.

20. What is meant by Recursively Enumerable language?

B.E. — COMPUTER SCIENCE & ENGINEERING — IV SEMESTER

THEORY OF COMPUTING

Time: 3 Hours Max. Marks: 60

GROUP Il

21. Construct and explain pushdown Automatafor thefollowing grammar.

S o aAA
A - aS/bS/a

328

Theory of Automata, Formal Languages and Computation

22.

23.
24.

25.

Time:

21.

22.

23.

24,

Construct NFA for the following regular expressions. Show the
sequence of moves made by the each in processing the input string
“ababbab”.

(@ (ab)* (ac)*

(b) (a/b)* abb (a/b)*

(© (& /b*)

Construct GNF for the BNF grammar S - AB, A - B,B - aB|Bb]e.
Construct Turing Machinefor identifying thelanguage consisting of 0's
and 1'sin which al the string consisting of even number of 0'sand odd
number of 1's.

The roles played by Linear Cellular Automatadiscuss. Explain Global
maps and dynamical systems.

THEORY OF COMPUTING

3 Hours Max. Marks. 60

GROUP Il

LetM = ({q,,9,,05},{01,0,{c,}.{q5}) isaNDFA wheredisgivenby
0(c;,0) ={q2, G5} O(ay.1) ={aL

5(9,,0) ={a;,a,} d(a,.1) ={¢}

9(d5.0) ={a,} 0(0s.1) ={ay,q,}

(8 Construct an eguivalent DFA and draw the transition diagram.
(b) Check whether thestring ‘011010’ isaccepted by DFA and NFA.
Consider the grammar with the following productions

S~ iCtS/iCtseS/a,C - b

(8 Generate a sentence ‘ibtibtaea’ using leftmost derivation and con-
struct a derivation tree for it.
(b) Derive an equivalent chomsky normaform productions.
(@ Construct aPDA for the given grammar
S - AaA/CA/ BaB
A - aaBa/CDA/aa/DC
B - bB/bAB / bbaS
C-Cal/bC/D
D - bD/e.

(b) Using the above show the sequence of PDA for the string
‘aabbaaaaaaa’.
() Statetheproblemsin Turing Machine.

University Question Papers 329

(b) Construct aTuring Machinethat will accept thefollowing langua-
gesin{a, b}

L={a"b™,n=1,n#ni}.

25. (a) Explainthe basic properties of linear cellular Automata.
(b) Draw any 3 common types of Cayley graph.

THEORY OF COMPUTING

TEST Il
Class: BE—CSE Time 90 mts.
Sem: IV Marks: 30
GROUP |
1. The CFG defined by ab’ is
S XY
@ S- Pla (b) X - ax
Y - by
© C - SS|baa|abb (d) S aS
S-¢ S - Bs
2. Consider the Left Recursive (LR) grammar
S - Aalb
A - Ac|bd

Which of the following grammar is equivalent to the given grammar.
When LR isremoved

S - Aalb
@ A bdA (o) S- bA
A cAle A- Clda
© S - Aalb (d) S - Aalb
Ao CA A- AC|bd|e
3. Match thefollowing
1. BNF @ S- aAa,A- SHA
2. CNF (b) S- aAA A- bBB
3. ONF (©0 S- AAA- a
@ 1-a2-b,3-c (b) 1-a2-¢3-b
(¢) 1-b,2-¢,3-a (d 1-c¢2-b,3-a
4. InPDA, thed isdefined by
@ d(a,a,2)=(pLy1) (b) (g, 2) = (dl y1)

(© o(q,a)=(pLyD (d) botha& b.

330 Theory of Automata, Formal Languages and Computation

5. The Turing machine is computable if final state contains

(&) transition function (b) halt state
() no transition function (d) bothbé& c.
GROUP 11

6. Check whether the following grammar is ambiguous or Unambiguous

S- S(9)|e
7. Rewrite the given grammar after removing unit production
S- AB
A- B
B -~ aB|Bbje
8. Define PDA
9. Find the movesfor the following configuration of TM
Qo
0 1 1
Q
!
0 1 1
10. Define Turing Machine.
GROUP I

Answer Any 2 Questions

11. Construct GNF for the BNF given in problem no. 7.
12. (@) Construct PDA from the following grammar
S - aAA|bBB|aB|a
Ao aAla
B - bB|b
(b) Show the sequence of moves of PDA of problem givenin 12(a).
13. Construct TM for identifying the language consisting of 0'sand 1'sin
which all the string consists of even no. of O'sand 1's.

