

Copyright © 2005 New Age International (P) Ltd., Publishers
Published by New Age International (P) Ltd., Publishers

All rights reserved.

No part of this ebook may be reproduced in any form, by photostat, microfilm,
xerography, or any other means, or incorporated into any information retrieval
system, electronic or mechanical, without the written permission of the publisher.
All inquiries should be emailed to rights@newagepublishers.com

ISBN (10) : 81-224-2334-5

ISBN (13) : 978-81-224-2334-1

PUBLISHING FOR ONE WORLD

NEW AGE INTERNATIONAL (P) LIMITED, PUBLISHERS
4835/24, Ansari Road, Daryaganj, New Delhi - 110002
Visit us at www.newagepublishers.com

THIS PAGE IS
BLANK

Pref ace

This book deals with a fascinating and important subject which has the
fundamentals of computer hardware, software and some of their applications.
This book is intended as an introductory graduate text in computer science
theory. I have taken care to present the material very clearly and interestingly.

As an introductory subject to computer science, this book has been written
with major stress on worked examples. Chapter 0 covers the basics required
for this subject viz., sets, relations, functions, graphs, trees, languages, and
fundamental proof techniques.

Chapter 1 deals with the different aspects of Deterministic Finite
Automata (DFA) and Non-Deterministic Finite Automata (NFA). A brief
introduction to pumping lemma and some theorems relating to Regular Sets
have also been given.

Chapter 2 covers the concepts relating to context free grammar viz.,
derivation trees, parsing, ambiguity, and normal forms. Chapter 3 deals with
Pushdown Automata and their relation to Context-Free Grammar with some
introduction to decision algorithms.

Chapter 4 deals with the Turing Machine model and the variations of
Turing Machines with introduction to Church-Turing Thesis and the concept
of undecidability. Chapter 5 explains the concepts viz., regular grammars,
unrestricted grammars and Chomsky hierarchy of languages.

Chapter 6 deals with the different aspects of computability with an
introduction to formal systems, recursive functions, primitive recursive
functions, and recursion. Chapter 7 covers the various aspect of complexity
theory such as polynomial time algorithms, non-polynomial time algorithm
class P and NP problems.

Chapter 8 covers propositions and predicates with lot of illustrative
examples.

I wish to thank my teachers who helped me to get a good grasp of the
subject and for having motivated me to write this book.

I want to place on record my sincere thanks to my family—Shri. Papu
Antony, my father; Mrs. Maria Daisy, my mother; Mrs. Assumpta Eugene, my
wife; and Ms. E. Catherine Praveena, my only daughter, for their great
patience and prayers while I was writing this book.

My heartfelt thanks to my friends—Rajeevan Lal, Mohana Sundar,
Gayathri Suresh, Lakshmi Menon, Rajagopal Raman, Dr. A. Kannan and
Ilamadhi for their prayers and great encouragement.

I wish to thank M/s. New Age International (P) Ltd., Publishers, for
publishing this book in a very short span of time.

Suggestions are most welcome from the readers of this book.

Happy Learning!

S.P. EUGENE XAVIER

vi Pref ace

Nota tions

Sym bol Mean ing

∅ Empty set
| S | Car di nal ity of set S.
∪ Set Union
∩ Set Inter sec tion
a A∈ a belongs to the set A
A B⊆ A is a sub set of B
— Set Dif fer ence

A c Com ple ment of A
2A Powerset of A
A B× Car te sian prod ucts of A and B

Aii

n

=1U Union of sets A1, A2, An

L Com ple ment of L

LR Lan guage Rever sal

L* Kleene Star

L+ Kleene Plus

Σ* All finite strings over the alpha bet Σ
Σ n All strings over the alpha bet Σ of length exactly n.
λ Empty string
| x | Length of string x.
∨ The OR func tion
∧ The AND func tion

x yℜ x is related to y under rela tion ℜ

R + Tran si tive clo sure of R
R R1 2o Com pos ite of rela tions R1 and R2

f x y: → Func tion from x to y.
f x() Image of x under f.

Sym bol Mean ing

 x Ceil ing func tion of x (least inte ger not less than x)

 x Floor func tion of x (great est inte ger not exceed ing x)

⇒ Log i cal con nec tive — If … … then … …
∨ For every

∃ There exists
≡ Equiv a lence of pred i cate for mu lae
χ A Char ac ter is tic func tion of set A
Z x() Zero func tion
S x() Suc ces sor func tion

p xi
n () Pro jec tor Func tion

(, , , ,)Q q FΣ δ 0 Finite autom a ton
(, , , , ,)Q qΣ ∆ δ λ 0 Moore-Mealey Machine
(, , ,)V P SN Σ Gram mar
(, , , , , ,)Q q b FΣ Γ δ 0 Turing machine
O f n(()) Set of func tions whose growth r is order f(n).
N Set of Nat u ral num bers
Z Set of Inte gers
Q Set of Ratio nal Num bers
R Set of Real Num bers

viii Nota tions

Con tents

Preface v

Notations vii

Chapter 0 Introduction 1

0.1 Basics 1
0.1.1 Sets 1
0.1.2 Relations and Functions 8
0.1.3 Graphs and Trees 15
0.1.4 Strings and Languages 18
0.1.5 Boolean Logic 27
0.1.6 Fundamental Proof Techniques 28
0.1.7 Introduction to Grammar 37

Glossary 43
Review Questions 44
Exercises 46
Short Questions and Answers 51

Chapter 1 DFA and NFA 58

1.1 Deterministic Finite Automata (DFA) 58
1.1.1 Automata—What is it? 58
1.1.2 Types of Automaton 58
1.1.3 Definition of Deterministic Finite Automaton 59

1.2 Non-Deterministic Finite Automata (NFA) 70
1.3 Equivalence of NFA and DFA 75
1.4 Regular Expression 80

1.4.1 Regular Languages 80
1.4.2 Regular Expressions 81
1.4.3 Building Regular Expressions 81
1.4.4 Languages Defined by Regular Expressions 82
1.4.5 Regular Expressions to NFA 82
1.4.6 NFAs to Regular Expression 83

1.5 Two-way Finite Automata 88
1.6 Finite Automata with Output 89

1.6.1 Definition 89
1.6.2 Mealey Machine 89
1.6.3 Moore Machine 90

1.7 Properties of Regular Sets (Languages) 91
1.7.1 Closure 91
1.7.2 Union, Concatenation, Negation, Kleene Star,

Reverse 92
1.7.3 Intersection and Set Difference 92

1.8 Pumping Lemma 93
1.8.1 Principle of Pumping Lemma 93
1.8.2 Applying the Pumping Lemma 94

1.9 Closure Properties of Regular Languages 96
1.10 Myhill-Nerode Theorem 97

1.10.1 Myhill-Nerode Relations 97
1.10.2 Myhill-Nerode Theorem 98

Glossary 99
Review Questions 99
Exercises 100
Short Questions and Answers 108

Chapter 2 Context-Free Grammars 115

2.1 Introduction 115
2.1.1 Definition of CFG 115
2.1.2 Example of CFG 115
2.1.3 Right-Linear Grammar 115
2.1.4 Right-Linear Grammars and NFAs 116
2.1.5 Left-Linear Grammar 116
2.1.6 Conversion of Left-linear Grammar into

Right-Linear Grammar 117

2.2 Derivation Trees 118
2.2.1 Definition of a Derivation Tree 118
2.2.2 Sentential Form 119
2.2.3 Partial Derivation Tree 119
2.2.4 Right Most/Left Most/Mixed Derivation 119

2.3 Parsing and Ambiguity 127
2.3.1 Parsing 127
2.3.2 Exhaustive Search Parsing 128
2.3.3 Topdown/Bottomup Parsing 128
2.3.4 Ambiguity 129
2.3.5 Ambiguous Grammars/Ambiguous Languages 130

2.4 Simplification of CFG 131
2.4.1 Simplification of CFG-Introduction 131
2.4.2 Abolishing Useless Productions 132

2.5 Normal Forms 142

x Con tents

2.5.1 Chomsky Normal Form (CNF) 142
2.5.2 Greibach Normal Form (GNF) 148

Glossary 149
Review Questions 149
Exercises 150
Short-Questions and Answers 153

Chapter 3 Pushdown Automata 159

3.1 Definitions 159
3.1.1 Nondeterministic PDA (Definition) 159
3.1.2 Transition Functions for NPDA 160
3.1.3 Drawing NPDAs 161
3.1.4 Execution of NPDA 162
3.1.5 Accepting Strings with an NPDA 162
3.1.6 An Example of NPDA Execution 163
3.1.7 Accepting Strings with NPDA (Formal Version) 164

3.2 Relationship between PDA and Context Free
 Languages 166

3.2.1 Simplifying CFGs 166
3.2.2 Normal Forms of Context-Free Grammars 167
3.2.3 CFG to NPDA 167
3.2.4 NPDA to CFG 169
3.2.5 Deterministic Pushdown Automata 170

3.3 Properties of Context Free Languages 170
3.3.1 Pumping Lemma for CFG 170
3.3.2 Definitions 171
3.3.3 Proof of Pumping Lemma 171
3.3.4 Usage of Pumping Lemma 173

3.4 Decision Algorithms 176
Glossary 179
Review Questions 180
Exercise 181
Short Questions and Answers 182

Chapter 4 Turing Machines 186

4.1 Turing Machine Model 186
4.1.1 What is a Turing Machine? 186
4.1.2 Definition of Turing Machines 186
4.1.3 Transition Function, Instantaneous Description

and Moves 187
4.1.4 Programming a Turing Machine 188
4.1.5 Turing Machines as Acceptors 188
4.1.6 How to Recognize a Language 188
4.1.7 Turing Machines as Transducers 189

Contents xi

4.2 Complete Languages and Functions 192
4.3 Modification of Turing Machines 195

4.3.1 N-Track Turing Machine 195
4.3.2 Semi-infinite Tape/Offline/Multitape/

ND Turing Machines 196
4.3.3 Multidimensional/Two-state Turing Machine 196

4.4 Church-Turing’s Thesis 196
4.4.1 Counting 197
4.4.2 Recursive and Recursively Enumerable Language 197
4.4.3 Enumerating Strings in a Language 198
4.4.4 Non-recursively Enumerable Languages 199

4.5 Undecidability 199
4.5.1 Halting Problem 199
4.5.2 Implications of Halting Problem 201
4.5.3 Reduction to Halting Problem 201
4.5.4 Post’s Correspondence Problem 202

4.6 Rice’s Theorem 203
Glossary 203
Review Questions 204
Exercises 205
Short Questions and Answers 206

Chapter 5 Chomsky Hierarchy 210

5.1 Context Sensitive Grammars and Languages 210
5.2 Linear Bounded Automata 211
5.3 Relationship of other Grammars 211
5.4 The Chomsky Hierarchy 212
5.5 Extending the Chomsky Hierarchy 213
5.6 Unrestricted Grammar 213
5.7 Random-Access Machine 214

Glossary 214
Review Questions 215
Exercises 215
Short Questions and Answers 216

Chapter 6 Computability 218

6.1 Formal Systems 218
6.2 Recursive Function Theory 219
6.3 Primitive Recursive Functions 219
6.4 Composition and Recursion 222
6.5 Ackermann’s Function 229

xii Con tents

Glossary 230
Review Questions 231
Exercises 231
Short Questions and Answers 232

Chapter 7 Complexity Theory 235

7.1 Introduction 235
7.2 Polynomial-Time Algorithms 236
7.3 Non-deterministic Polynomial Time Algorithms 237
7.4 Integer Bin Packing 237
7.5 Boolean Satisfiability 238
7.6 Additional NP Problems 239
7.7 NP-Complete Problems 239

Glossary 240
Review Questions 240
Exercises 241
Short Questions and Answers 242

Chapter 8 Propositions and Predicates 245

8.1 Propositions 245
8.1.1 Connectives 246
8.1.2 Tautology, Contradiction and Contingency 255
8.1.3 Logical Identities 258

8.2 Logical Inference 265
8.3 Predicates and Quantifiers 276
8.4 Quantifiers and Logical Operators 281
8.5 Normal Forms 289

Glossary 292
Review Questions 293
Exercises 294
Short Questions and Answers 299

Answers to Exercises 304

University Question Papers 320

Bibliography 341

Index 343

Contents xiii

THIS PAGE IS
BLANK

Chap ter 0

Intro duc tion

0.1 BASICS

0.1.1 Sets

A “set” is a collection of objects. For example, the collection of four letters a,
b, c and d is a set, which is written as

L = { a, b, c, d }

The objects comprising a set are called its “elements” or “members”.
A set having only one element is called a “singleton”. A set with no

element at all is called the “empty set”, which is denoted by ∅.
It is essential to have a criterion for determining, for any given thing,

whether it is or is not a member of the given set. This criterion is called the
“Membership criterion” of the set.

There are two common ways to indicate the members of a set:

(i) List all the elements, e.g, {a, e, i, o, u}.
(ii) Provide some kind of an algorithm or a rule, such as a grammar.

Let us now take a look at the nota tion that is being used to denote sets.

(a) To indicate that x is a member of the set S, we write x ∈ S.
(b) If every element of set A is also an element of set B, we say that A

is a “subset” of B, and write A ⊆ B.
(c) If every element of set A is also an element of set B, but B also has

some elements not contained in A, we say that A is a “proper
subset” of B and write A ⊂ B.

(d) We denote the “empty set” as { } or ∅.

The set oper a tions are as described below.

(a) Union

The “union” of two sets is the set that has objects that are elements of at least
one of the two given sets, and possibly both.

Introduction

That is, the union of sets A and B, written A ∪ B, is a set that contains
everything in A, or in B, or in both.

A B x x A x B∪ = ∈ ∈{ : }or

Example: A = {1, 3, 9} B = {3, 5}

Therefore, A B∪ = { , , , }1 3 5 9

(b) Inter sec tion

The “intersection” of sets A and B, written A ∩ B, is a set that contains exactly
those elements that are in both A and B.

A B x x A x B∩ = ∈ ∈{ : }and

Exam ple: Given A = {1, 3, 9}, B = {3, 5}, C = {a, b, c}

A ∩ B = {3}
A ∩ C = { }

(c) Set Dif fer ence

The “set difference” of set A and set B, written as A–B, is the set that contains
everything that is in A but not in B.

A B x x A x B− = ∈ ∉{ : }and

Given A B= ={ , , }, { , }1 3 9 3 5

A B− = { , }1 9

(d) Com ple ment

The “complement” of set A, written as A is the set containing everything that is
not in A.

Prop erties of set oper a tions

Some of the properties of the set operations follow from their definitions. The
following laws hold for the three given sets A, B and C.

Idempotency : A A A
A A A

∪ =
∩ =

Commutativity : A B B A
A B B A

∪ = ∪
∩ = ∩

Asso cia tiv ity : () ()
() ()
A B C A B C
A B C A B C

∪ ∪ = ∪ ∪
∩ ∩ = ∩ ∩

2 Theory of Automata, Formal Languages and Computation

Distributivity : () () ()
() () ()
A B C A C B C
A B C A C B C

∪ ∩ = ∩ ∪ ∩
∩ ∪ = ∪ ∩ ∪

Absorp tion : ()
()
A B A A
A B A A

∪ ∩ =
∩ ∪ =

DeMorgan’s Laws : A B C A B A C
A B C A B A C

− ∪ = − ∩ −
− ∩ = − ∪ −

() () ()
() () ()

Ì Exam ple 0.1.1: Show that A B C A B A C− ∪ = − ∩ −() () ().

Solu tion

x A B C x A x B C
x A x B x C
x A x B

∈ − ∪ ⇒ ∈ ∉ ∪
⇒ ∈ ∉ ∉
⇒ ∈ ∉

()

()

and
and and
and and and

and
()

() ()

x A x C
x A B x A C
x A B A C

∈ ∉
⇒ ∈ − ∈ −
⇒ ∈ − ∩ −

There fore A B C A B A C− ∪ ⊆ − ∩ −() () () (1)

Conversely,

x A B A C x A B x A C
x A x B x A x

∈ − ∩ − ⇒ ∈ − ∈ −
⇒ ∈ ∉ ∈

() ()
() (

and
and and and ∉

⇒ ∈ ∉ ∉
⇒ ∈ ∉ ∪
⇒ ∈ − ∪

C
x A x B x C
x A x B C
x A B C

)
()

()

and and
and

Therefore, () () ()A B A C A B C− ∩ − ⊆ − ∪ .

Hence A B C A B A C− ∪ = − ∩ −() () ().

Ì Exam ple 0.1.2: Given sets A and B are the subsets of a universal set U,
prove that

(a) A B A B− = ∩ ′
(b) A B A− = , if and only if A B∩ = ∅
(c) A B− = ∅, if and only if A B⊆ .