University Question Papers 331

10.

THEORY OF COMPUTING
GROUP |

The regular expression for the set of strings that consists of aternating
Osandl's.

(8 (01)" +(10) +0(10)" +1(01)" (b) (01) (10)"1(01) 0(10)"

(©) (e +1)(0) (e +0) (d) botha& c.

Consider the following 2 DFA’s (Refer fig.)

The CFG is defined by the following productions

S AIB

A- OA/¢g

B-0B/1B/¢g

Which of the following substring is encountered during the derivation
process for the sentence 00101

(3 0A1B (b)0DO1B (c)0101B (d) All of the above

Match the following

1. BNF (@ A- xXyz

2. GNF (b) A xy

3. CNF () A XXYyZz
@ 1-a2-b,3-c (b) 1-b,2-¢,3-a
(© 1-c,2-A,3-b (d 1-a2-b,3-c

The equivalent PDA for the given CFGisS - 0SL/ A (Refer fig.)
The pumping lemma for regular language

(@ xy zforanyi=0 (b) X yzforanyi=0

(c) xyZforanyiz=1 (d xyZforanyi=1
The transition function of Turing machine can be defined as
(@ 0(q,x)=(p, ¥, D) (b) d(q.0)=(py.D)

(© (g, xy)=(p v,D) (d) Notransistion function.
The Turing machineis said to be acceptance by halting, if

(& 0(q,x) isundefined (b) (g, x) isdefined

(©) (g, x)isL] (d) d(a,x)=(p.Y)
....................... model does not exchange information during
computation

(@ uniform arrays (b) mosaic automata

(c) tessdlation structure (d) all of the above
Thetransition function of cellular space is denoted by

@ &QxQ" -~ Q (b) &QxQ- Q°

© &-Q° d &Q‘-Q

332

Theory of Automata, Formal Languages and Computation

B.E. — COMPUTER SCIENCE & ENGINEERING
THEORY OF COMPUTING

SEMESTER IV

Time: 3 Hours Maximum Marks : 60

11

12.

13.
14.

15.

16.

17.
18.
19.
20.

21.

GROUP I

Find aregular expression for the language of the set of al stringsof 0's
& 1’ swhose number of 0’sisdivisible by 5and whose number of 1'sis
even.

Compute [FNFA for the following, regular expression

1(1+10)" +10(0+01)"

Prove that {0"102" / n>0} is not aregular language.
Find whether the given grammar is ambiguous (or) Unambiguous
S.TU

T - aTbT|c
U - aAl|aTbu

Rewrite the given grammar after removing unit production:

S_ ABA
A~ aA|l
B - bB|O

Design a CFG generating the following language
{a'blc“/jzi+k}

Define Turing Machine.

Why accepting state is called as Halting Statein TM?
Differentiate Cellular and Linear Cellular automata.
Write the local rules of Cellular automata.

GROUP Il

(8 Construct finiteautomatato recognizethelanguage of all strings of
O'sand 1'sof length at least 1, if they wereinterrupted asbinary
representation of integers, would represent integersevenly divisi-
ble by 3. Leading O’'s are permissible.

University Question Papers 333

(b) Findaneguivalent FA and Regular expression from the given NFA
(Refer fig.)
22. (a) Design a PDA to recognize the language of al odd-length palin-
dromes over { a, b}
(b) Construct CFG for the language generated in Question No. 22(a).
23. Construct GNF from the given grammar

S - aAa|bBb|
A- cla

B - c|b

C - CDE|

D - AlB|ab

24. (@) Construct a Turing Machine that creates a copy of itsinput string
(Ex: abcd) to the right of the input but with a blank separating the
copy from the original.

(b) DesignaTuring machinefor computing the LCM of two numbers.

25. Write short noteson

(& Cellular Automata
(b) Linear Célular Automata

THEORY OF COMPUTING

Time: 3 hours Max. Marks: 40

GROUP |

1. Find the start height of the following and draw the NFA for the given
regular expressions.
(@ (a(a/a aa)/aaa)
(b) ((a/a aa)aa)’ / aaaaaa’)’
2. Consider the two regular expressions
rt0 /1 r201 /10 /10/ (01
(8 Findastring corresponding to rl but not to r2.
(b) Find astring corresponding to r2 but not to r1.
(c) Find astring corresponding to both r1 and r2.
(d) Findastringin{0, 1} corresponding to neither ri nor r2.
3. Define and Construct alanguage for Context sensitive grammar.
‘“We do not define e-transitions for a Turing machine’. True or False.
Justify.

334 Theory of Automata, Formal Languages and Computation

4. State and distinguish halting problem and Unsolvability.
GROUP I

5. State the Kleene's theorem (not the corollary) and give the proof with
neat sketch wherever necessary.

6. Statethe rulesfor a Context Free Grammar to be in Chomsky Normal
form. Find a CFG G’ in CNF generating L(G)—{¢€}, where G has a
productions of

S . AaA/CA/ BaB A - aaBa/CDA/aa/DC
B- bB/bAB/bb/As C - Ca/bC/D
D-bD/e

7. Consider the CFG with productions
S-S%$ S-S +T/T T-T*FIF F - (S)/a
(@ Writethe CFG obtained from thisoneby eliminating left recursion.
2
(b) Statetherulesfor DPDA and give atransition table for a DPDA
that acts as a top down parser for this language.
8. Define Universal TM.
Show that a language L 05" is recursively enumerable (i.e., can be
accepted by some TM) if and only if L can beenumerated by some TM.
9. State and prove Rice's Theorem.

THEORY OF COMPUTING
Time: 90 Mts. Max Marks: 30
TEST Il

GROUP |

1. TheCFG defined by ab* is

S XY
@ S- Sa (b) X - ax
(©) C~DSS|baaIabb (d S- aS|bS

2. Thetransition function of PDA is defined as
@ d(a,a2)=(py)
(b) d(d,2)=(py)

University Question Papers 335

(© o(q.a)=(py)
(d o(g.a2)=(py)
3. Say Trueor Fase
A languageL isContext free Language, if thereisaPushdown automata
accepting.
4. A CFGisUnambiguousif,
(@) it contains uselss Nonterminals
(b) it produces more than one parse tree for some sentence
(c) it produces more than one derivation for some sentence
(d) Bothb& c
5. S aAa, A- SA A - b The given grammar isin normal
form.
(& BNF (b)CNF (c) GNF (d)botha& b

GROUP I

6. Define PDA.

7. Show that the CFG with following production is Unambiguous.
S - S(9)|0

8. Let L bethelanguage generated by the CFG with productions
S - S+S|S-S|S* S|S/S|(S)|a
How many derivation trees (Parsetrees) arethereforethestringa|a|a|
alala?
9. Write Instantaneous descriptions for the PDA generated in the Qn. No.

11 for accepting the sentence aabb.
10. Rewrite the grammar after removing Left recursion.

S- Aalb
A - Ac|bd

GROUP Il

Answer any 2 Questions
11. Convert the following grammar to GNF.

S - AB|O
A - aAS|a
B - SS|A|bb

336

Theory of Automata, Formal Languages and Computation

12.

13.

11

12.
13.

14.

15.

16.
17.
18.
19.
20.

(8 Construct PDA from the given grammar.

S- SI$

Sl- S+T|SL-T|T
T_oT*F|T/F|F
F - (9a

(b) Show the moves of the PDA for accepting the sentence
a+a* a/a$

Design a Context Free grammar for Boolean expressions and Construct
PDA for the same.
THEORY OF COMPUTING
GROUP 1I

Describesin English the sets accepted by the finite automata aong with
the regular expression for the following transition diagram.

List the application of finite automata.
Show that the following context Free Grammar generates the language
of al strings over {0, 1} withtwiceasmany 1'sas0’s.