Solu tion

(a) Let x A B∈ − . Then

x A B x A x B
x A x B
x A B

∈ − ⇒ ∈ ∉
⇒ ∈ ∈
⇒ ∈ ∩ ′

and
and

A B A B− ⊆ ∩ ′ (1)

Introduction 3

Conversely, Let x A B∈ ∩ ′. Then

x A B x A x B
x A x B
x A B

∈ ∩ ′ ⇒ �∈ ∈
⇒ ∈ ∉
⇒ ∈ −

and
and (2)

Hence from (1) and (2)

A B A B− = ∩ ′

(b) We have A B∩ = ∅. Then

A A B A B
A A B A B
A A B

= − ∪ ∩
⇒ = − ∪ ∅ ∩ = ∅
⇒ = −

() ()

.
since

Again we have A B A− = . Then

A A B A B
A B A A A B A
A B

= − ∪ ∩
⇒ ∩ = − − =
⇒ ∩ = ∅

() ()

.
Since

(c) We have A B⊆ . Then

A B A
A B A A B
A B A A A B A
A B

∩ =
− = − ∩

⇒ − = − ∩ =
⇒ − = ∅

()

.
Since

If A B− = ∅, then

A B A A B
A B A
A B A
A B

∩ = − −
⇒ ∩ = − ∅
⇒ ∩ =
⇒ ⊆

()

.

Ì Exam ple 0.1.3: Given three sets A, B and C, prove that

 A B C A B C∪ ∪ = ∪ ∪() () .

Solu tion

(i) Let us show that

A B C A B C∪ ∪ ⊂ ∪ ∪() ()

x A B C
x A x B C
x A

∈ ∪ ∪
⇒ ∈ ∈ ∪
⇒ ∈

()
(),or by definition of union

or or
or or

()
()

x B x C
x A x B x C

∈ ∈
⇒ ∈ ∈ ∈

4 Theory of Automata, Formal Languages and Computation

 ⇒ ∈ ∪ ∈
⇒ ∈ ∪ ∪

x A B x C
x A B C

()
() .

or

Therefore we have

A B C A B C∪ ∪ ⊂ ∪ ∪() () (1)

(ii) Let us now show that

() ().A B C A B C∪ ∪ ⊂ ∪ ∪

Assume that y is any element of the set ()A B C∪ ∪

y A B C
y A B y C
y A y B y C

y A y B

∈ ∪ ∪
⇒ ∈ ∪ ∈
⇒ ∈ ∈ ∈
⇒ ∈ ∈

()
()

()
(

or
or or

or or y C
y A B C

∈
⇒ ∈ ∪ ∪

)
()

Therefore we have

() ()A B C A B C∪ ∪ ⊂ ∪ ∪ (2)

From (1) and (2), we have

A B C A B C∪ ∪ = ∪ ∪() ()

Ì Exam ple 0.1.4: Prove that the intersection of sets is associative i.e., if
A, B and C are three sets, then

A B C A B C∩ ∩ = ∩ ∩() () .

Solu tion

Let us prove that A B C A B C∩ ∩ ⊂ ∩ ∩() ()

Let x be an element such that

x A B C
x A x B C
x A x B x C
x A x

∈ ∩ ∩
⇒ ∈ ∈ ∩
⇒ ∈ ∈ ∈
⇒ ∈

()
()

()
(

and
and and
and ∈ ∈

⇒ ∈ ∩ ∈
⇒ ∈ ∩ ∩

B x C
x A B x C
x A B C

)
()
()

and
and

There fore A B C A B C∩ ∩ ⊂ ∩ ∩() () (1)

Let us prove that () ()A B C A B C∩ ∩ ⊂ ∩ ∩ .

Let us assume the element y A B C∈ ∩ ∩()

⇒ ∈ ∩ ∈y A B y C() and

Introduction 5

⇒ ∈ ∈ ∈
⇒ ∈ ∈ ∈
⇒ ∈ ∈ ∩
⇒

()

()

y A y B y C
y A y B y C
y A y B C
y

and and
and and
and

∈ ∩ ∩A B C()

There fore we have () ()A B C A B C∩ ∩ ⊂ ∩ ∩ (2)

From (1) and (2), we have

A B C A B C∩ ∩ = ∩ ∩() ()

Ì Exam ple 0.1.5: For any two sets A and B, prove the DeMorgan’s Laws

(a) ()A B A B∪ ′ = ′ ∩ ′
(b) ()A B A B∩ ′ = ′ ∪ ′

Solu tion

(a) x A B x A B
x A x B
x A x B
x A B

∈ ∪ ′ ⇔ ∉ ∪
⇔ ∉ ∉
⇔ ∈ ′ ∈ ′
⇔ ∈ ′ ∩ ′

()
and
and

(b) y A B y A B
y A y B
y A y B

y A

∈ ∩ ′ ⇔ ∉ ∩
⇔ ∉ ∉
⇔ ∈ ′ ∈ ′
⇔ ∈

()
either or
either or

′ ∪ ′B

Hence we have () .A B A B∩ ′ = ′ ∪ ′

Ì Exam ple 0.1.6: If the symmetric difference of the two sets A and B is
refined as () ()A B B A− ∪ − and denoted by A B∆ , prove that

(a) A B B A∆ ∆=
(b) () () .A B A B A B∪ − ∩ = ∆

Solu tion

(a) A B A B B A
B A A B

B A

∆

∆

= − ∪ −
= − ∪ −
=

() ()
() ()

(b) () () () ()
()

() ()

A B A B A B A B
x y x y

A B A B

∪ − ∩ = ∪ ∩ ∩ ′
− = ∩ ′

= ∪ ∩ ′ ∪ ′
=

Q

(()) (())
() () ()

()

A B A A B B
A A B A A B

B B

∪ ∩ ′ ∪ ∪ ∩ ′
= ∩ ′ ∪ ∩ ′ ∪ ∩ ′

∪ ∩ ′

6 Theory of Automata, Formal Languages and Computation

= ∩ ′ ∪ ∩ ′
∩ ′ = ∩ ′ = ∅

= − ∪ −
=

() ()
(() ())

() ()
.

A B B A
A A B B

A B B A
A B

Q

∆

Addi tional Ter mi nol ogy

(a) Disjoint Sets. If A and B have no common element, that is, A B∩ = ∅,
then the sets A and B are said to be disjoint.

(b) Cardinality. The “Cardinality” of a set A, written |A|, is the number of
elements in set A.

(c) Powerset. The “powerset” of a set A, written 2A, is the set of all subsets of
A; i.e., a set containing ‘n’ elements has a powerset containing 2n elements.

(d) Cartesian Product. Let A and B be two sets. Then the set of all ordered
pairs (x, y) where x A∈ and y B∈ is called the “Cartesian Product” of the sets A
and B and is denoted by A B× , i.e.

{ }A B x y x A y B× = ∈ ∈(,) : and

Ì Exam ple 0.1.7: Given A = {1, 2, 3} determine P(A) (powerset of A).

Solu tion

As the set A = {1, 2, 3} has 3 elements the powerset P(A) will have 23 = 8
elements.

{ }P A() ,{ }, { }, { }, { , }, { , }, { , }, { , , }= ∅ 1 2 3 1 2 2 3 3 1 1 2 3

Ì Exam ple 0.1.8: Given A a b c d e f= [{ , }, { },{ , , }], determine the
powerset P(A).

Solu tion

Since A has 3 elements, P(A) has 23 = 8 elements.

P A
A a b c a b d e f c d e f

()
, [{ , },{ }], [{ , },{ , , }], [{ },{ , , }],

[
=

{ , }], [{ }], [{ , , }],a b c d e f ∅






Ì Exam ple 0.1.9: Prove that () () ()A B A C A B C× ∪ × = × ∪

Proof: { }() () (,) : (,) (,)
(,) : ,

A B A C x y x y A B x y A C
x y x A y

× ∪ × = ∈ × ∈ ×
= ∈

or
{ }
{ }
{ }

∈ ∈ ∈
= ∈ ∈ ∈
= ∈ ∈ ∪
=

B x A y C
x y x A y B y C
x y x A y B C

or
and or

,
(,) : ,
(,) : ,

A B C× ∪() ¨

Introduction 7

Ì Exam ple 0.1.10: Given A= {1,2}, B = {x, y, z} and C = {3, 4}, find
A B C× × and n A B C()× × .

Solu tion

n A B C n A n B n C() () () () () () () .× × = ⋅ ⋅ = =2 3 2 12.

0.1.2 Rela tions and Func tions

Definition of Relation: A relation on sets S and T is a set of ordered pairs (s, t),
where

(a) s S s S∈ (is a member of)
(b) t T∈
(c) S and T need not be different
(d) The set of all first elements in the “domain” of the relation, and
(e) The set of all second elements is the “range” of the relation.

Example:

Suppose S is the set {a, b, c, d, e} and set T is {w, x, y, z}.

8 Theory of Automata, Formal Languages and Computation

Set S Set T

a

b
c

d
e

w

x

y

z

Fig. 1 Sets S and T are dis joint

y

z

x

y

x

z

3

4

3

4

3

4

3

4

3

4

3

4

(1, , 3)x

(1, , 4)x

(1, , 3)y

(1, , 4)y

(1, , 3)z

(1, , 4)z

(2, , 3)x

(2, , 4)x

(2, , 3)y

(2, , 4)y

(2, , 3)z

(2, , 4)z

1

2

Then a relation on S and T is

{ }R a y c w c z d y= (,), (,), (,), (,)

The four ordered pairs in the relation is represented as shown in Fig. 2.

Equiv a lence Rela tion

A subset R of A A× is called an equivalence relation on A if R satisfies the
following conditions:

(i) (,)a a R∈ for all a A∈ (R is reflexive)
(ii) If (,)a b R∈ , then (,)b a R∈ , then (,)a b R∈ (R is symmetric)

(iii) If (,)a b R∈ and (,)b c R∈ , then (,)a c R∈ (R is transitive)

Par tial Order ing Rela tions

A relation R on a set S is called a “Partial ordering” or a “Partial order”, if R is
reflexive, antisymmetric and transitive.

A set S together with a partial ordering R is called a “Partially ordered set”
or “Poset”.

Example: The relation ≤ on the set R of real numbers is reflexive,
antisymmetric and transitive. Therefore ≤ is a “Partial ordering”.

Par ti tion

A Partition P of S is a collection {Ai} of nonempty subsets of S with the
properties:

(i) Each a S∈ belongs to some Ai,
(ii) If A Ai j≠ , then A Ai j∩ = ∅.

Thus a partition P of S is a subdivision of S into disjoint nonempty sets.
If R is an equivalence relation on a set S, for each ‘a’ in S, let [a] denote the

set of elements of S to which ‘a’ is related under R, i.e.

[] { : (,) }a x a x R= ∈

Here [a] is the Equivalence class” of ‘a’ in S.

Introduction 9

a

b
c

d
e

w

x

y

z

Fig. 2 Rela tion R = {(a, y), (c, w), (c, w), (c, z), (d, y)}

The collection of all equivalence classes of elements of S under an
equivalence relation R is denoted by S R , i.e.,

S
R a a S= ∈{[] : }.

It is known as “quotient” set of S by R.

Ì Exam ple 0.1.11: Given a relation R is ‘circular’ if (,)a b R∈ and
(,) (,)b c R c a R∈ ⇒ ∈ . Show that a relation is reflexive and circular if and
only if it is reflexive, symmetric, and transitive.

Solu tion

Let the relation R be reflexive and circular. We shall prove that R is reflexive,
symmetric and transitive.

(,) , (,) (,)a b R b c R c a R∈ ∈ ⇒ ∈ , since R is cir cu lar and

(,)a a R∈ since R is reflex ive.

We have (,) , ,) (,)c a R a a R a c R∈ (∈ ⇒ ∈ , since R is circular.
Thus shows (,)a c R∈ and (,)c a R∈ . Hence R is symmetric

(,) , (,) (,) ,a b R b c R c a R R
a c R

∈ ∈ ⇒ ∈
⇒ ∈

since iscircular
(,) , since issymmetric

is transitive
R

R⇒

It is given that R is reflexive.
Conversely, if R is reflexive, symmetric, and transitive then we show that

R is reflexive and circular.

(,) , (,) (,) ,a b R b c R a c R R
R

∈ ∈ ⇒ ∈
⇒ ∈

since is transitive
()c,a , since issymmetric

iscircular
R

R⇒

(,) , (,) (,) ,a c R c a R a a R R
R

∈ ∈ ⇒ ∈
⇒

since is transitive
is reflexive

Ì Exam ple 0.1.12: Show that the relation “congruence modulo m” over
the set of positive integers is an equivalence relation.

Solu tion

Assume that N = Set of all positive integers
 and m = given positive integer.

For x y N x y, ,∈ ≡ (mod m) if and only if x – y is divisible by m, i.e.

x y km k z− = ∈, .for

10 Theory of Automata, Formal Languages and Computation

Let x y z N, , ∈ . Then

(a) As x – x = 0 m., x x≡ (mod m), for all x N∈ . Therefore this
relation is reflexive

(b) x y m x y km k
x = k m

y x

≡ ⇒ − =
⇒ −
⇒ ≡

() ,
()

(

mod for integer
 –

m
y

od m)
Therefore the relation is symmetric.

(c) x y≡ (mod m) and y z≡ (mod m)

⇒ − = − =
⇒ − + − = +

x y km and y z lm k l
x y y z k l m

for integers , .
() () ()

⇒ − = +
⇒ ≡ +

() ()
(mod)

x z k l m
x z m k lsince is also an integer

Therefore the relation is transitive.
Since the relation is reflexive, symmetric and transitive, the relation

“congruence modulo m” is an equivalence relation.

Ì Exam ple 0.1.13: Give examples of relations R on A = {1, 2, 3} with

(a) R being both symmetric and antisymmetric
(b) R being neither symmetric nor antisymmetric

Solu tion

A possible set of examples are:

(a) { }R = (,), (,)11 2 2
(b) { }R = (,), (,), (,)12 21 2 3

Ì Exam ple 0.1.14: Given the relation R in A as

{ }R = (1,1), (2,2), (2,3), (3,2), (4,2), (4,4)

(a) Is R (i) reflexive (ii) symmetric (iii) transitive?
(b) Is R antisymmetric?
(c) Determine R2.

Solu tion

(a) (i) R is not reflexive because
3 ∈ /A Rbut 3 3, i.e. (,)3 3 ∉ R

(ii) R is not symmetric because
4R2 but 2 4/R , i.e.,(,)4 2 ∈ R but (,)2 4 ∉ R

(iii) R is not transitive because
4R2 and 2R3 but 4 3/R , i.e.,
(,) , (,)4 2 2 3∈ ∈R R but (,)4 3 ∉ R

Introduction 11

(b) R is not antisymmetric because 2R3 and 3R2 but 2 3≠
(c) For each pair (,)a b R∈ , determine all (,)b c R∈ . As (,) ,a c R∈ 2

R 2 = (1,1), (2,2), (2,3), (3,2), (3,3), (4,2), (4,3){ }, (4,4) .

Func tions

Suppose every element of S occurs exactly once as the first element of an
ordered pair. In Fig shown, every element of S has exactly one arrow arising
from it. This kind of relation is called a “function”.

A function is otherwise known as “Mapping”. A function is said to map an
element in its domain to an element in its range.

Every element in S in the domain, i.e., every element of S is mapped to
some elemet in the range. No element in the domain maps to more than one
element in the range.

Func tions as rela tions

A function f A B: → is a relation from A to B i.e., a subset of A B× , such that
each a A∈ belongs to a unique ordered pair (a, b) in f.

Kinds of Func tions

(a) One-to-One Function (Injection): A function f A B: → is said to be
one-to-one if different elements in the domain A have distinct images in the
range.

A function f is one-to-one if f a f a() ()= ′ implies a a= ′.

12 Theory of Automata, Formal Languages and Computation

a

b

c

w

x

y

z

Fig. An Injec tion (one to one func tion)

a

b
c

d
e

w

x

y

z

Fig. A Func tion

(b) Onto function (Surjection): A function f A B: → is said to be an onto
function if each element of B is the image of some element of A.

i.e., f A B: → is onto if the image of f is the entire codomain, i.e. if
f A B() = . i.e., f maps A onto B.

(c) One-to-one onto Function (Bijection): A function that is both one-to-one
and onto is called a “Bijection”. Such a function maps each and every element
of A to exactly one element of B, with no elements left over. Fig. below shows
bijection.

(d) Invertible function: A function f A B: → is invertible if its inverse
relation f –1 is a function from B to A.

A function f A B: → is invertible if and only it is both one-to-one and
onto.

Ì Exam ple 0.1.15: Find whether the function f x x() = 2 from the set of
integers to the set of integers is one-to-one.

Solu tion

The function f x x() = 2 is not one-to-one as, for example f f() ()1 1 1= − = , but
1 1≠ − .

Ì Exam ple 0.1.16: Given f is a function f A B: → where A = {a, b, c, d}
and B = {1, 2, 3} with f (a) = 3, f (b) = 2, f (c) =1, and f(d) = 3. Is the
function f an onto function?

Introduction 13

a

b

c

d

w

x

y

z

Fig. A Bijection

a

b
c

d
e

w

x

y

z

Fig. A Surjection

Solu tion

As all three elements of the codomain are images of elements in the domain,
we have f as an “onto function”.

Ì Exam ple 0.1.17: Given f x x() = +2 3 and
 g x x() = +3 2

Check if commutative law holds good for composition of functions.

Solu tion

()()() ()
()

()

()() (

f g x f g x
f x

x
x

g f x g f x

⋅ =
= +
= + +
= +

⋅ =

3 2
2 3 2 3
6 7
())
()
()

= +
= + +
= +

g x
x

x

2 3
3 2 3 2
6 11

Since ()() ()()f g x g f x⋅ ≠ ⋅ , commutative law does not hold for composition
of functions.

Ì Exam ple 0.1.18: Check whether the mapping f X X: → where

X x R x= ∈ ≠{ , }0 defined by f x
x

() =
1

 is one to one and onto.

Solu tion

 x = set of all non-zero real numbers. Let x x X1 2, ∈ .

Then f x f x
x x
x x

() ()1 2
1 2

1 2

1 1
= ⇒ =

⇒ =

Hence f is one-to-one.

14 Theory of Automata, Formal Languages and Computation

a

b

c

d

1

2

3

A B

For every non-zero real number x X∈ there exists a non-zero real number
1
x

X∈ such that

f
x

x

x
1 1

1






=






= .

Hence every element x X∈ is an image of
1
x
. Therefore f is onto.

Therefore f is one-to-one and onto.

0.1.3 Graphs and Trees

Graphs

A graph G consists of a finite set V of objects called “Vertices”, a finite set E of
objects called “Edges”, and a function γ that assigns to each edge a subset {v,
w}, where v and w are vertices (and may be the same).

There fore we write G V E= (, ,)γ .

Example: Given V = {1, 2, 3, 4} and E = {e1, e2, e3, e4, e5}

γ is defined by

γ γ
γ
γ
γ

() () { , }
() { , }
() { , }
() { , }

e e
e
e
e

1 5

2

3

4

1 2
4 3
1 3
2 4

= =
=
=
=

Then G V E= (, ,)γ is a graph shown below.

Degree of a vertex: It is defined as the number of edges having that vertex as
an end point.

Loop: A graph may have an edge from a vertex to itself, such an edge is called
a “loop”.

Degree of a vertex is 2, for a loop since that vertex serves as both
endpoints of the loop.

Isolated vertex: A vertex with “zero” as degree is called an “Isolated vertex.”

Introduction 15

1 2

34

Adjacent vertices: A pair of vertices that determine an edge are “adjacent”
vertices.

In the graph shown above, vertex ‘e’ is an “Isolated vertex”, ‘a’ and ‘b’ are
adjacent vertices, vertices ‘a’ and ‘d’ are not adjacent.

Path: A path in a graph G consists of a pair (V, E) of sequences.

Circuit: A circuit is a path that begins and ends at the same vertex.

Simple Path: A path is called “simple” if no vertex appears more than once in
the vertex sequence.

Connected Graph: A graph is called “connected” if there is a path from any
vertex to any other vertex in the graph, otherwise, the graph is “disconnected”.

Components: If the graph is disconnected, the various connected pieces are
called the “components” of the graph.

The above two graphs are examples of connected graphs.

The above two graphs are examples of disconnected graphs.

16 Theory of Automata, Formal Languages and Computation

(A “walk” is a sequence of edges, where the finish vertex of each edge is
the start vertex of the next edge).

Tree: A graph is said to be a “Tree” if it is connected and has no simple cycles.
(A “path” is a cycle if it starts and ends in the same node. A “simple cycle”

is one that does not repeat any nodes except for the first and last).

Directed Graph: The graph is said to be a “directed graph” if it has arrows in
stead of lines.

Outdegree: The number of arrows pointing from a particular node is the
“outdegree” of that node.

Indegree: The number of arrows pointing to a particular node is the
“indegree”.

Directed graphs (as shown in fig.) are an easy way of depicting binary
relations.

Introduction 17

Fig. A Tree

F

E D

B

C

A

Fig. Directed Graph

0.1.4 Strings and Lan guages

The mathematical study of the “Theory of Computation” begins by
understanding the Mathematics of strings of symbols.

Alphabet: It is defined as a finite set of symbols.

Example: Roman alphabet {a, b, z}.
“Binary Alphabet” {0, 1} is pertinent to the theory of computation.

String: A “string” over an alphabet is a finite sequence of symbols from that
alphabet, which is usually written next to one another and not separated by
commas.

(i) If Σ a = { , }0 1 then 001001 is a string over Σ a .
(ii) If Σ b a b z= { , , ,)K then axyrpqstcd is a string over Σ b .

Length of String: The “length” of a string is its length as a sequence. The
length of a string w is written as |w|.

Example: |10011| = 5

Empty String: The string of zero length is called the “empty string”. This is
denoted by ∈.

The empty string plays the role of 0 in a number system.

Reverse String: If w w w wn= 1 2 K where each wi ∈ Σ, the reverse of w is
w w wn n−1 1L .

Substring: z is a substring of w if z appears consecutively within w.
As an example, ‘deck’ is a substring of ‘abcdeckabcjkl’.

Concatenation: Assume a string x of length m and string y of length n, the
concatenation of x and y is written xy, which is the string obtained by
appending y to the end of x, as in x x x y y ym n1 2 1 2K K .

To concatenate a string with itself many times we use the “superscript”
notation:

x x x x
k

kK
674 84

=

Suffix: If w = xv for some x, then v is a suffix of w.

Prefix: If w = vy for some y, then v is a prefix of w.

Lexicographic ordering: The Lexicographic ordering of strings is the same as
the dictionary ordering, except that shorter strings precede longer strings.

18 Theory of Automata, Formal Languages and Computation

The lexicographic ordering of all strings over the alphabet {0, 1} is (∈, 0,
1, 00, 01, 10, 11, 000, K).

Language: Any set of strings over an alphabet Σ is called a language.
The set of all strings, including the empty string over an alphabet Σ is

denoted as Σ*.
Infinite languages L are denoted as

{ }L w w P= ∈ Σ* : has property

Examples:

(a) { }L w w1 01= ∈{ , } :* has an equal number of 0' s and 1's

 (b) { }L w w wR
2 = ∈ =Σ* : where wR is the reverse string of w.

Concatenation of Languages: If L1 and L2 are languages over Σ, their
concatenation is L = L1 • L2, or simply L = L1L2, where

{ }L w w x y x L y L= ∈ = ∈ ∈•Σ* : ,for some and1 2

Example: Given Σ = { , }0 1

{ }L w w1 = ∈ Σ* : has an even number of 0' s

L w w2 = : starts with a 0 and the rest of the symbols { }are 1' s

then

{ }L L w w1 2 = : has an odd number of 0' s

Kleene Star: Another language operation is the “Kleene Star” of a language L,
which is denoted by L*.

L* is the set of all strings obtained by concatenating zero or more strings
from L.

L w w w w k
w w w L

k

k

*
* :

, , ,
= ∈ = ≥

∈
 • •Σ 1

1 2

0K
K

for some and
some








Example: If L = {01, 1, 100} then 110001110011 ∈ L* , since 110001110011 =
1• 100• 01• 1• 100 • 1• 1, each of these strings is in L.

Ì Exam ple 0.1.19: Prove that | | | | | |uv u v= + , for any two given strings u
and v.

Introduction 19

Solu tion

For all a ∈ ′Σ and w any string on Σ, we make a recursive definition as

| | , | | | |a wa w= = +1 1

With this formal definition, we can prove

| | | | | |uv u v= + .

By this definition made, | | | | | |uv u v= + holds for all u of any length and v of
length 1, which is the basis.

Let us assume v of length n + 1 and we write it as

v = wa.

Therefore we have, | | | | ,v w= +1

| | | | | |uv uwa uw= = +1

But by inductive hypothesis,

| | | | | |uw u w= +

so that

| | | | | | | | | |uv u w u v= + + = +1

Hence for all u and all v of length upto n +1, we have

| | | | | |uv u v= +

which is the inductive step.

Ì Exam ple 0.1.20: Use induction on to show that | | | |u n un = for all
strings u and all n.

Solu tion

Basis: For n = 1, |u1| = |u| = l (assume)

n u u u| | | | | |= = =1 1

Inductive Hypothesis: Let us assume that it is true for n.

| | | | .u n un =

Induc tive Step: | | | | | | | |
| | | |

() | |

u u u u u
n u u
n u

n n n+
•= = +

= +
= +

1 1

1

which is the required Inductive step to be proved.
Hence we have | | | | .u n un =

20 Theory of Automata, Formal Languages and Computation

Ì Exam ple 0.1.21: The reverse of a string is defined by the recusive rules

a a
wa aw

R

R R
=
=

,
()

for all a w∈ ∈Σ Σ, .* Using this prove that

()uv v uR R R=

for all u v, ∈ +Σ .

Solu tion

Given that aR = a,

()wa awR R= .

Now we have to prove () .uv v uR R R=
Let us assume that u = wb and v = wa.

LHS uv wbwa bw aw
bw aw
bw aw

v

R R R R

R R

R R

R

= = = ⋅
=
=
=

() ()
()()
() ()

⋅ =u RHSR

Hence proved.

Ì Exam ple 0.1.22: Given Σ = { , }a b obtain Σ*.

(a) Give an example of a finite language in Σ.
(b) Given { }L a b nn n= ≥: 0 , check if the strings aabb, aaaabbbb,

abb are in the language L.

Solu tion

Σ = { , }a b

Therefore we have Σ* { , , , , , , , ,}= λ a b aa ab ba bb aaa

(a) {a, aa, aab} is an example of a finite language in Σ.

(i) aa bb → a string in L. (n = 2)
(ii) aaaa bbbb → a string in L. (n = 4)

(iii) abb → not a string in L (since there is no n satisfying this).

Introduction 21

Ì Exam ple 0.1.23: Given { }L a b nn n= ≥: 0

obtain (a) L2 (b) LR.

Solu tion

Given { }L a b nn n= ≥: 0

(a) { }L a b a b n mn n m m2 0 0= ≥ ≥: ,

where n and m are unrelated.
For example, the string aabbaaabbb is in L2.

(b) Reverse of L is given by

{ }L b a nR n n= ≥: 0

Ì Exam ple 0.1.24: Let L = {ab, aa, baa}. Which of the following strings
are in L*.

(a) abaabaaabaa
(b) aaaabaaaa
(c) baaaaabaaaab
(d) baaaaabaa

Solu tion

Please note that L* is the “star-closure” of a language L, given by

L L L L* = ∪ ∪0 1 2 KK

and L+ is the “positive closure” defined by

L L L+ = ∪1 2 KK

(a) ab aa baa ab aa → This string is in L*

(b) aa aa baa aa → This string is in L*

(c) baa aa ab aa aa b baa aa ab aa a ab

undefined undefined

or
↑ ↑

() ()
 This string is not in L*.

(d) baa aa ab aa → This string is in L*.

Ì Exam ple 0.1.25: Given { }L a b nn n= ≥+1 0: .

It is true that L = L* for the given language L?

22 Theory of Automata, Formal Languages and Computation

Solu tion

We know L L L L* = ∪ ∪0 1 2 KK

and L L L L+ = ∪ ∪1 2 3 KK

Now for given { }L a b nn n= ≥+1 0: , we have

L a b b
L a b ab
L a b a b

0 0 0 1

1 1 1 1 2

2 2 2 1 2 3

= =
= =
= =

+

+

+ .
KKK
KKK

Therefore, we have L L L L
b ab a b

* = ∪ ∪
= ∪ ∪

0 1 2

2 2 3
KK

KK

Hence it is true that L = L*.

Ì Exam ple 0.1.26: Given u a ba b= 2 3 2 and u bab= 2 , obtain

(a) uv (e) ||u|| (i) ||v2||
(b) vu (f) ||v|| (j) ||u2||
(c) v2 (g) ||uv||
(d) u2 (h) ||vu||

Solu tion

(a) uv a ba b bab a ba b ab= =()()2 3 2 2 2 3 3 2

(b) vu bab a ba b bab a ba b= =()()2 2 3 2 2 2 3 2

(c) v vv bab bab bab ab2 2 2 3 2= = =()()

(d) u uu a ba b bab a ba b ab2 2 3 2 2 3 2 2= = =()()
(e) ||u|| = 8 (as there are 8 letters in the word u)
(f) ||v|| = 4
(g) ||uv|| = 12
(h) ||vu|| = 12
(i) ||v2|| = 8
(j) ||u2|| = 11

Ì Exam ple 0.1.27: For any word u and v, prove that

(a) ||uv|| = ||u|| + ||v||
(b) ||uv|| = ||vu||.

Proof: (a) Let us assume ||u|| = m and ||v|| = n. Therefore uv will have ‘m’
letters of u followed by ‘n’ letters of v.

Introduction 23

Therefore we have

| | | | | | | | | | | | .uv m n u v= + = +

(b) Now, | | | | | | | | | | | (
| | | | | | | |

| | | | | |

uv u v
v u

uv

= +
⇒ = +
⇒ =

from (a))

vu| | .

¨

Ì Exam ple 0.1.28: Given A = {a, b, c}, find L* where

(i) L = {b2} (ii) L = {a, b} (iii) L = {a,b, c3}

Solu tion

(i) For L = {b2}, L* has all words bn, where n is even (including the
empty word λ).

(ii) For L = {a, b}, L* has words in a and b.
(iii) For L a b c= { , , }3

L* has all words from A = {a, b, c} with the length of each maximal subword
composed entirely of C’s is divisible by 3.

Ì Exam ple 0.1.29: For the language L = {ab, c} over the set A = {a, b, c}.
Find (a) L3 (b) L–2 (c) L0.

Solu tion

(a) For L = {ab, c}, we have

L L

ababab, ababc, abca

3 = All 3 - word sequences from

= { }b, abc ,cabab,cabc,c ab,c2 2 3

(b) L–2 is “Not defined” as negative power of a language is not
defined.

(c) L0 = {λ}, where λ is empty word.

Ì Exam ple 0.1.30: Given L1 = {a, ab, a2} and L2 = {b2, aba} are the
languages over A = {a, b}, determine {a} L1L2 (b) L2L2.

Solu tion:

(a) To find L1L2, we concatenate words in L1 with words in L2 so that

{ }L L ab a ba ab ababa a b a ba1 2
2 2 3 2 2 3= , , , , ,

24 Theory of Automata, Formal Languages and Computation

(b) To find L2L2, we concatenate words in L2 with words in L2 so that

{ }L L b b aba abab aba ba2 2
4 2 2 2= , , ,

Ì Exam ple 0.1.31: Find (i) uvu (ii) λu, uλ, uλv given u = a2b and v =
b3ab.

Solu tion

(i) uvu a b b ab a b
a b aba b

=
=

()()()2 3 2

2 4 2

(ii) We know that λ is an empty word. Therefore we have

λ λ
λ
u u u a b

u v uv a b b ab
a b ab

= = =
= =

=

2

2 3

2 4
()()

Ì Exam ple 0.1.32: Given A = {a, b, c} check if L1, L2, L3 and L4 are all
languages over the alphabet A., where

L a aa ab ac abc cab
L aba aabaa
L

L a cbi

1

2

3

4

=
=
=
=

{ , , , , , }
{ , }
{ }

{ i ≥1}

Solu tion

All the languages L1, L2, L3 and L4 are defined over the alphabet A.

Ì Exam ple 0.1.33:

(a) Given { }L a b i ji j
1 1= > ≥ and

 { }L a b i ji j
2 1= ≤ < find L L1 2∪ .

(b) Given { }L a b c i ji i j
3 1= ≥, and

 { }L a b c i ji j j
4 1= ≥, find L L3 4∩ .

Solu tion

(a) { } { }
{ }

L L a b i j a b i j

a b i j i j

i j i j

i j

1 2 1 1

1

∪ = > ≥ ∪ ≤ <

= ≠ ≥, ,

Introduction 25

(b) { } { }
{ }

L L a b c i j a b c i j

a b c i

i i j i j j

i i i

3 4 1 1

1

∩ = ≥ ∩ ≥

= ≠

, ,

Ì Exam ple 0.1.34: Given L1 is English language and L2 is French
language, what do you mean by (a) L L1 2∪ and L L1 2∩ .

Solu tion

(a) L L1 2∪ = Set of all sentences someone who speaks both English
and French can recognize.

(b) L L1 2∩ = Language that contains all the sentences that are in both
L1 and L2.

Ì Exam ple 0.1.35: Given A = {a, b, c}, B = {b, c, d} and

{ }L a b i ji j
1 1 1= ≥ ≥, , { }L b c i ji j

2 1= ≥ ≥

{ }L a b c d i ji j i j
3 1 1= ≥ ≥, , { }L ad a d i ji j j

4 2 1= ≥ ≥() ,

 Determine whether each of the following statements is true or false.