S SS/OTT/TOT/TTO
T -1S/SIS/S1/1

Is the following grammar ambiguous. Justify
S- AB,A- aA/[0 B - ab/bB/O

Give the new set of productions after removing the unit productions for
the following CFG.

S- AA A- B/BB,B - abB/b/bbh.

Construct two different NFA for the RE a'.

Is unsolvability a halting problem. Justify.

When a‘digraph’ becomes regular?

Define cellular automata.

What is meant by Recursively Enumerable language?

University Question Papers 337

B.E.—COMPUTER SCIENCE & ENGINEERING—IV SEMESTER

THEORY OF COMPUTING

Time: 3 Hours Max. Marks: 60

21.

22.

23.

24,

25.

by

GROUP Il

Let M = ({a,,0,,0d5},{01,8,{a,}.{qd;}) isaNDFA whered is given

5(0;,0) ={09,, 95} 0(q;. D) ={a,}
8(9,.0) ={a,, 9.} 3(q,.1) ={¢}
5(d3,0) ={ay} 8(ds,D) ={a;, 0}

@
(b)

@

(b)
@

(b)

@
(b)

@
(b)

Construct an equivalent DFA and draw the transition diagram.
Check whether the string ‘011010’ isaccepted by DFA and NFA.

Consider the grammar with the following productions

S iCtS/iCtSeS/a,C - b

Generateasentence ‘ibtibtaea’ using leftmost derivation and con-
struct a derivation tree for it.

Derive an equivaent chomsky normal form productions.
Construct a PDA for the given grammar

S - AaA/CA/ BaB

A - aaBa/CDA/aa/DC
B - bB/bAB / bbaS

C - Cal/bC/D

D - bD/0

Using the above show the sequence of PDA for the string
‘aabbaaaaaaa’.

State the problems in Turing Machine.

Construct aTuring Machinethat will accept thefollowing languages
in{a, b}

L={a"b™,n=1,n#ni}.

Explain the basic properties of linear cellular Automata.
Draw any 3 common types of Cayley graph.

338 Theory of Automata, Formal Languages and Computation

COMPUTER SCIENCE AND ENGINEERING — FIFTH SEMESTER
THEORY OF COMPUTATIONS
Time: 3 Hours Max. Marks: 50
*Answer All Questions
PART A

1. (@ Explainthe Chomsky’s hierarchy of language.
(b) Explainthe need for Theory of Computing.

2. (8 Proveby mathematical induction: Every integer, greater than 17, is
anonnegative integer combination of 4 and 7. In other words, for
every n> 17, there exists integersi, and j,, both > 0, so that

n=i, *4+j,*7
(b) For every n=0, n(n? +5) isdivisible by 6.
3. (@) Provethat for every NDFA, there exists a DFA.

(b) Find the deterministic acceptor equivalent to
M =({q0,qL g2, (a b),5,3,,d,) isgiven below:

State a b
o Co» Q1 07
d; o Oy
07 Co» Q1

4. (a) Findthelanguage generated by the following grammars:
(i) S - OA|LS|O|L A - 1AJ1S]1
(i) S - 0SL|0AL A - 1A0]|0.
(b) Construct agrammar to generate

{(ab)"|In=1) O{(ba)" In=3.

5. Listany 12 idetities for regular expressions.
6. Draw thetransition system corresponding to (ab+c)" b.

University Question Papers 339

7. Transition table of a Turing machineis given below:

Present Tape Symbols Initial State—
State b 0 1 finite state
-0 1Lq, ORq,

07 bRa, OLa, 1Lq,
Oz bRa, bRgs
4y ORa; ORaq, 1Rq,
0s OLa,

Draw the computation sequence of the input string 00.
8. Explain how a Turing-machine can be used as a language acceptor.
9. Provethat not all languages are recursively enumerable.
10. (@) WhatisRice' s Theorem?

(b) List six unsolvable problems.

11. (i) Construct aminimal finite automaton for the given FA.

(i) Below areanumber of language over {0, 1}. In each case, decide
whether or not the languageisregular, and provethat your answer

IS correct.

(&) Theset of al strings x beginning with anon null string of the
form WW.
(b) Set of all strings x containing some non null substring of the
form WW.
(c) Set of al strings x containing some non null substring of the
form WWW.
(d) Setof al length strings over { 0,1} with middle symbol 0.