(a) L1 is a language over A.
(b) L1 is a language over B.
(c) L2 is a language over A B∪ .
(d) L2 is a language over A B∩ .
(e) L3 is a language over A B∪ .
(f) L3 is a language over A B∩ .
(g) L4 is a language over A B⊕ .
(h) L1 is a language over A – B.
(i) L1 is a language over B – A.
(j) L L1 2∪ is a language over A.
(k) L L1 2∪ is a language over A B∪ .
(l) L L1 2∪ is a language over A B∩ .

(m) L L1 2∩ is a language over B.
(n) L L1 2∩ is a language over A B∪ .
(o) L L1 2∩ is a language over A B∩ .

Solu tion

From the given sets A and B, we have

A B a b c d
A B b c
A B a
B A d

∪ =
∩ =
− =
− =

{ , , , }
{ , }
{ }
{ }.

26 Theory of Automata, Formal Languages and Computation

Hence we conclude the following

(a) True (b) False (c) True (d) True (e) True (f) False
(g) True (h) False (i) False (j) True (k) True (l) False
(m) True (n) True (o) True.

0.1.5 Boolean Logic

“Boolean logic” is a system built with two values TRUE and FALSE.
“Boolean values” are represented by values 0 and 1. There are many Boolean
operations.

(a) Negation: It means the NOT operation, represents by ¬.

Example: ¬ 0 = 1 and ¬ 1 = 0.

(b) Conjunction: It means the AND operation, represented by ∧.

(c) Disjunction: It means the OR operation, represented by ∨

The truth tables of the above Boolean operations are shown as below:

A B C A B= ∧ A B C A B= ∨

0 0 0 0 0 0

0 1 0 0 1 1

1 0 0 1 0 1

1 1 1 1 1 1

AND OR

(d) Exclusive-OR operation: 1 if either but not both of its operands are 1.
Exclusive-OR is denoted by ⊕.

A B C A B= ⊕

0 0 0

0 1 1

1 0 1

1 1 0

Exclu sive-OR

(e) Equality: The equality operation, written with the symbol ↔, is 1 if both
its operands have the same value.

Introduction 27

(f) Implication: This operation is designated by the symbol → and is 0 if its
first operand is 1 and its second operand is 0; otherwise → is 1.

0.1.6 Fun da men tal Proof Tech niques

(a) Prin ci ple of Math e mat i cal Induc tion

Proof of induction is used to show that all elements of an infinite set have a
specified property. The proof by induction has two parts, (i) Induction step
(ii) Basis.

The induction step proves that for each i ≥1, if P(i) is true, then so is
P(i +1). The basis proves that P(1) is true. When both these parts are proved,
then for each i, P(i) is proved.

Let us illustrate the method of writing a proof by induction.

Basis: To prove that P(1) is true.

Induction Step: For each i ≥1, assume that P(i) is true and use this assumption
to show that P(i + 1) is true.

(b) Pigeon-hole Prin ci ple

If A and B are finite sets and |A| > |B|, then there is no one-to-one function from
A to B. i.e., If an attempt is made to pair off the elements of A (the “pigeons”)
with elements of B (the “pigeonholes”), sooner or later we will have to put
more than one pigeon in a pigeonhole.

By induction, the pigeonhole principle can be proved.

Ì Exam ple 0.1.36: A sack has 50 marbles of 4 different colours. Show
that there are at least 13 marbles of the same colour.

Solu tion

Since we need to partition the set of 50 elements (marbles) into 4 sets
(colours), according to the Pigeon-hole principle at least one of the sets (same
colour) has 50/4 = 13 elements (marbles). That is to say that at least 13
marbles have the same colour.

Ì Exam ple 0.1.37: Show that 2 3n n> for n ≥10 by Mathematical
Induction.

Proof: (i) Basis: For n = 10, 2 1024 1010 3= >
(ii) Inductive Step: Assume 2 3k k>

28 Theory of Automata, Formal Languages and Computation

Now,

2 2 2 1
1

10
2

1
1

2

1
1

1
3

3

k k k

k

k

k

+ = ⋅ > +





⋅

≥ +





⋅

≥ +





⋅

≥
+

≥ ++

3
3

3
3

3

1 3

1

2 1

k

k
k

k
kk

()

() .

Hence 2 103n n n> ≥for . ¨

Ì Exam ple 0.1.38: Prove that for every integer n ≥ 0, the number
4 32 1 2n n+ ++ is a multiple of 13.

Proof: We use induction on n, starting with n = 0.

P () ()() ()0 4 3 4 3 13 12 0 1 0 2 2= + = + =+ + (1)

Assume P k tk k() = + =+ +4 3 132 1 2 , for some inte ger t. (2)

We need to prove that

P k k k() : () ()+ ++ + + +1 4 32 1 1 1 2 is a mul ti ple of 13.

Now,

4 3 4 3
4 4 4

2 1 1 1 2 2 1 2 2 1

2 2 1 2

() () () ()

()

k k k k

k

+ + + + + + + +

+
+ = +

= + ()3 3 3 32 2 2k k k+ + +− + ⋅

= + + − +
= + −

+ + +

+
4 4 3 3 4 3
16 13 3 13

2 2 1 2 2 2

2
() ()
() () [

k k k

kt from ()]
[]

2
13 16 3 2= − +t k (3)

From (3) it follows that P(k+1) is a multiple of 13. Hence we have,
4 32 1 2n n+ ++ is a multiple of 13. ¨

Ì Exam ple 0.1.39: Show that for any integer n n n≥ ++ +0 11 122 2 1, () () is
divisible by 133.

Proof: Basis: When n = 0, 112 + 121 = 133 is divisible by 133.

Introduction 29

Inductive Hypothesis: When n = k.

11 12 1332 2 1k k p+ ++ =

Inductive Step: When n = k + 1

11 12 11 11 12

11 133 12 12

3 2 3 2 2 3

2 1 2

k k k k

k kp

+ + • + +

+ +

+ = +
= − +() 3

2 1 2

2 1

133 11 12 11 12

133 11 12

= − −

= +

+

+

() ()

()

p

p

k

k

Hence it is true for n ≥ 0. ¨

Ì Exam ple 0.1.40: It is known that for any positive integer n ≥ 2,

1
1

1
2

1
2

0
n n n

A
+

+
+

+ − >L

where A is a constant. How large can A be?

Solu tion

Let the value of A be x.

n x x= + − > <





2
1

3

1

4
0

7

12
, Assume

Inductive Hypothesis:

For n k
k k k

x=
+

+
+

+ + − >,
1

1
1

2
1

2
0L

Induc tive Step:

For n = k+
k k k

x1
1

2
1

3
1

2 1
,

()+
+

+
+ +

+
−L

=
+

+
+

+ +





+
+

+
+

−
+

−
1

1
1

2
1

2
1

2 1
1

2 2
1

1k k k k k k
xL

Adding and substracting
1

1
0

k +






= (1)

But
1

1
1

2
1

2k k k
x p p

+
+

+
+





= +L (- positive)

30 Theory of Automata, Formal Languages and Computation

From (1), we have

1
2

1
3

1
2 2

1
2 1

1
2 2

1
1k k k

x x p
k k k

x
+

+
+

+
+

−





= + +
+

+
+

−
+

−

=

L ()

p
k k

p
k k

+
+

−
+

= +
+ +

1
2 1

1
2 2

1
2 1 2 2()()

Hence the value of x is increasing for increase in n.

⇒ <Maximum value of A
7

12
.

Ì Exam ple 0.1.41: For the sequence of integers 〈 〉 ≥Fn n 1 defined by
F1 = 1, F2 = 1 and F F F nn n n= + ≥− −1 2 3, prove by Mathematical
Induction that

F

n n

1
1

5

1 5
2

1 5
2

=
+







 −

−





















Proof: Basis: n = 1,

F1
1

5

1 5
2

1 5
2

1

5

1
2

5
2

1
2

5
2

=
+







 −

−





















= + − +










= 1

Inductive Hypothesis: n = k,

Fk

n k

=
+







 −

−





















1

5

1 5
2

1 5
2

Inductive Step: n = k + 1,

F F Fk k k
k k

+ −= +

=
+







 −

−





















+

1 1

1

5

1 5
2

1 5
2

1

5

1 +







 −

−





















− −
5

2
1 5

2

1 1k k

¨

Introduction 31

Ì Exam ple 0.1.42: Show that any positive integer, n ≥ 2 is either a prime
or a product of primes.

Proof: Basis: n =2 is a prime.

Inductive Hypothesis: For n = k, k is either a prime or a product of primes.

Inductive Step: For n = k + 1, if k + 1 is prime the given statement is true else,

k pq p q k+ = <1 , ,

⇒ k + 1 is a prod uct of primes.

¨

Ì Exam ple 0.1.43: Prove by Mathematical Induction, for n ≥1,

k
n n n

k

n
2

1

1 2
6=

∑ =
+ +()()

Proof: Let P n n
n n n

()
()()

= + + =
+ +

1 2
1 2 1
6

2 2 2L

Basis: For n = 1, P(1) = 12 = 1 (on calculating LHS)

RHS P= =
+ +

= =()
()() ()()()

1
1 1 1 2 1

6
1 2 3

6
1

Therefore P(1) is true.

Inductive Hypothesis:

P K k
k k k

()
()()

= + + =
+ +

1 2
1 2 1
6

2 2 2L is true.

Inductive Step: We claim that

P K k
k k k

() ()
()()()

+ = + + + + =
+ + +

1 1 2 1
1 2 2 3

6
2 2 2L is true.

Now,

1 2 1 1 2 1
1 2 1

1 2 2 2 1 2 2 2+ + + + + = + + + + +

=
+ +

L Lk k k k
k k k

() () ()
() ()

6
1

1 2 1 6 1
6

1

2

2

+ +

=
+ + + +

=
+

()

(())
() () ()

()[

k

P k
k k k k

k

Q is true

2 7 6
6

2k k+ +]

32 Theory of Automata, Formal Languages and Computation

=
+ + +() () ()k k k1 2 2 3

6

⇒ P(k+1) is true.

Thus we have, if P(k) is true, P(k+1) is also true. By principle of Mathematical
Induction, we have

k
n n n

n
k

n 2
1

1 2 1
6

1=
+ +

≥
=∑ ()()

,
¨

Ì Exam ple 0.1.44: Prove that 2n n> , for all n N∈ , by using Mathematical
Induction.

Proof: Let P n nn() .= − >2 0

Basis: For n = 1, P(1) = 21 – 1 = 2 – 1 = 1 > 0.
Therefore P(1) is true.

Inductive Hypothesis: Let us assume that P(k) is true. Here we have k as a
positive integer.

 ⇒ −2k k is pos i tive inte ger
⇒ − =2k k m (1)

Inductive Step: To prove that P(k + 1) is also positive. Let us consider
2 11k k+ − +().

We have

2 1 2 2 1
2 1

2 1

1k kk k
k m k

k m

+ − + = − −
= + − −
= + −
=

() ()
()

positive (Q is positive)m

⇒ If P(k) is true, P(k + 1) is also true.
Hence by Mathematical Induction, P(n) is true, i.e.,

2 0 2n nn n n N− > ⇒ > ∀ ∈, ¨

Ì Exam ple 0.1.45: A wheel of fortune has the numbers from 1 to 36
painted on it in at random. Prove that irrespective of how the numbers are
situated, three consecutive numbers total 55 or more.

Solu tion

Let n1 be any number on the wheel.

Introduction 33

Counting clockwise from n1, label the other numbers n n n2 3 36, , ,KK .
For the result to be false, we should have

n n n
n n n

n n n
n n

1 2 3

2 3 4

34 35 36

35

55
55

55

+ + <
+ + <

+ + <
+

,
,

,

LLL
LLL

36 1

36 1 2

55
55

+ <
+ + <

n
n n n

,
.

In all the inequalities above, the terms n1, n2, n3, appear exactly three
times.

Therefore adding the 36 inequalities we get

3 3 36 35 1980
1

36

1

36
n jjj j= =∑ ∑= < =() .

But j
j =∑ = =

1

36
36 37 666()() .

But this gives the contradiction that

1998 = 3 (666) < 1980.

Ì Exam ple 0.1.46: Prove by induction,

1.3 3.5+ + + + =
+ +

2 4 2
1 2 1
6

. ()
()()

Ln n
n n n

Proof:

Basis: 1.3 = =
()()()1 2 9

6
3

This result is true for n = 1.

Inductive Hypothesis: Assume that the result is true for n k= ≥()1 .
i.e.,

1.3 + + + + =
+ +

2 4 35 2
1 2 7

6
. . ()

()()
L k k

k k k

Inductive Step: For n = k + 1,

[. ()] ()()

()()
(

1.3 + + + + + +

=
+ +





+

2 4 2 1 3

1 2 7
6

L k k k k

k k k
k k+ +1 3)()

34 Theory of Automata, Formal Languages and Computation

=
+

+ + +

=
+ + +

=
+

()
[() ()]

()()

()(

k
k k k

k k k

k k

1
6

2 7 6 3

1 2 13 18
6

1

2

+ +2 2 9
6

)()k

Hence the result follows for all n Z∈ + , by the principle of Mathematical
induction. ¨

Ì Exam ple 0.1.47: Prove by induction

1
1 11 i i

n
ni

n

()+
=

+=∑

Proof: Assume S n
i i

n
ni

n
():

()
1

1 11 +
=

+=∑ .

For n = 1,

S
i i

S

i
()

() ()
()

1
1

1
1

1 2
1

1 1
1

1

1=
+

= =
+

⇒
=∑

is true.

Assume S k
i i

k
ki

k
() :

()
1

1 11 +
=

+=∑ is true.

Now consider S (k + 1).

1
1

1
1

1
1 2

1
1

11

1

i i i i k k
k

k k

i

k

i

k

() () () ()

() (

+
=

+
+

+ +

=
+

+

==

+ ∑∑

+ +

=
+ +

+ +

=
+
+

1 2
2 1

1 2
1
2

) ()
[()]
() ()

k
k k
k k

k
k

Therefore, S(k) ⇒ S(k + 1). Hence the result follows by Mathematical
Induction.

Ì Exam ple 0.1.48: Prove by induction for n z∈ + ,

n n n> ⇒ <4 22

Proof: For n = 5, 25 = 32 > 25 = 52.

Introduction 35

Assume the result for n k= ≥() :5

2k > k2.

For k > 3, we have

k k
k k

k
k k

k k k

k

k k

k

()

(

− >
⇒ > +
⇒ >
⇒ + > +
⇒ > + >+

2 1
2 1

2
2 2
2 2

2

2

2 2

1 2 2 2 k
kk

+
⇒ > ++

1
2 11 2

)
()

Hence the result is true for n ≥ 5 by the principle of Mathematical Induction.
¨

Ì Exam ple 0.1.49: Given S (n) as the statement

i

n

i

n

=∑ =
+ 











1

2
1
2

2
.

Prove that the truth of S(k) implies the truth of S(k + 1) by Mathematical
induction.

Proof: Assume S(k). For S(k + 1), we have

i k k

k k

i

k

=

+∑ = + 



















 + +

= + + 

1

1
2

2

1
2

2 1

1
4

()





+ +







= + + + + 















= +

2 2 2

1 1
1
4

22

k

k k

k

() ()

(1
1
2

2
2

) + 

















Therefore S k s k() ()⇒ +1 . ¨

Ì Exam ple 0.1.50: Show that if we select 151 distinct computer
engineering courses numbered between 1 and 300 inclusive, at least two
are consecutively numbered (using Pigeonhole Principle).

36 Theory of Automata, Formal Languages and Computation

Solu tion

Let the selected course numbers be

k k k1 2 151, ,KK (1)

The 302 numbers consisting of (1) together with

k k k1 2 1511 1 1+ + +, ,KK (2)

range in value between 1 and 301. By Pigeonhole principle, at least two of
those values coincide. The numbers (1) are all distinct and so the numbers (2)
are also distinct.

It must be then that one of (1) and one of (2) are equal. Therefore we have

k ki j= +1

and course ki follows course kj.

Ì Exam ple 0.1.51: Suppose there are 50 marbles of four different colours
in a sack, if exactly 8 marbles are red, show that there are at least 14 of the
same colour.

Solu tion

If we know that 8 of the marbles are red, then no other marbles could be red,
and we need to partition the rest (50 – 8) = 42 marbles into the rest (4 – 1) = 3
colours.

According to the Pigeon-hole principle, there are at least 42/3 = 14
marbles, which must have the same colour.

0.1.7 Intro duc tion to Gram mar

Grammar is a mechanism to describe the languages.
A grammar (G) is defined as a quadruple

G = (V, T, S, P)

where

V = Finite set of objects called VARIABLES
T = Finite set of objects called TERMINAL SYMBOLS
S V∈ = Start variables
P = Finite set of Productions.

A production rule P is of the form

x y→

Given a string w, of the form w = uxv, we can use the production rule x y→ and
obtain a new string z = uyv.

Introduction 37

The set of all strings obtained by using Production rules is the “Language”
generated by the Grammar.

If the grammar G = (V, T, S, P) then

L G w T S w() { : }* *= ∈ ⇒

If W L G∈ (), then the sequence

S w w w w wn⇒ ⇒ ⇒ ⇒ ⇒1 2 3 KK

is a “derivation” of the sentence w.