340 Theory of Automata, Formal Languages and Computation

(e) Set of non palindromes.
(f) Set of strings in which the number of 0's and the number of
1'sare both divisible by 5.
12. What isanon deterministic turing machine? Explain how isit used for
computing.
13. (@ (i) Construct a turing machine that can accept the strings over
{0, 1} containing even number of 1's.
(if) Construct a turing macine that can accept the set of all even
palindromens over {0, 1}.
(OR)
(b) M isaturing machine represented by the transition system asin
the figure given. Obtain the computation sequence of M for
processing thei/p string 0011.

y.R) (vy.L) (b,b,R)
(0,x,R) ,y,L) ' (x,x,R) ' (b,b,R)
®

(1.x,R) (o,0,b)

10.

11

12.
13.

14.

15.

16.

17.

Bibliography

Richard Johnsonbaugh, Discrete Mathematics, Fifth Edition, Pearson
Education Asia Publishers, 2001.

Kolman, Bushy, Ross, Discrete Mathematical Structures, Fourth
Edition, Pearson Education, 2001.

Dexter C. Kozen, Automata and Computability, Springer, 1997.
Seymour Lipschutz., Discrete Structures, Schaum’'s Outline series,
TMH, 1986.

Michael Sipser, Introduction to Theory of Computation, Thomson,
Brooks/Kole, 2001.

Peter Linz., An Introduction to Forma Languages and Automata,
Second Edition, Narosa Publishers, 1997.

Raymond Greenlaw, H-James Hoover, Fundamentds of the Theory of
Computation, Principles and Practice, Morgan Kaufmann Publishers, 1998.
John E. Hoperoft, Rgeev Motwani, Jeffrey D. Ullman, Introduction to
Automata Theory, Languagesand Computation, Pearson Education, 2001.
Leon. S. Levy, Discrete Structures of Computer Science, Wiley Eastern
Limited, 1994.

K.L.P. Mishra, N. Chandrasekaran, Theory of Computer Science,
Second Edition, EEE, Prentice Hall of India, 1998.

Kenneth Ht. Rosen, Discrete Mathematics and Its Applications, Tata
McGraw-Hill, Edition 2001.

B.S. Vatssa, Discrete Mathematics, Wishwa Prakashan, 1993.

Bernard M. Moret. The Theory of Computation, Pearson Education
Asia, 1998.

Harry R. Lewis, Christos H. Papadimitrion, Elements of the Theory of
Computation, Pearson Education Asia, Second Edn., 1998.

Ralph P. Grimaldi, Discrete and Combinatorial Mathematics, Pearson
Education, Asia, 2002.

John C. Martin, Introduction to Languages and the Theory of
Compuitation, Second Edition, McGraw Hill International Edition, 1997.
John. E. Hopcroft, Jeffrey D. Ullman, Introduction to Automata Theory,
Languages and Computation, Narosa Publishers, 1979.

THIS PAGE IS
BLANK

Index

Absorption 3, 44, 53

Absurdity 255, 259, 302

Acceptor 59, 99, 114, 170, 186, 188
Ackermann’sfunction 229, 231, 234
Alphabet 18, 43, 55

Ambiguity 127, 129-130
Ambiguous grammar 130, 149, 155
Associativity 2, 44, 52-53, 259
Automaton 58, 97, 99, 108

Axiom 245, 299

Biconditional 249, 293, 301
Bijection 13, 43,54

Binary turing machine 196, 208
Blank 187, 207

Boolean logic 27, 43, 56

Boolean satisfiability 238, 243
Bottomup parsing 128-129, 149, 155
Bubble sort 236, 243