The string S w w wn, , , ,1 2 KK which contain variables as well as
terminals, are called “SENTENTIAL FORMS” of the derivation.

Ì Exam ple 0.1.52: Given a Grammar ()G S a b S P= { }, { , }, ,

with P defined as

S aSb
S

→
→

,
λ

(i) Obtain a sentence in language generated by G and the sentential form
(ii) Obtain the language L(G).

Solu tion

S aSb
aaSbb
aabb

⇒
⇒
⇒

Therefore we have S aabb⇒* .

(i) Sentence in the language generated by G = aabb.
Sentential form = aaSbb.

(ii) The rule S aSb→ is recursive.

All sentential forms will have the forms

w a S bi
i i=

Applying the production rule S aSb→ , we get

a S b a S bi i i i⇒ + +1 1

This is true for all i.

In order to get a sentence we apply S → λ.

Therefore we get

S a S b a bn n n n⇒ ⇒*

38 Theory of Automata, Formal Languages and Computation

There fore { }L G a b nn n() ;= ≥ 0 .

Ì Exam ple 0.1.53: Obtain a Grammar which generates the language

{ }L a b nn n= ≥+1 0:

Solu tion

With { }L a b nn n= ≥: 0 , the grammar

()G S a b S P= { },{ , }, ,

with production rules S aSb S→ →, .λ
Therefore { }L a b nn n= ≥+1 0: is obtained by generating an extra b.

This is done with a production rule

S Ab→ .

Hence the grammar G is given by

()G S A a b S P= { , }{ , }, , with pro duc tion rules given by

S Ab
A aAb
A

→
→
→

,

λ

Ì Exam ple 0.1.54: Obtain the language L produced by G with production
rules

S SS
S
S aSb
S bSa

→
→
→
→

,
λ

Solu tion

It is known from the given production rules that G has equal number of a’s and
b’s.

If w starts with an ‘a’ and ends with a ‘b’, then w L∈ has the form

w a w b= 1

where w L1 ∈ .
If w starts with a ‘b’ and ends with an ‘a’ then w L∈ has the form

w b w a= 1

where w L1 ∈ ..

Introduction 39

As a string in L can begin and end with the same symbol, the string shoud
be of the form

w = w1 w2

where w1 and w2 are in L, produced by S → SS.
This generates the language

{ }L w n w n wa b= =: () ()

where na(w) and nb(w) denotes the number of a’s and number of b’s in the
string w, respectively.

Ì Exam ple 0.1.55: Given ()G A S a b S P1 1= { , },{ , }, , with P1 defined by
the production rules

S aAb
A aAb

→
→

|
|
λ
λ

show that { }L G a b nn n() :1 0= ≥ .

Also show that G1 is equivalent to G where ()G S a b S P= { },{ , }, , where P
is given by

S aSb
S

→
→ λ.

Solu tion

Given P1 as

S aAb
S
S aAb
A

→
→
→
→

λ

λ.

S → λ pro duces a string with zero length. (n = 0)

S aAb
a b
ab

S aAb
aaAbb
aabb
a b

⇒
⇒
⇒

⇒
⇒
⇒
⇒

λ

2 2 and so on

Therefore L(G1) = {an bn : n ≥ 0}.

Given ()G S a b S P= { },{ , }, , where P is S aSb S→ →, .λ
The rule S aSb→ is recursive.
All sentential forms will have the forms

w a S bi
i i=

40 Theory of Automata, Formal Languages and Computation

Applying the production rule S aSb→ , we get

a S b a S bi i i i⇒ + +1 1

This is true for all i.
In order to get a sentence we apply S → λ.

Therefore we get

S a S b a bn n n n⇒ ⇒*

Hence { }L G a b nn n() := ≥ 0

Hence G1 is equivalent to G as both the grammars are given by

{ }a b nn n : ≥ 0 .

Ì Exam ple 0.1.56: Given a grammar G defined by the production rules

S AB
A Aa
B Bb
A a
B b

→
→
→
→
→ .

Show that the word w a b L G= ∈2 4 (),

where L is a language determined by G.

Solu tion

S AB
AaB
aaB
aaBb
aaBbb
aaBbbb
aabbbb
a b

⇒
⇒
⇒
⇒
⇒
⇒
⇒
⇒ 2 4

Hence the word w a b L G= ∈2 4 ().

Ì Exam ple 0.1.57: Find grammars for Σ = { , }a b that generate the sets of

(a) all strings with exactly one ‘a’
(b) all strings with at least one ‘a’
(c) all strings with no more than three a’s.

Introduction 41

Solu tion

(a) Given Σ = { , }a b
We are able to write the grammar G which produces all strings
with exactly one ‘a’ whose production rules are

A aSb
S Sb
S

→
→
→ ∈

(b) For all strings with at least one ‘a’: Production rules of Grammar
C are

A aSb
S bSa
S

→
→
→ ∈

(c) For all strings with no more than three a’s

{ }L a b n mn m= ≤ ≥3 0,

with production rules

A aSb
S aBb
B aCb
C bC
C b

→
→
→
→
→ ∈| .

Ì Exam ple 0.1.58: Give a simple description of the language generated
by the grammar with productions

() ,
,

() ,

.

a S aA
A bS
S

b S Aa
A B
B Aa

→
→
→

→
→
→λ

Soution

(a) For the given production rules

S aA
A bS
S

→
→
→ λ

we have the language L given by

{ }L a b nn n= ≥1

(b) For the given production rules

S Aa→

42 Theory of Automata, Formal Languages and Computation

A B
B Aa

→
→

There is no language L produced as there is no proper termination.

GLOSSARY

Set: Collection of objects
Singleton: Set having only one element.
Empty set: Set with no element
Complement: Set containing everything not contained in the base set.
Cardinality: Number of elements in a set.
Powerset: Set having ‘n’ elements have a powerset having 2n elements.
Relation: A relation on two sets is a set of ordered pair.
Poset: Partially ordered set.
Mapping: A function is otherwise called Mapping.
Injection (one-to-one function): Function is one-to-one if different elements

in domain of one set have distinct images in the range.
Surjection (onto function): A function is onto function if each element of a

set is the image of some element of the other set.
Bijection (one-to-one onto function): Function that is both one-to-one and

onto
Invertible function: Function is invertible if and only if it is both one-to-one

and onto.
Degree of vertex: Number of edges having that vertex as an end point.
Loop: Graph having an edge from a vertex to itself.
Isolated vertex: Vertex with zero as degree.
Directed graph: Graph having arrows instead of lines.
Outdegree: Number of arrows pointing from a particular node.
Indegree: Number of arrows pointing to a particular node.
Alphabet: Finite set of symbols.
String: Finite sequence of symbols from an alphabet.
Lexicographic ordering: Dictionary ordering, except that shorter strings

precede longer strings.
Language: Any set of strings over an alphabet.
Kleene star: Set of all strings obtained by concatenating zero or more strings

from a language.
Boolean logic: System built with two values True and False.
Negation: Means NOT operation
Conjunction: Means AND operation
Disjunction: Means OR operation.

Introduction 43

Exclusive-OR: 1 if either but not both of its operands are 1.
Mathematical Induction: Has two parts (a) Induction step (b) Basis.
Pigen-hole principle: If an attempt is made to pair off the elements of A (“the

pigeons”) with elements of B (the “pigeon holes”), sooner or later we
will have to put more than one pigeon in a pigeon hole.

REVIEW QUESTIONS

1. Define the following terms:
(a) Set (b) Union (c) Intersection

2. Define the following terms:
(a) set difference (b) Complement
Explain with examples.

3. What have you understood by the following:
(a) Idempotency
(b) Commutativity
(c) Associativity in respect of sets.

4. Define the following w.r.t. sets:
(a) Distributivity (b) Absorption (c) DeMorgan’s laws

5. Stand prove DeMorgan’s Laws.
6. Define the following terms w.r.t. sets:

(a) Disjoint sets
(b) Cardinality
(c) Powerset
(d) Cartesian product.

7. Define a relation. Explain with an example.
8. What is an equivalence relation? Give an example.
9. Explain the terms:

(a) Partial ordered set/Poset (b) Partition of a relation
10. What do you mean by equivalence class?
11. Define function as a relation.
12. What are the kinds of functions?
13. Explain the following with an example for each:

(a) one-to-one function
(b) onto function
(c) one-to-one onto function
(d) invertible function.

14. Differentiate between Injection, Surjection and bijection with
examples.

15. Define a graph with an example.

44 Theory of Automata, Formal Languages and Computation

16. Define the following terms:
(a) Degree of a vertex
(b) Loop
(c) Isolated vertex
(d) Adjacent vertices.

17. Define the following terms w.r.t a graph
(a) path (b) circuit (c) simple path

18. Define the following terms w.r.t. of graph
(a) Connected graph
(b) Components of a graph
(c) Walk of a graph
(d) Directed graph.

19. Define the following terms w.r.t. a graph
(a) out degree (b) in degree

20. How will you define the following:
(a) string (b) alphabet in languages.

21. How do you define the length of a string?
22. Define the following in respect of languages.

(a) Empty string
(b) Reverse string
(c) Substring
(d) Concatenation

22. What do you mean by lexicographic ordering of strings?
23. What do you mean by prefix and suffix of a string?
24. Define a language with an example.
25. Define concatenation of strings with an example.
26. Define “kleene star”, with an example.
27. What are the kinds of fundamental proof techniques?
28. Explain the following with an example (in Boolean logic)

(a) Negation
(b) Conjunction
(c) Disjunction
(d) Exclusive-OR
(e) Equality
(f) Implication

29. State and explain the principle of Mathematical Induction with an
example.

30. State and explain Pigeon-hole principle with an example.
31. What do you mean by Grammar?
32. What are the types of Grammars?

Introduction 45

EXERCISES

1. Determine whether each of the following pairs of sets is equal
(a) φ φ,{ }
(b) { }{ },{ ,{ }}2 2 2
(c) {1, 3, 3, 5, 5, 5}, {5, 3, 1}

2. For each of the following sets, determine whether 5 is an element of that
set.
(a) { }x R x∈ | is an integer greather than 1
(b) { }x R x∈ | is the square of an integer
(c) { }5 5,{ }

3. Determine whether each of the following statements is True or False.
(a) x x∈{ } (b) φ { }⊆ x (c) φ ∈{ }x

4. If A, B and C are sets such that A B⊆ and B C⊆ , show that A C⊆ .
5. Find the Cardinality of each of the following sets.

(a) {1} (b) { }{ }1 (c) { }1 1,{ } (d) { }1 1 1 1,{ },{ ,{ }}
6. Determine the powerset of the following sets.

(a) {a} (b) {a, b} (c) { }φ φ,{ }
7. Determine the number of elements in each of the following sets.

(a) ()P P ()φ (b) ()P a a a{ , ,{ },{{ }}}φ
8. Given A = {a, b, c, d} and B = {y, z}, find {a} A × B (b) B × A.
9. Find out the cartesian product A × B × C, where A is the set of all airlines

and B and C are both the set of all cities in Australia.
10. If A is a set, show that φ φ× = × =A A A.
11. Determine how many elements will A B× have if A has in elements and

B has n elements.
12. Show that the ordered pair (a, b) can be defined in terms of sets as

{ }{ },{ , }a a b , (Hint: First show that { }{ },{ , } { },{ , }a a b c c d= if and only
if a = c and b = d).

13. Let A = {1, 2, 3, 4, 5} and B = {0, 3, 6}. Find (a) A B∪ (b) A B∩
(c) A B− (d) B A− .

14. Show that A A= , for a given set A.
15. Show that (a) A B B A∪ = ∪ (b) A B B A∩ = ∩ .
16. Show that if A and B are sets, A B A B− = ∩ .
17. Show that if A and B are sets, then () ()A B A B A∩ ∪ ∩ = .

18. What can you say about the sets A and B if the following are true?
(a) A B A∪ =
(b) A B A∩ =
(c) A B A− =
(d) A B B A∩ = ∩

46 Theory of Automata, Formal Languages and Computation

(e) A B B A− = − .

19. Let A ii = { }1, 2, 3, KK for i = 1, 2, 3, KK . Find (a) Ai
i

n

=1
U , (b) Ai

i

n

=1
I

20. Using Membership table show that

A B C A B A C∩ ∪ = ∩ ∪ ∩() () ().

21. Using Venn diagram show that

A B C A B A C∪ ∩ = ∪ ∩ ∪() () ()

22. Using set builder notation and logical equivalences show that

A B A B∩ = ∪

23. State and prove De Morgan’s laws.
24. Prove by (a) Venn Diagram (b) Membership table:

(i) Commutative law (ii) Distoibutive law.
25. Given { }A a B ab= ∈ =, , { }, find A2, B3 and AB.
26. Given { }A a B ab= ∈ =, , { } determine A*, B* and B+

27. Given A and B are subsets of Σ*and ∈∉ A, show that the equation

X AX B= ∪ has a unique solution X A B= * .
28. Define Σ + in terms of Σ* .
29. Given L ab bc ca L aa ac cb1 2= ={ , , }, { , , } determine

(a) L L1 2∪ (b) L L1 2∩ (c) L L1 2⋅ (d) L L1 2 .
30. What do you mean by the Kleene closure of set A?
31. What do you mean by ∈-free closure of set A?
32. Given A a aa B a C aa= = ={ , }, { }, { } show that

A B C AB AC()∩ ⊂ ∩ .

33. A survey was conducted among 1000 people. Of these 595 are
democrats. 595 wear glasses and 550 like icecream. 395 of them are
democrats who wear glasses, 350 of them are democrats who like
icecream and 400 of them wear glasses and like icecreams; 250 of them
are democrats who wear glasses and like icecream.
(a) How many of them are not Democrats, who do not wear glasses,

and do not like icecreams?
(b) How many of them are Democrats, who do not wear glasses and do

not like icecreams?
34. It is known that at the “Catherine Assumption University”, 60 percent of

them play bridge, 70 percent jog, 20 percent play tennis and bridge, 30
percent play Tennis and jog, and 40 percent play bridge and jog. If
someone claimed that 20 percent of the Professors jog and play bridge
and Tennis, would you believe in this claim? Why?

Introduction 47

35. Prove:
(a) A A B A∪ ∩ =()
(b) A A B A∩ ∪ =()
(c) A B A B− = ∩
(d) A A B A B∪ ∩ = ∪()

(e) A A B A B∩ ∪ = ∩() .

36. Check if the following are functions defined in R to R:

(a) f x
x

() =
1

(b) f x x() =

(c) f x x() = ± +2 1

37. Determine the domain and range of the following functions.
(a) The function that assigns to each positive integer the largest perfect

square not exceeding this integer
(b) The function that assigns to each bit string twice the number of

zeros in that string.
38. Which of the following functions are onto from the set {a, b, c, d}.

(a) f a b f b a f c c f d d() , () , () , ()= = = =
(b) f a d f b b f c c f d d() , () , () , ()= = = =

39. Determine which of the following functions from Z to Z is one-to-one
(a) f n n() = −1
(b) f n n() = +2 1

(c) f n n() = 3

(d)  f n n() = 2
40. Determine which of the following functions is a bijection from R to R.

(a) f x x() = +3 1
(b) f x x() = +2 12

(c) f x x() = 3 3

(d) f x x x() () ()= + +2 21 4

42. If g is a function from A to B and f is a function from B to C.
(a) Show that if both f and g one onto functions, then f B g is also onto.
(b) Show that if both f and g are one-to-one functions, then f B g is also
one-to-one.

43. If f and f B g are one-to-one, does it follow that g is one-to-one? Justify
your answer.

44. Find f B g and g of where f x x() = +2 12 and g x x() = + 5 are functions
from R to R.

48 Theory of Automata, Formal Languages and Computation

45. Show that the mapping f X X: → when { }X x R x= ∈ ≠, 0 defined

by f x
x

() =
1

 is one-to-one and onto.

46. State which of the following are injections, surjections or bijections
from R to R, where R is the set of all real numbers.
(a) f x x() = −2
(b) f x x() = −2 1

47. Given X = {1, 2, 3, 4} and a function f X X: → given by
{ }f = (,), (,), (,), (,)12 2 3 3 4 41 . Find the composite function f 4.

48. Given f R R: → and g R R: → , where R is the set of real numbers,
where f x x() = −2 2 and g x x() = + 4. Determine f go and g fo . State
whether these functions are injective, surjective and bijective.

49. Given R is the relation on the set N of all natural numbers given by the
expression x + 3y = 12.
(a) Express R as a set of ordered pairs
(b) Determine the domain and range of R.

50. Given R as the relation from A = {2, 3, 4, 5} to B = {3, 6, 7, 10}, which is
defined by the expression “x divides y”.
(a) Express R as a set of ordered pairs.
(b) Determine the domain and range.