Cardinality 7, 43-44, 46, 53, vii

Cartesian product 7, 53, vii

Chomsky normal form (CNF) 142, 149,
157, 167, 184

Circuit 16, 55

Closure 91, 96, 112, 175

Commutativity 2, 44, 52, 259

Complement 2, 43, 52, vii

Complexity theory 235, 240, 242

Composition of functions 222, 231, 233

Concatenation 18, 56, 80-81, 92, 99

Conjunction 27, 43, 56, 247, 290, 292,
300

Connected graph 16, 55

Context sensitive grammar 210, 214, 216

Context sensitive language 210-211, 214,
216-217

Context-free grammar (CFG) 115,
148-149, 153, 167

Contingency 255, 257, 293, 301

Contradiction 94, 173, 203, 255-256, 293,
301

Contrapositive 259-260, 302

Cycle 17,55,94

Decision algorithm 176, 180, 185
Degree of vertex 15, 43, 55
DeMorgan'slaw 3, 6, 44, 53, 259, 290
Derivation tree 118, 125, 154
Deterministic automata 58, 109
Directed graph 17, 43, 55
Digoint set 7, 44,53
Disjunction 27, 43, 56, 248, 290, 292,
300
Digunctive syllogism 259, 293, 302
Distributivity 3, 44, 52, 259, 273

Empty production removal 133, 184
Empty set 1, 43, vii

Empty string 18, 56, vii

Equivalence 259, 266, 302
Equivalencerelation 9-11, 44, 53, 97-98
Exhaustive search parsing 128, 155
Exportation 259, 302

Finite acceptor 110, 170

Formal system 197, 218, 230, 232, 234
completeness 218, 230, 232
consistency 218, 230, 232

Function 12, 43, 54

Godel’ s proof of numbers 218, 233
Grammar 37-38, 57, 117, viii
Graph 15,55

344

index

Greibach normal form (GNF) 148, 158,
167, 184

Hypothetical syllogism 259, 293, 302

Idempotency 2, 44, 52, 259
Implication 259, 293, 300, 302
Indegree 17, 43, 55

Initial functions 220, 231, 233-234
Injection 12,43, 54

Input alphabet 70, 109, 186, 207
Integer bin-packing 237, 243
Intractable problem 238, 243
Invertible function 13,43, 54
Isolated vertex 15, 43, 55

Kleene star 19, 43, 56, 80-81, 92-93, {10,
vii

tambda-production 138, 156

Left linear grammar 116, 118, 149, 154,
217

Left recursion 157, 184, 337

Left recursion removal 135, 167, 180,
184

Liar’s paradox 245, 292, 299

Linear bounded automata 211, 214, 216

Logic 245,292,299

Logical identities 258

Mathematical induction 28, 32, 35, 44, 57
Mathematical structure 245, 299
Mealey machine 89-91, 99, 112, viii
Membership criterion 1

Modus Ponens 259, 293, 301

Modus Tollens 259, 293, 301

Moore machine 90-91,99,112
Multi-tape turing machine 196, 208
Myhill-Nerode theorem 97-99

Negation 2406, 290, 292, 299

Non-contracting grammar 212,216

Non-deterministic automata (NDA) 58,
109

Normal form 142, 157, 167, 289

NP problem 239-240, 244

N-track turing machine 195, 204, 208

Null set 52

Offline turing machine 196, 208

Order statistic 235, 242
Outdegree 17,43, 55

P problem 201, 239

Parsing 127, 149, 154

Partial derivation tree 119, 155

Partial ordering relation 9, 54

Partition 9, 54

Pigeon-hole principle 28, 57, 94

Polynomial time algorithm 236, 240, 242,
v

Poset 9,43, 54

Post’s correspondence problem 209

Post’s Correspondence Problem 202

Powerset 7, 43-44, 46, vii

Predicate calculus 247, 293, 303

Primitive recursion 222, 233

Primitive recursive function 219, 222,
231, 233-234

Proof 245, 259

Proposition 245, 257, 292, 299

Pumping lemma 93-94, 99, 112, 170-171,
180, 185

Pushdown automata (PDA) 159, 172

Quicksort 236, 240, 243

Random access machine 214, 217

Read head 88,111, 188

Recursively enumerable (RE) 197-198,
204, 209, 217

Reflexive 9-11

Regular expression 80-82, 84,99, 110,
114

Regular language 80,99, 110, 214

Regularset 91,97,112,114, 176

Relation 8-9, 12,43

Right linear grammar 115-118, 149, 154,
217

Rules of inference 266

Russel’s paradox 218, 230, 233

Sentential connectives 246, 2592, 209
Sentential form 38, 119, 154, 168, 184
Set 1,43, 51