51. For each of the following relations on the set {1, 2, 3, 4}, determine
whether it is reflexive, or symmetric or antisymmetric or it is transitive.
(a) {(2,2), (2,3), (2,4), (3,2), (3,3), (3,4)}
(b) {(1,1), (1,2), (2,1), (2,2), (3,3), (4,4)}
(c) {(2,4), (4,2)}
(d) {(1,2), (2,3), (3,4)}

52. How many relations are there on a set with ‘n’ elements that are
(a) symmetric
(b) antisymmetric
(c) asymmetric
(d) irreflexive
(e) reflexive & symmetric
(f) neither reflexive nor irreflexive

53. Show that the relation R on a set A is symmetric if and only if R = R–1

where R–1 is the inverse relation.
54. Assume that the relation R is irreflexive. Is R2 necessarily irreflexive?

Give reasons.
55. Given R is a reflexive relation on a set A, show that Rn is reflexive for all

positive integers n.

Introduction 49

56. Given R is a relation { }R a b a b= (,) divides on the set of positive

integers. Determine
(a) R–1 (b) R

57. Determine whether the relation R on the set of all integers is reflexive,
symmetric, antisymmetric, and/or transitive, where (,)x y R∈ if and
only if
(a) xy ≥1 (b) x y b≡ (mod) (c) x y= 2

58. Determine the language of grammar G given by V = {S, A, a, b},
T = {a, b} and production P S aA S b A aa= → → →{ , , }.

59. Determine the grammar that generates the set
{ , , , }0 1 0 1 2n n n = KK .

60. Determine at least two grammars that generate the set {0 1m n m and n

are nonnegative integers}.
61. Determine the grammar that generates the set

{ , , , }0 1 2 0 1 2n n n n = KK

62. Determine the grammar for each of the following languages.
(a) set of all bit strings containing an even number of 0s and no 1s.
(b) set of all strings containing more 0s than 1s.
(c) set of all strings containing an equal number of 0s and 1s.
(d) set of all strings containing an unequal number of 0s and 1s.

63. Determine the grammars for the following languages on Σ = { }a .
(a) L = {w : | w | mod 3 = 0}
(b) L = {w : | w | mod 3 ≥ | w | mod 2}

64. Assuming Σ = { , }a b with na(w) and nb(w) as the number of a’s and b’s
respectively in string w, find grammars for
(a) L w n w n wa b= ={ : () ()}2
(b) L w n w n wa b= >{ : () ()}

65. Are the two grammars with respective productions

S aSb ab→ | | λ

and

S aAb ab
A aAb

→
→

|
| λ

equivalent?

66. Are there languages for which L L*
*

= ?
67. Prove that ()L L L LR R R

1 2 2 1= for all languages L1 and L2.

68. Show that any 2 2n n× chessboard with one square removed can be tiled

50 Theory of Automata, Formal Languages and Computation

using L-shaped pieces, where these pieces cover three squares at a time
as shown in fig. (n-positive integer).

69. Using Mathematical Induction prove that 3 + 3.5 + 3.52 + L + 3.5n = 3
(5n + 1 – 1)/4, where n is a nonnegative integer.

70. Using Mathematical induction prove that n! < nn, where n > 1.
71. Show that 12 – 22 + 32 – L + (–1)n –1n2 = (–1)n–1n(n+1)/2 where n > 0.
72. Determine which amounts of postage can be formed using 5-cent and

6-cent postage stamps. Prove your solution using mathematical
induction.

73. Show that n lines separate the plane into () /n n2 2 2+ + regions if no two
of these lines are parallel and no three pass through a common point.

74. A computer network has 6 computers. Each computer is directly
connected to at least one of the other computers. Show that there are at
least 2 computers in the network that are directly connected to the same
number of other computers (using Pigeonhole principle).

75. Show that in a group of 5 people where any two people are either
friends/enemies, there are not necessarily three mutual friends or three
mutual enemies, using Pigeon-hole principle.

76. Use induction to prove that any integer composed of 3n identical digits is
divisible by 3n.

SHORT QUESTIONS AND ANSWERS

1. Define a set.
A set is a collection of objects.

2. Define “elements” of a set.
The objects comprising a set are called its elements or members.

3. Define a singleton.
A set having only one element is called a Singleton.

4. Define an empty set.
A set with no element at all is called the empty set.

Introduction 51

5. What do you mean by ‘membership criterion’ of a set?
The criterion for determining for any given thing, whether it is or is

not a member of the given set is called ‘membership criterion’ of the set.
6. What is a null set?

A set which has no elements at all is called Null set.
7. Define a subset.

If every element of set A is also an element of set B, then A is a
“subset” of B, which is written as A B⊆ .

8. Define a proper subset.
If every element of set A is also an element of set B, but B also has

some element not contained in A, we say that A is a “proper subset” of B,
and write A B⊂ .

9. What is a Null set?
A set having no element is called a Null set.

10. Define Union of two sets.
The Union of two sets is the set that has objects that are elements of

at least one of the two given sets, and possibly both.
Union of two sets A and B is given by

A B x x A x B∪ = ∈ ∈{ : }or

11. Define intersection of sets.
The intersection of sets A and B, written A B∩ , is a set that contains

exactly those elements that are in both A and B.

 A B x x A x B∩ = ∈ ∈{ : }or

12. Define set difference.
The set difference of set A and set B, written as A – B, is the set that

contains everything that is in A but not in B.

A B x x A x B− = ∈ ∉{ : }and

13. Define Complement of a set.
The Complement of a set A, written as A, is the set containing

everything that is not in A.
14. Define the set operations

(a) Idempotency (b) Commutativity
(a) Idempotency: A A A

A A A
∪ =
∩ = .

(b) Commutativity: A B B A
A B B A

∪ = ∪
∩ = ∩ .

15. Define the set operations
(a) Associativity (b) Distributivity

52 Theory of Automata, Formal Languages and Computation

(a) Associativity: () ()
() ()
A B C A B C
A B C A B C

∪ ∪ = ∪ ∪
∩ ∩ = ∩ ∩

(b) Distributivity: () () ()
() () ()
A B C A C B C
A B C A C B C

∪ ∩ = ∩ ∪ ∩
∩ ∪ = ∪ ∩ ∪

16. Define the set operation viz., Absorption.
()
()
A B A A
A B A A

∪ ∩ =
∩ ∪ =

17. State DeMorgan’s Laws.
A B C A B A C
A B C A B A C

− ∪ = − ∩ −
− ∩ = − ∪ −

() () ()
() () ()

18. What are disjoint sets?
If A and B have no common elements i.e., A B∩ = φ, then the sets A

and B are said to be disjoint.
19. Define cardinality of a set.

The Cardinality of a set A, written |A|, is the number of elements in
set A.

20. Define powerset.
The set of all subsets of A, written 2A, is called The power set of set

A.
21. If a set has ‘n’ elements, how many elements does the powerset have?

The Powerset has 2n elements.
22. Define Cartesian Product.

The set of all ordered pairs (x, y) where x A∈ and y B∈ is called
Cartesian product of the sets A and B, denoted by A B× , i.e.,

A B x y x A y B× = ∈ ∈{(,) : }and

23. Define a relation.
A relation on sets S and T is a set of ordered pairs (s, t), whose

(a) s S∈ (s is a member of S)
(b) t T∈
(c) S and T need not be different
(d) The set of all first elements is the “domain” of the relation, and
(e) The set of all the second elements is the “range” of the relation.

24. What is an equivalence relation?
A subset R of A A× is called an equivalence relation on A if R

satisfies the following conditions:
(i) (,)a a R∈ for all a A∈ (R is reflexive)

(ii) If (,) ,a b R∈ then (,)b a R∈ , then (,)a b R∈
 (R is symmetric)

(iii) If (,)a b R∈ and (,)b c R∈ , then (,)a c R∈ (R is transitive)

Introduction 53

25. What do you mean by a partial ordering relation?
A relation R on a set S is called a “partial ordering” or a “partial

order” if R is reflexive, antisymmetric and transitive.
26. What do you mean by a Poset?

A set S together with a partial ordering R is called a “Partially
ordered set” or “Poset”.

27. What do you mean by Partition?
A Partition P of S is a collection {Ai} of nonempty subsets of S with

the properties:
(i) Each a S∈ belongs to some Ai,

(ii) If A Ai j≠ , then A Ai j∩ = ∅.
28. What is a function?

Suppose every element of S occurs exactly once as the first element
of an ordered pair. In fig. shown, every element of S has exactly one
arrow arising from it. This kind of relation is called a “function”.

A function maps an element in its domain to an element in its
co-domain.

29. What do you mean by injection?
A one-to-one function is called an Injection. A function f A B: → is

said to be one-to-one if different elements in the domain A has distinct
images in the range.
A function of is one-to-one if f a f a() ()= ′ implies a a= ′ .

30. Define Surjection.
An onto function is called a Surjection.

A function f A B: → is said to be an onto function if each element of B
is the image of some element of A.

31. What do you mean by bijection?
A one-to-one onto function is called a bijection. A function that

maps each and every element of A to exactly one element of B, with no
elements left over is a one-to-one onto function.

32. What is an invertible function?
A function f A B: → is invertible if its inverse relation f –1 is a

function from B to A.

54 Theory of Automata, Formal Languages and Computation

a

b

c

x

y

z

domain co-domain

A function f A B: → is invertible if and only if it is both one-to-one and
onto.

33. Define a Graph.
A graph a consists of a finite set V of object called “Vertices”, a

finite set E of objects called “Edges” and a function γ that assigns to
each edge a subset {v, w}, where v and w are vertices. Here we have
G V E= (, ,)γ .

34. Define degree of a vertex.
Degree of a vertex is defined as the number of edges having that

vertex as an end point.
35. What is an isolated vertex?

A vertex with zero as degree is called an Isolated vertex.
36. What is a circuit?

A circuit is a path that begins and ends at the same vertex.
37. What is a connected graph?

A graph is called “connected” if there is a path from any vertex to
any other vertex in the graph.

38. When is a graph said to be a tree?
A graph is said to be a tree if it is connected and has no simple cycles.

39. When is a path called a cycle?
A path is a cycle if it starts and ends in the same node.

40. What is a directed graph?
A graph is said to be directed if it has arrows in stead of lines.

41. Define outdegree of a node.
The number of arrows pointing from a particular node is the

outdegree of that node.
42. Define Indegree of a node.

The number of arrows pointing to a particle node is the indegree.
43. Define Alphabet with an example.

Alphabet is defined as a finite set of symbols
Example: Roman Alphabet {a, b, z}

44. Define a string.
A string over an alphabet is a finite sequence of symbols from that

alphabet, which is usually written next to one another and not separated
by commas.

45. Give examples for strings.
(a) If Σ a = { , }01 then 001001 is a string over Σ a
(b) If Σ b a b z= { , , }KK then axyrpqstcd is a string over Σ b .

46. Define length of a string.
The length of a string is its length as a sequence. The length of a

string w is written as | w |.
Example: | 10011 | = 5.

Introduction 55

47. Define an Empty string.
The string of zero length is called the empty string, denoted by ∈.

48. Define prefix and suffix of a string.
Prefix: If w = vy for some y, then v is a prefix of w.

Suffix: If w = xv for some x, then v is a suffix of w.
49. What do you mean by Lexicographics ordering?

The Lexicographic ordering of strings is the same as dictionary
ordering, except that shorter strings precede longer strings.
The Lexicograhic ordering of all strings over the alphabet {0,1} is (,∈ 0,
1, 00, 01, 10, 11, 000, ... }

50. What is a Language?
Any set of strings over an alphabet Σ is called a Language.

51. Define Σ* .
The set of all strings, including the empty string over an alphabet Σ is

denoted by Σ* .
52. Define concatenation of languages L1 and L2.

L L L w w x y= ⋅ = ∈ = ⋅1 2 { ;*Σ for some x L∈ 1 and y L∈ 2}

53. Define Kleene star.
Kleene star of a language L is denoted by L* which is the set of all

strings obtained by concatenating zero or more strings from L.
L w w w wk

* *{ := ∈ =Σ 1 K for some k ≥ 0 and some w1, w2, K w Lk ∈ }

54. What is Boolean logic?
It is a system built with two values — True and False., represented

by 1 and 0.
55. What do you mean by Negation?

It means NOT operation, represented by ¬.
Example: ¬0 = 1 and ¬1 = 0.

56. What do you mean by conjunction?
It means the AND operation, represented by ∧.

57. What do you mean by Disjunction?
It means the OR operation, represented by ∨.

58. Sketch the truth table for Conjunction & Disjunction

A B C A B= ∧ A B C A B= ∨

0 0 0 0 0 0

0 1 0 0 1 1

1 0 0 1 0 1

1 1 1 1 1 1

Con junc tion Disconjunction

56 Theory of Automata, Formal Languages and Computation

59. Sketch the Ex-OR truth table.

A B C A B= ⊕

0 0 0

0 1 1

1 0 1

1 1 0

Con junc tion

60. What is the principle of Mathematical Induction?
There are two parts to the method of proof by induction (used to

show that all elements of an infinite set have a specified property):
(i) Induction step (ii) Basis.

The Induction step proves that for each i ≥1, if P(i) is true, then so is
P i().+1
The basis proves that P(1) is true.
When both these parts are proved, then for each i, P(i) is proved.

61. State Pigeon-hole Principle.
If an attempt is made to pair off the elements of A (the “pigeons”)

with elements of B (the “pigeonholes”), sooner or later we will have to
put more than one pigeon in a pigeonhole.

62. Define a Grammar of a Language.
A Grammar (G) is defined as a quadruple

G V T S P= (, , ,)

where
V = finite set of objects called Variables
T = finite set of objects called Terminal symbols.

S V∈ = start symbol
P = finite set of productions.

Introduction 57

Chap ter 1

DFA and NFA

1.1 DETERMINISTIC FINITE AUTOMATA (DFA)

1.1.1 Autom ata—What is it?

An automaton is an abstract model of a digital computer. An automaton has a
mechanism to read input, which is a string over a given alphabet. This input is
actually written on an “input file”, which can be read by the automaton but
cannot change it.

Input file is divided into cells, each of which can hold one symbol. The
automaton has a temporary “storage” device, which has unlimited number of
cells, the contents of which can be altered by the automaton. Automaton has a
control unit, which is said to be in one of a finite number of “internal states”.
The automaton can change state in a defined way.

1.1.2 Types of Autom a ton

(a) Deterministic Automata
(b) Non-deterministic Automata

A deterministic automata is one in which each move (transition from one
state to another) is unequally determined by the current configuration.

If the internal state, input and contents of the storage are known, it is
possible to predict the future behaviour of the automaton. This is said to be
deterministic automata otherwise it is nondeterminist automata.

Control Unit

Output

Input File

Storage

Fig. Autom a ton

An automaton whose output response is “yes” or “No” is called an
“Acceptor”.

1.1.3 Def i ni tion of Deter min is tic Finite Autom a ton

A Deterministic Finite Automator (DFA) is a 5-tuple

M Q q F= (, , , ,)Σ δ 0

where

Q = Finite state of “internal states”
Σ = Finite set of symbols called “Input alphabet”
δ :Q Q× →Σ = Transition Function
q Q0 ∈ = Initial state
F ⊆ Q = Set of Final states

The input mechanism can move only from left to right and reads exactly
one symbol on each step.

The transition from one internal state to another are governed by the
transition function δ.

If δ(,) ,q a q0 1= then if the DFA is in state q0 and the current input symbol
is a, the DFA will go into state q1.

Ì Exam ple 1.1.1: Design a DFA, M which accepts the language
L M w a b w() { (,) :*= ∈ does not contain three consecutive b’s).

 Let M Q q F= (, , , ,)Σ δ 0

where
Q = {q0, q1, q2, q3}
Σ = {a, b}
q0 is the initial state
F = {q0, q1, q2,} are initial states
and δ is defined as follows:

Ini tial state
q

Sym bol
σ

Final state
δ σ(,)q

q0 a q0

q0 b q1

q1 a q0

q1 b q2

q2 a q0

q2 b q3

q3 a q3

q3 b q3

DFA and NFA 59

Solu tion

M does not accept specified language, as long as three consecutive b’s have not
been read.

It should be noted that

(i) M is in state qi (where i = 0,1, or 2) immediately after reading a run
of i consecutive b’s that either began the input string or was
preceded by an ‘a’.

(ii) If an ‘a’ is read and M is in state, q0, q1, or M returns to its initial
state q0.

q0, q1 and q2 are “Final states” (as given in the problem). Therefore any input
string not containing three consecutive b’s will be accepted.

In case we get three consecutive b’s then the q3 state is reached (which is
not final state), hence M will remain in this state, irrespective of any other
symbol in the rest of the string. This state q3 is said to be “dead state” or M is
said to be “trapped” at q3.

The DFA schematic is shown below based on the discussion above.

Ì Exam ple 1.1.2: Determine the DFA schematic for M Q q F= (, , , ,)Σ δ
where Q = {q1, q2, q3}, Σ = {0,1}, q1 is the start state, F = {q2} and δ is
given by the table below.

Ini tial state
q

Sym bol
σ

Final state
δ σ(,)q

q1 0 q1

q1 1 q2

q2 0 q3

q2 1 q2

q3 0 q2

q3 1 q2

Also determine a Language L recognized by the DFA.