Singleton 1, 51

Sorting algorithm 236, 242

Space complexity 235, 240, 242
Standard turing machine 195-196, 208
String 18, 55, 198

Index 345

Strong form of turing thesis 197, 204, Transitive 9-11

209 : Travelling salesman problem (TSP)
Subset 1,7,9,12,52 239-240, 243-244
Substitution rule 132, 134, 155 Tree 15,17,55
Successor function 205, 219-220, 231, Turing computable 190, 208

233-234, viii Turing machine 186, 188, 203, 206-207
Surjection 13,43, 54 Turing thesis 204, 209
Symmetric 6, 9-11 Two-way finite automata 88,99, 111
Tape alphabet 186, 207-208 Unit production 134, 149, 155, 157
Tautology 255-256, 293, 301 Unrestricted grammar 197, 215, 217
Theorem 245,299 Useful production 156
Time complexity 235, 240, 242 Useless production 132, 149, 155
Topdown parsing 128, 149, 155
Tractable problems 236, 242 Weak form of turing thesis 197, 204, 209
Transducer 186, 189, 204, 207-208
Transition function 59, 109, 160, 179, Zero function 219-220, 231, 233-234,

187, 204 viii

	Cover
	Preface
	Notations
	Contents
	Chapter 0. Introduction
	0.1 Basics
	0.1.1 Sets
	0.1.2 Relations and Functions

	0.1.3 Graphs and Trees
	0.1.4 Strings and Languages

	0.1.5 Boolean Logic
	0.1.6 Fundamental Proof Techniques

	0.1.7 Introduction to Grammar

	Glossary
	Review Questions
	Exercises
	Short Questions and Answers

	Chapter 1. DFA and NFA
	1.1 Deterministic Finite Automata (DFA)
	1.1.1 Automata—What is it?
	1.1.2 Types of Automation

	1.1.3 Definition of
Deterministic Finite Automation

	1.2 Non-Deterministic Finite Automata (NFA)
	1.3 Equivalence of NFA and DFA
	1.4 Regular Expression
	1.4.1 Regular Languages

	1.4.2 Regular Expressions

	1.4.3 Building Regular Expressions

	1.4.4 Languages defined by Regular Expressions

	1.4.5 Regular Expressions to NFA

	1.4.6 NFAs to Regular Expression

	1.5 Two-Way Finite Automata
	1.6 Finite Automata with Output
	1.6.1 Definition
	1.6.2 Mealey Machine
	1.6.3 Moore Machine

	1.7 Properties of Regular Sets (Languages)
	1.7.1 Closure

	1.7.2 Union, Concatenation, Negation, Kleene Star, Reverse

	1.7.3 Intersection and Set Difference

	1.8 Pumping Lemma
	1.8.1 Principle of Pumping Lemma
	1.8.2 Applying the Pumping Lemma

	1.9 Closure Properties of Regular Languages
	1.10 Myhill-Nerode Theorem
	1.10.1 Myhill-Nerode Relations

	1.10.2 Myhill-Nerode Theorem

	Glossary
	Review Questions
	Exercises
	Short Questions and Answers

	Chapter 2. Context-Free Grammars
	2.1 Introduction
	2.1.1 Definition of CFG

	2.1.2 Example of CFG

	2.1.3 Right-Linear Grammar

	2.1.4 Right-Linear Grammars and NFAs

	2.1.5 Left-Linear Grammar

	2.1.6 Conversion of Left-linear Grammar into Right-Linear Grammar

	2.2 Derivation Trees
	2.2.1 Definition of a Derivation Tree
	2.2.2 Sentential Form
	2.2.3 Partial Derivation Tree
	2.2.4 Right Most/Left Most/Mixed Derivation

	2.3 Parsing and Ambiguity
	2.3.1 Parsing
	2.3.2 Exhaustive Search Parsing
	2.3.3 Topdown/Bottomup Parsing
	2.3.4 Ambiguity
	2.3.5 Ambiguous Grammars/Ambiguous Languages

	2.4 Simplification of CFG
	2.4.1. Simplification of CFG-Introduction
	2.4.2 Abolishing Useless Productions

	2.5 Normal Forms
	2.5.1 Chomsky Normal Form (CNF)
	2.5.2 Greibach Normal Form
	Glossary
	Review Questions
	Exercises
	Short-Questions and Answers

	Chapter 3. Pushdown Automata
	3.1 Definitions
	3.1.1 Nondeterministic PDA (Definition)
	3.1.2 Transition Functions for NPDA
	3.1.3 Drawing NPDAs
	3.1.4 Execution of NPDA
	3.1.5 Accepting Strings with an NPDA
	3.1.6. An Example of NPDA Execution

	3.1.7 Accepting Strings with NPDA (Formal Version)

	3.2 Relationship Between PDA and Context Free Languages

	3.2.1 Simplifying CFGs
	3.2.2 Normal Forms of Context-Free Grammars
	3.2.3 CFG to NPDA
	3.2.4 NPDA to CFG
	3.2.5 Deterministic Pushdown Automata

	3.3 Properties of Context free Languages
	3.3.1 Pumping Lemma for CFG
	3.3.2 Definitions
	3.3.3 Proof of Pumping Lemma
	3.3.4 Usage of Pumping Lemma

	3.4 Decision Algorithms
	Glossary
	Review Questions
	Exercises
	Short Questions and Answers

	Chapter 4. Turing Machines
	4.1 Turing Machine Model
	4.1.1 What is a Turing Machine?
	4.1.2 Definition of Turing Machines

	4.1.3 Transition Function, Instantaneous Description and Moves

	4.1.4 Programming a Turing Machine
	4.1.5 Turing Machines as Acceptors
	4.1.6 How to Recognize a Language
	4.1.7 Turing Machines as Transducers

	4.2 Complete Languages and Functions
	4.3 Modification of Turing Machines
	4.3.1 N-Track Turing Machine
	4.3.2 Semi-infinite Tape/Offline/Multitape/ND Turing Machines
	4.3.3 Multidimensional/Two-state Turing Machine

	4.4 Church–Turing’s Thesis
	4.4.1 Counting
	4.4.2 Recursive and Recursively Enumerable Language

	4.4.3 Enumerating Strings in a Language

	4.4.4 Non-recursively Enumerable Languages

	4.5 Undecidability
	4.5.1 Halting Problem

	4.5.2 Implications of Halting Problem

	4.5.3 Reduction to Halting Problem

	4.5.4 Post’s Correspondence Problem

	4.6 Rice’s Theorem
	Glossary
	Review Questions
	Exercises
	Short Questions and Answers

	Chapter 5. Chomsky Hier archy
	5.1 Context Sensitive Grammars and Languages
	5.2 Linear Bounded Automata
	5.3 Relationship of other Grammars

	5.4 The Chomsky Hierarchy
	5.5 Extending the Chomsky Hierarchy
	5.6 Unrestricted Grammar
	5.7 Random-Access Machine
	Glossary
	Review Questions
	Exercises
	Short Questions and Answers

	Chapter 6. Computability
	6.1 Formal Systems
	6.2 Recursive Function Theory
	6.3 Primitive Recursive Functions
	6.4 Composition and Recursion
	6.5 Ackermann’s Function
	Glossary
	Review Questions
	Exercises
	Short Questions and Answers

	Chapter 7. Complexity Theory
	7.1 Introduction
	7.2 Polynomial-Time Algorithms
	7.3 Non-Deterministic Polynomial Time Algorithms
	7.4 Integer Bin Packing
	7.5 Boolean Satisfiability
	7.6 Additional NP Problems
	7.7 NP-Complete Problems

	Glossary
	Review Questions
	Exercises
	Short Questions and Answers

	Chapter 8. Propositions and Predicates
	8.1 Propositions
	8.1.1 Connectives

	8.1.2 Tautology, Contradiction and Contingency

	8.1.3 Logical Identities

	8.2 Logical Inference
	8.3 Predicates and Quantifiers
	8.4 Quantifiers and Logical Operators
	8.5 Normal Forms
	Glossary
	Review Questions
	Exercises
	Short Questions and Answers

	Answers to Exercises
	University Question Papers

	Bibliography
	index