60 Theory of Automata, Formal Languages and Computation

q0 q1 q2 q3

a

a

b b b

b

a

a

Fig. Finite Auto maton with four states

Solu tion

From the given table for δ, the DFA is drawn, where q2 is the only final state.
(It is to be noted that a DFA can “accept” a string and it can “recognize” a language.

Catch here is that “accept” is used for strings and “recognize” for that of a language).
It could be seen that the DFA accepts strings that has at least one 1 and an

even number of 0s following the last 1.
Hence the language L is given by

L = {w | w con tains at least one 1 and
 an even num ber of 0s fol low the last 1}

where L = L(M) and M recognized the RHS of the equation above.

Ì Exam ple 1.1.3: Sketch the DFA given

()M q q q q= { , },{ , }, , ,{ }1 2 1 201 δ

and δ is given by

δ δ(,) (,)q q q q1 1 2 10 0= =and

δ δ(,) (,)q q q q1 2 2 21 1= =

Determine a Language L(M), that the DFA recognizes.

Solu tion

From the given data, it is easy to predict the schematic of DFA as follows.
Internal states = q1, q2.
Symbols = 0, 1.
Transition function = δ (as defined above in the given problem)
q1 = Initial state
q2 = Final state.

DFA and NFA 61

q1 q2 q3

0
1

1

0

0,1

Fig. Finite Autom a ton hav ing three states.

q1 q2

0
1

1

0

Fig. State dia gram of DFA

If a string ends in a 0, it is “rejected” and “accepted” only if the string ends
in a 1. Therefore the language

L(M) = {w | w ends in a 1}.

Ì Exam ple 1.1.4: Design a DFA, the language recognized by the
Automaton being

L a b nn= ≥{ : }0

Solu tion

For the given language L a b nn= ≥{ : }0 , the strings could be b, ab, a2b, a3b, K .
Therefore the DFA accepts all strings consisting of an arbitrary number of

a’s, followed by a single b. All other input strings are rejected.

Ì Exam ple 1.1.5: Obtain the state table diagram and state transistion
diagram (DFA Schematic) of the finite state Automaton M Q= (, , ,Σ δ
q F0 ,), where Q q q q q= { , , , }0 1 2 3 , Σ = { , },a b q0 is the initial state, F is the
final state with the transistion defined by

δ δ δ
δ δ

(,) (,) (,)

(,) (,)

q a q q a q q b q

q a q q b q
0 2 3 1 2 3

1 3 0 1

= = =
= = δ

δ δ
(,)

(,) (,)

q b q

q a q q b q
3 2

2 0 1 0

=
= =

Solu tion

The State Table diagram is as shown below

δ a b

q0 q2 q1

q1 q3 q0

q2 q0 q3

q3 q1 q2

With the given definitions, the State Transition diagram/DFA Schematic is
shown on next page.

62 Theory of Automata, Formal Languages and Computation

q0 q2q1
b a,b

a a,b

Ì Exam ple 1.1.6: Obtain the DFA that accepts/recognizes the language

L(M) = {w | w ∈ {a, b, c}* and w con tains the pat tern abac}

(Note: This is an application of DFA’s involving searching a text for a specified
pattern)

Solu tion

Let us begin by “hard coding” the pattern into the machines states as shown in
fig. (a) below.

As the pattern ‘abac’ has length four, there are four states required
in addition to one intial state q0, to remember the pattern. q4 is the only
 accepting state required and this state q4 can be reached only after reading
‘abac’.

The complete DFA is as shown below in Fig. (b).

Ì Exam ple 1.1.7: Given Σ = { , }a b , construct a DFA that shall recognize
the language L b ab m nm n= >{ : , }0 .

DFA and NFA 63

q0 q1 q2 q3 q4
a b a c

Input

Fig. (a)

q0 q1

q2 q3

b

b

b

b

aa a a

q0 q1 q2 q3
a q4

b,c

c

a

b a c

b,c
b a,b,c

a

Fig. (b)

Solu tion

The given language L b ab m nm n= >{ : , }0 has all words with exactly one ‘a’
which is neither the first nor last letter of the word i.e., there is one or more b’s
before or after ‘a’.

DFA is drawn above for the automaton M,

where M Q q F= (, , , ,)Σ δ 0 with
Q q q q q q= { , , , , }0 1 2 3 4
Σ = { , }a b ; q0 = Initial state,
F = {q3} = Final state.

and δ is defined as per the language L. (q4 is “dead” state)

Ì Exam ple 1.1.8: Given Σ = { , }a b , construct a DFA which recognize the
language L a b m nm n= >{ : , }0 .

Solu tion

The given language L a b m nm n= >{ : , }0 has all words which begin with one or
more a’s followed by one or more b’s.

The finite automaton M Q q F(, , , ,)Σ δ 0 is with

Q = {q0, q1, q2, q3}
Σ = {a, b}

q0 = Ini tial state
F = {q2} = Final state

and δ as defined by language L.

The DFA is as shown below.

Here q3 is a “dead” state.

64 Theory of Automata, Formal Languages and Computation

q0 q1 q2 q3

q4

ab

b

a,b

aa a

b

q0 q1 q2

q3

a
b

a,b

a

a b

b

Ì Exam ple 1.1.9: Construct a DFA which recognizes the set of all strings
on Σ = { , }a b starting with the prefix ‘ab’.

Solu tion

Only two states (q1, q2) are required to recognize ab, in addition to the input
state. One additional state called the “trap” state is also required.

Hence the DFA that recognizes the set of all strings on Σ = { , }a b starting
with the prefix ‘ab’ is drawn above, where the automaton M is

M q q q q q({ , , , },{ , }, ,{ })0 1 2 3 201 δ

with the state table diagram for δ as shown below.

δ a b

q0 q1 q3

q1 q3 q2

q2 q2 q2

q3 q3 q3

Fig. (b) State table dia gram

Ì Exam ple 1.1.10: Determine the DFA that will accept those words from
Σ = { , }a b where the number of b’s is divisible by three. Sketch the state
table diagram of the finite Automaton M also.

Solu tion

The Finite Automaton M is M Q q F(, , , ,)Σ δ 0 with

Q q q q= { , , }0 1 2

DFA and NFA 65

q0 q1 q2

q3

b

a,b
a b

a

a,b

Fig. (a) DFA

Σ =
=
=

{ , }a b

q

F
0 Initial state

Final state

We choose three states q0, q1, q2. The states count the number of b’s modulo 3,
with q0 as the input as well as accepting state where q1 and q2 are not accepting
states. Run arrows from q0 to q1, q1 to q2 and q2 to q0 with label ‘b’.

If any a is encountered, it does not alter the state. The suitable DFA is as
shown in the figure (a).

The state table diagram is shown in Fig. (b).

δ a b

q0 q0 q1

q1 q1 q2

q2 q2 q0

Fig. (b) State table dia gram

Ì Exam ple 1.1.11: Construct an FA accepting all strings in {0,1}* having
even number of 0’s.

Solu tion

The Finite Automaton M is given by

 M q q q q q({ , , },{ , }, , , { }).0 1 2 0 201 δ

The Finite Automaton is as shown.

66 Theory of Automata, Formal Languages and Computation

q2q1

q0

b

a

a

b

b a

Fig. (a) DFA

q1q0

q2

0

1

0

1

Ì Exam ple 1.1.12: Construct a finite automaton accpting all strings over
{0, 1}

(a) having odd number of 0’s
(b) having even number of 0’s and even number of 1’s.

Solu tion

(a) M q q q q q({ , , },{ , }, , ,{ }).0 1 2 0 101 δ (See Fig. (a))
(b) M q q q q q q({ , , , },{ , }, , ,{ }).0 1 2 3 0 001 δ (See Fig. (b))

Ì Exam ple 1.1.13: Determine an FA, M accepting L,
where L w= ∈{ { , } :*01 Every 0 in w has a 1 immediately to its right}.

Solu tion

The finite automaton is given by

M q q q q q q({ , , , },{ , }, , , { }).0 1 2 3 0 201 δ

DFA and NFA 67

q1q0

q2

0

0

0

1

1
1

1

Fig. (a)

q0 q1

q3 q2

1

1

1

1

0 0 0 0

Fig. (b)

q0 q3q1
0 0

0,1

q2

1 0

1

Ì Exam ple 1.1.14: Determine the languages produced by the FA shown
in Figs. (a) and (b).

Solu tion

(a) For Σ = { , }a b , language generated = {a,b}*
(∈ will be accepted when initial state equal final state).

(b) For Σ = { , }a b , language generated = {a, b}+
{∈ is not accepted).

Ì Exam ple 1.1.15: Determine the FA if Σ = { , }a b for

(a) Language generated L ab ab nA
n= = ≥() {() | }* 0

(∈-not accepted)
(b) Language generated L ab nB

n= ≥{() | }1

(∈-not accepted)

Solu tion

(a) Given L ab nA
n= ≥{() | }0 .

The FA is shown below in Fig. (a).

The FA is given by

M q q q a b q q({ , , },{ , }, , ,)0 1 2 0 0δ

where q2 is a “dead state”.

68 Theory of Automata, Formal Languages and Computation

q2

q0 q1

a

b
ab

ab

Fig. (a)

q1

a

b

q0 a

b

(b)

q1 a

b

(a)

(b) Given L ab nB
n= ≥{() | }1 (∈-not accepted) i.e., initial state ≠ final state).

The FA for this language LB is shown in Fig. (b).

The FA is given by

M q q q q a b q q({ , , , },{ , }, , ,)0 1 2 3 0 2δ

where q3 is a “dead state”.

Ì Exam ple 1.1.16: Determine the FA with the

(a) Set of strings beginning with an ‘a’.
(b) Set of strings beginning with ‘a’ and ending with ‘b’.
(c) Set of strings having ‘aaa’ as a subword.
(d) Set of integers
(e) Set of signed integers.

Solu tion

(a) Set of strings beginning with an ‘a’.

[It is not necessary always to have a dead state]

(b) Set of strings beginning with ‘a’ and ending with ‘b’.

DFA and NFA 69

q3

q0 q1

a

ab

a
b

q2

b

a

b

Fig.(b)

q3

q0
a

b

ab

q1 q2 b
a b

a

q2

q0
a

b

a
b

q1 a

b

(c) Set of strings having ‘aaa’ as a subword.

(d) Set of integers.

Alphabet Σ = { , }0,1, K 9

(e) Set of signed Integers.

1.2 NON-DETERMINISTIC FINITE AUTOMATA (NFA)

Def i ni tion

A Nondeterministic Finite Automata (NFA) is defined by a 5-tuple

M Q q F= (, , , ,)Σ δ 0

where Q q F, , , ,Σ δ 0 are defined as fol lows:

Q = Finite set of inter nal states
Σ = Finite set of sym bols called “Input alpha bet”
δ = Q Q× ∪ →({ })Σ λ 2
q Q0 ∈ is the Ini tial states
F Q⊆ is a set of Final states

NFA differs from DFA in that, the range of δ in NFA is in the powerset 2Q.
A string is accepted by an NFA if there is some sequence of possible

moves that will put the machine in the final state at the end of the string.

Ì Exam ple 1.2.1: Obtain an NFA for a language consisting of all strings
over {0,1} containing a 1 in the third position from the end.

Solu tion

q1, q2, q3 are initial states

70 Theory of Automata, Formal Languages and Computation

q0 q1 0-91-9

q0 q1

0-9

q2
+,– 1-9

q0 q1 q2 q3
a aa

b

b

b

b

a

q4 is the final state.

Please note that this is an NFA as δ(,)q q2 30 = and δ(,)q q2 31 = .

Ì Exam ple 1.2.2: Determine an NFA accepting the language

(a) L x x a b c1 = ∈{ | { , , }* and x contains the pattern abac}

(b) L a b2 = ∪{ }* *

Solu tion

(a)

(b)

Ì Exam ple 1.2.3: Determine an NFA accepting all strings over {0,1}
which end in 1 but does not contain the substring 00.

Solu tion

The conditions to be satisfied are:

(a) String should end in a 1
(b) String should not contain 00.

The NFA is shown in figure.

Ì Exam ple 1.2.4: Obtain an NFA which should accept a language LA,
given by L x a b xA = ∈ ≥{ { , } :| |* 3 and third symbol of x from the right is

{‘a’}.

DFA and NFA 71

q0 q1
abac

a,b,c a,b,c

q0

q1

q2

a

b

λ

λ

q0

q1

q2

1

1

0 1

q1 q2 q3 q4
1 0,1 0,1

Solu tion

The conditions are

(a) the last two symbols can be ‘a’ or ‘b’.
(b) third symbol from the right is ‘a’
(c) symbol in any position but for the last three position can be ‘a’ or

‘b’.

The NFA is shown in fig. below.

Ì Exam ple 1.2.5: Sketch the NFA state diagram for

M q q q q q q= ({ , , , },{ , }, , ,{ })0 1 2 3 0 301 δ

with the state table as given below.

δ 0 1

q0 q0, q1 q0, q2

q1 q3 ∅
q2 ∅ q3

q3 q3 q3

Solu tion

The NFA states are q0, q1, q2 and q3.

δ
δ

δ

δ(,) { , }

(,) { }

(,) { }

(,) {q q q

q q

q q

q q0 0 1

1 3

3 3

0 00

0

0

1=
=

=

= , }

(,) { }

(,) { } .

q

q q

q q

2

2 3

3 3

1

1

δ

δ

=

=

The NFA is as shown below.

72 Theory of Automata, Formal Languages and Computation

q0 q1 q2 q3

a,b

a a,b a,b

q1

q2

q0 q3

1

00,1
0,1

Ì Exam ple 1.2.6: Given L is the language accepted by NFA in Fig.
Determine an NFA that accepts L a∪ { }.5

Solu tion

The language accepted by the given NFA is

L a a nn= ∪{ } { :3 is odd}.

Now to make an NFA accepting the language:

L a a nn= ∪ ∪{ } { : }3 is odd} {a 5 .

This is accomplished by adding two states after state q3 viz., q6 and q7 as shown
in fig.

The NFA is given by

M q q q q q q q q a q q q q= ({ , , , , , , , },{ }, , , { , , })0 1 2 3 4 5 6 7 0 3 5 7δ

Ì Exam ple 1.2.7: Find an NFA with four states for

L a n b a nn n= ≥ ∪ ≥{ : } { : }0 1

Solu tion

NFA for the language:

L a n b a nn n= ≥ ∪ ≥{ : } { : }0 1

For such a language two cases are to be considered.

Case (i): a nn , ≥ 0
q0 goes to a state q3 where all a’s are absorbed. Hence an is accepted.

DFA and NFA 73

q0 q1 q2 q3
a a a

q4 q5

a
a

a

Case (ii): b a nn : ≥1
q0 goes to a state q1 where all b’s are accepted and when an ‘a’ is

encountered it goes to final state q2. An additional state q4 is added as a
rejection state for the cases when ‘b’ is encountered after a’s of case (i) or when
‘a’ or ‘b’ is encountered after bna of case (ii).

The NFA is given by

M q q q q q a b q q q= ({ , , , , },{ , }, , ,{ , })0 1 2 3 4 0 2 3δ

which is shown in the fig. below.

Ì Exam ple 1.2.8: Design an NFA with no more than five states for the set

{ : } { : }abab n aba nn n≥ ∪ ≥0 0 .

Solu tion

NFA for the language

L abab n aba nn n= ≥ ∪ ≥{ : } { : }0 0

is

M q q q q q a b q q q q= ({ , , , , },{ , }, , , { , , })0 1 2 3 4 0 2 3 4δ .

Here the NFA is such that it accepts all strings of the type aban and ababn

where n ≥ 0.

q2 is for the case when string is ab, i.e. abn with n = 0.
q3 is for the case when string is ababn with n ≥ 0.
q4 is for the case when string is aban with n ≥ 0

This NFA is shown in the fig. above.

74 Theory of Automata, Formal Languages and Computation

π

q0 q2 q3
a b

b

aq1

q4

a

a

Ì Exam ple 1.2.9: Determine an NFA with three states that accepts the
language {ab, abc}*.

Solu tion:

NFA for the language

L ab abc= { , }*

should be such that it accepts “ab” or “abc” in the first step and then this is
looped with initial state so that any combination of “ab” and “abc” can be
accepted.

Hence we have the NFA as

M q q q a b c q q= ({ , , },{ , , }, , ,{ })0 1 2 0 1δ

which is shown below:

Ì Exam ple 1.2.10: Determine an NFA that accepts the language

L aa a b(())* + .

Solu tion:

NFA is given by

M q q q a b q q= ({ , , },{ , }, , ,{ })0 1 2 0 2δ

1.3 EQUIVALENCE OF NFA AND DFA

Def i ni tion

Two finite accepters M1 and M2 are equivalent iff

L M L M() ()1 2=

i.e., if both accept the same language.
Both DFA and NFA recognize the same class of languages. It is important

to note that every NFA has an equivalent DFA.
Let us illustrate the conversion of NDA to DFA through an example.

DFA and NFA 75

q0 q1 q2

a

b

a

a

q0 q1
a,ba

q2

a

Ì Exam ple 1.3.1: Determine a deterministic Finite State Automaton
from the given Nondeterministic FSA.

M q q a b q q= ({ , },{ , }, , ,{ })0 1 0 1δ

with the state table diagram for δ given below.

δ a b

q0 {q0, q1} {q1}

q1 ∅ {q0, q1}

Solu tion

Let M Q q F′ = ′ ′ ′ ′(, , , ,)Σ δ 0 be a determine. Finite state automaton (DFA),
where

Q′ = {[], [], [,], []},q q q q0 1 0 1 ∅
′q0 = [q0]

and F ′ = {[], [,]}q q q1 0 1

Please remember that [] denotes a single state. Let us now proceed to
determine δ′ to be defined for the DFA.

δ′ a b

[q0] [q0, q1] [q1]

[q1] ∅ [q0, q1]

[q0,q1] [q0,q1] [q0,q1]

∅ ∅ ∅

It is to be noted that

δ′ =([,],) [,]q q a q q0 1 0 1

since δ δ δ′ = ∪
= ∪ ∅

=

([,],) (,) (,)

{ , }

{ , }

q q a q a q a

q q

q q

0 1 0 1

0 1

1 1

and δ′ =([,],) [,]q q b q q0 1 0 1

since δ δ δ([,],) (,) (,)

{ } { , }

{ , }

q q b q b q b

q q q

q q

0 1 0 1

1 0 1

0 1

= ∪
= ∪

=

76 Theory of Automata, Formal Languages and Computation

Here any subset containing q1 is the final state in DFA. This is shown as below.

Ì Exam ple 1.3.2: Given the NDA as shown in Fig. (a), with δ as shown in
Fig. (b).

a b

q0 {q0, q1} ∅
q1 ∅ {q1, q2}

q2 ∅ ∅

Fig. (b)

Determine the equivalent DFA for the above given NDA.

Solu tion

Conversion of NDA to DFA is done through subset construction as shown in
the State table diagram below.

a b

[q0] [q0, q1] ∅
[q0, q1] [q0, q1] [q1, q2]

[q1 , q2] ∅ [q1, q2]

∅ ∅ ∅

DFA and NFA 77

q0 q1

a
q2

b

a b

Fig. (a)

[]q0 []q1 []q0,q1

a

b b

∅

a
b

a

a

b

The corresponding DFA is shown below. Please note that here any subset
containing q2 is the final state.

Ì Exam ple 1.3.3: Given the NDA as shown in fig. below, determine the
equivalent DFA.

Solu tion

The given NDA has q2 and q4 as final states. It accepts strings ending in 00 or
11. The state table is shown below.

0 1

q0 {q0, q1} {q0, q3}

q1 {q2} ∅

q2 ∅ ∅

q3 ∅ {q4}

q4 ∅ ∅

The conversion of NDA to DFA is done through the subset construction.

78 Theory of Automata, Formal Languages and Computation

∅

δ′ is given by the following state table.

0 1

→ []q0 [q0, q1] [q0, q3]

[q0 , q1] [, ,]q q q0 1 2 [q0, q3]

[q0 , q3] [q0 , q1] [, ,]q q q0 3 4

[, ,]q q q0 1 2 [, ,]q q q0 1 2 [q0 , q3]

[, ,]q q q0 3 4 [q0 , q1] [, ,]q q q0 3 4

Any state containing q2 or q4 will be a final state.
The DFA is shown below.

Ì Exam ple 1.3.4: Determine a NFA accepting {ab, ba} and use it to find
a DFA accepting it.

Solu tion

The state table is as shown below.

a b

q0 q1 q2

q1 ∅ q3

q2 q3 ∅
q3 ∅ ∅

The NFA is shown below.

q0 is the input state, q3 is the final state.

DFA and NFA 79

[]q0,q3[]q0,q1

[]q0,q1 2,q []q0,q3 4,q

0

0

1

10

1

0 1[]q0

q0 q1 q2 q3
a a

b

b

The state table corresponding to the DFA is derived by using subset
construction. State table for DFA is as shown below.

a b

[q0] [q1] [q2]

[q1] ∅ [q3]

[q2] [q3] ∅
[q3] ∅ ∅
∅ ∅ ∅

The DFA is as shown above.

1.4 REGULAR EXPRESSION

1.4.1 Reg u lar Lan guages

The regular languages are those languages that can be constructed from the
“big three” set operations viz., (a) Union (b) Concatenation (c) Kleene star.

A regular language is defined as follows.

Definition: Let Σ be an alphabet. The class of “regular languages” over Σ is
defined inductively as follows:

(a) ∅ is a regular language
(b) For each σ σ∈ Σ,{ } is a regular language
(c) For any natural number n ≥ 2 if L L Ln1 2, ,KK are regular

languages, then so is L L Ln1 2∪ ∪ ∪K K .
(d) For any natural number n ≥ 2, if L L Ln1 2, ,KK are regular

languages, then so is L L Ln1 2o o K K o .
(e) If L is a regular language, then so is L*.
(f) Nothing else is a regular language unless its construction follows

from rules (a) to (e).

80 Theory of Automata, Formal Languages and Computation

[]q0
a

∅

ab

[]q1 []q2 []q3

a b

a,b

b

b a

Examples:

(i) ∅ is a regular language (by rule (a))
(ii) L = {a, ab} is a language over Σ = { , }a b because, both {a} and {b}

are regular languages by rule (b). By rule (d) it follows that
{ } { } { }a b abo = is a regular language. Using rule (c), we see that
{ } { }a ab L∪ = is a regular language.

(iii) The language over the alphabet {0,1} where strings contain an
even number of 0’s can be constructed by

(1*((01*)(01*))*)

or simply 1*(01* 01*)*.

1.4.2 Reg u lar Expres sions

Regular expressions were designed to represent regular languages with a
mathematical tool, a tool built from a set of primitives and operations.

This representation involves a combination of strings of symbols from
some alphabet Σ, parantheses and the operators + ⋅, , and *.

A regular expression is obtained from the symbol {a, b, c}, empty string ∈,
and empty-set ∅ perform the operations + ⋅, and * (union, concatenation and
Kleene star).

Examples
 0 + 1 represents the set {0, 1}
 1 represents the set {1}
 0 represents the set {0}
 (0 + 1) 1 represents the set {01, 11}
() ()a b b c+ ⋅ + represents the set {ab, bb, ac, bc}

(0 + 1)* = ∈ + (0 + 1) + (0 + 1) (0 + 1) + LL = Σ*

() () () { }* *0 1 0 1 0 1+ = + + = = −+ +Σ Σ ε

1.4.3 Build ing Reg u lar Expres sions

Assume that Σ = { , , }a b c

Zero or more: a* means “zero or more a’s”,
To say “zero or more ab’s,” i.e., {λ, , , }ab abab KK you need to say

(ab)*.

One or more: Since a* means “zero or more a’s”, you can use aa* (or
equivalently a*a) to mean “one or more a’s”. Similarly to describe ‘one or
more ab’s”, that is {ab, abab, ababab, KK}, you can use ab (ab)*.

Zero or one: It can be described as an optional ‘a’ with (a + λ).

DFA and NFA 81

Any string at all: To describe any string at all (with Σ = { , , }a b c you can use
(a + b + c)*.

Any nonempty string: This is written any character from Σ = { , , }a b c followed
by any string at all: () ()*a b c a b c+ + + +

Any string not containing: To describe any string at all that does not
contain an ‘a’ (with Σ = { , , }a b c), you can use (b + c)*.

Any string containing exactly one: To describe any string that contains
exactly one ‘a’ put “any string not containing an a”, on either side of the ‘a’
like: () ()* *b c a b c+ + .

1.4.4 Lan guages defined by Reg u lar Expres sions

There is a very simple correspondence between regular expressions and the
languages they denote:

Reg u lar expres sion L (Reg u lar Expres sion)

x, for each x ∈ Σ {x}

λ {λ}

∅ { }

()r1 L r()1

r1
∗ (())*L r1

r r1 2 L r L r() ()1 2

r r1 2+ L r L r() ()1 2∪

1.4.5 Reg u lar Expres sions to NFA

(i) For any x in Σ, the regular expression denotes the language {x}.
The NFA (with a single start state and a single final state) as
shown below, represents exactly that language.

(ii) The regular expression λ denotes the language {λ}that is the
language containing only the empty string.

82 Theory of Automata, Formal Languages and Computation

x

NFA for x

λ

NFA for λ

(iii) The regular expression ∅ denotes the language ∅; no strings
belong to this language, not even the empty string.

(iv) For juxtaposition, strings in L r()1 followed by strings in L r()2 , we

chain the NFAs together as shown.
(v) The “+” denotes “or” in a regular expression, we would use an

NFA with a choice of paths.

(vi) The star (*) denotes zero or more applications of the regular
expression, hence a loop has to be set up in the NFA.

1.4.6 NFAs to Reg u lar Expres sion

The basic approach to convert NFA, to Regular Expressions is as follows:

(i) If an NFA has more than one final state, convert it to an NFA with
only one final state. Make the original final states nonfinal, and
add a λ-transition from each to the new (single) final state.

DFA and NFA 83

NFA for ∅

NFA for r r1 2

λ λλ
M r()1 M r()2

NFA for +r r1 2

λ

M r()1

M r()2

λ

λ

λ

λλ M r()1

λ

λ

(ii) Consider the NFA to be a generalised transition graph, which is
just like an NFA except that the edges may be labeled with
arbitrary regular expressions. Since the labels on the edges of an
NFA may be either λ or members of each of these can be
considered to be a regular expression.

(iii) Removes states one by one from the NFA, relabeling edge as you
go, until only the initial and the final state remain.

(iv) Read the final regular expression from the two state automaton
that results.

The regular expression derived in the final step accepts the same language
as the original NFA.

Ì Exam ple 1.4.1: Represent the following sets by regular expression

(a) { , }∧ ab
(b) { , , , }1 11 111 KK
(c) { , , , }ab a b bb

Solu tion

(a) The set { , }∧ ab is represented by the regular expression ∧ + ab
(b) The set { , , , }1 11 111 KK is got by concatenating 1 and any element

of {1}*. Therefore 1(1)* represent the given set.
(c) The set { , , , }ab a b bb represents the regular expression

ab a b bb+ + + .

Ì Exam ple 1.4.2: Obtain the regular expressions for the following sets:

(a) The set of all strings over {a, b} beginning and ending with ‘a’.
(b) { , , , }b b b2 5 8 KK

(c) { | }a nn2 1 0+ >

Solu tion

(a) The regular expression for ‘the set of all strings over {a, b}
beginning and ending with ‘a’ is given by:

a (a + b)*a

(b) The regular expression for { , , , }b b b2 5 8 KK is given by:

bb (bbb)*

(c) The regular expression for { | }a nn2 1 0+ > is given by:

a (aa)*

84 Theory of Automata, Formal Languages and Computation

Ì Exam ple 1.4.3: Obtain the regular expressions for the languages given
by

(a) L a b n mn m
1

2 2 1 0 0= ≥ ≥+{ | , }

(b) L a bb aa abb ba bbb2 = { , , , , , , }KK

(c) L w w3 01= ∈{ { , } |* has no pair of consecutive zeros}

(d) L4 = {strings of 0’s and 1’s ending in 00}

Solu tion

(a) L a b n mn m
1

2 2 1 0 0= ≥ ≥+{ | , } denotes the regular expression

(aa)*(bb)*b

(b) The regular expression for the language
L a bb aa abb ba2 = { , , , , , bbb, }KK

(a + b)* (a + bb)

(c) The regular expression for the language L w w3 01= ∈{ { , } |* has no

pair of consecutive zeros} is given by

() ()* * *1 011 0 + +λ 1 0* ()+ λ

(d) The regular expression for the language L4 = {strings of 0’s and
1’s beginning with 0 and ending with 1} is given by

0 (0 + 1)*1

Ì Exam ple 1.4.4: Describe the set represented by the regular expression
(aa + b)* (bb + a)*

Solu tion

The given regular expression is

() ()* *aa b bb a+ + .

The English language description is as follows: “The set of all the strings of the
form uv where a’s are in pairs in u and b’s are in pairs in v”.

Ì Exam ple 1.4.5: Give Regular expressions for the following on
Σ = { , , }a b c

(a) all strings containing exactly one a
(b) all strings containing no more than three a’s
(c) all strings which contain at least one occurrence of each symbol in

Σ.

DFA and NFA 85

(d) all strings which contain no runs of a’s of length greater than two.
(e) all strings in which all runs of a’s have lengths that are multiples of

three.

Solu tion

(a) R.E = (b + c)* a (b + c)* [for all strings containing exact one a]
(b) All strings containing no more than three a’s: We can describe the

string containing zero, one, two or three a’s (and nothing else) as

() () ()λ λ λ+ + +a a a

Now we want to allow arbitrary strings not containing a’s at the
places marked by X’s:

X a X a X a X() () ()λ λ λ+ + +

Therefore we put (b + c)* for each X.

() () () () () () ()* * * *b c a b c a b c a b c+ + + + + + +λ λ λ

(c) All strings which contain at least one occurrence of each symbol
in Σ:
Here we cannot assume the symbols are in any particular order.
We have no way of saying “in any order’, so we have to list the
possible orders:

abc acb bac bca cab cba+ + + + +

Let us put X in every place where we want to allow an arbitrary
string:

XaXbXcX + XaXcXbX + XbXaXcX + XbXcXaX
+ XcXaXbX + XcXbXaX

Finally, we replace all X’s with (a + b + c)* to get the final regular
expression:

() () () ()
() (

* * * *

*
a b c a a b c b a b c c a b c
a b c a a b

+ + + + + + + + +
+ + + + c c a b c b a b c

a b c b a b c a a b c c
) () ()

() () () (

* * *

* * *
+ + + + +

+ + + + + + a b c
a b c b a b c c a b c a a b c
a b c

+ + +
+ + + + + + + + +
+ +

)
() () () ()
(

*

* * * *

) () () ()
() () (

* * * *

* *
c a b c a a b c b a b c

a b c c a b c b a
+ + + + + + +

+ + + + + + + +b c a a b c) ()* *

(d) All strings which contain no runs of a’s of length greater than
two: An expression containing no a, one a, or one aa:

() ()()* *b c a aa b c+ + + +λ

86 Theory of Automata, Formal Languages and Computation

But if we want to repeat this, we have to ensure to have least one
non-a between repetitions:

 () ()() (()() ()())* * * * *b c a aa b c b c b c a aa b c+ + + + + + + + +λ λ

(e) All strings in which all runs of a’s have lengths that are multiples
of three:

()*aaa b c+ +

Ì Exam ple 1.4.6: Find regular expressions over Σ = { , }a b for the
language defined as follows:

(a) L a b mm m
1 0= >{ : }

(b) L b ab m nm n
2 0 0= > >{ : , }

(c) L a b m nm m
3 0 0= > >{ , , }

Solu tion

(a) Given L a b mm m
1 0= >{ : },

L1 has those words beginning with one or more a’s followed by
one or more b’s.
Therefore the regular expression is

aa bb a ab b* * * *()or

(b) Given L b ab m nm n
2 0 0= > >{ : , }. This language has those words

w whose letters are all b except for one ‘a’ that is not the first or
last letter of w.
Therefore the regular expression is

bb*abb*

(c) Given L a b mm m
3 0= >{ , }.

There is no regular expression for this beginning as L3 is not
regular.

Ì Exam ple 1.4.7: Determine all strings in L a b b a ab(() ())* *+ + of
length less than four.

Solu tion

b, ab, bb, ba, aab, abb, bab, bbb, baa, bba, aba

Ì Exam ple 1.4.8: Find the regular expressions for the languages defined
by

DFA and NFA 87

(i) L a b n m nmn m
1 1 1 3= ≥ ≥ ≥{ : , , }

(ii) L ab w n w a bn
2 3= ≥ ∈ +{ : , { , } }

(iii) L vwv v w a b v3 2= ∈ ={ : , { , } , | | }*

(iv) L w w4 3 0= ={ : | | mod }

Solu tion:

(i) Regular Expression for L a b n m nmn m
1 1 1 3= ≥ ≥ ≥{ : , , } is given

by

aa (a*) b(b*) + a(a*) bb (b*)

(ii) Regular Expression for L ab w n w a bn
2 3= ≥ ∈ +{ : , { , } } is given

by

abbb (b*) (a + b) (a + b)*

(iii) Regular Expression for L vwv v w a b v3 2= ∈ ={ : , { , } , | | }* is given

by

(a + b) (a + b) (a + b)* (a + b) (a + b)

(iv) The regular expression for L w w4 3 0= ={ : | | mod } is given by

(aaa + bbb + ccc + aab + aba + abb + bab
+ bba + cab + cba + cbb + caa)*

1.5 TWO-WAY FINITE AUTOMATA

Two-way finite automata are machines that can read input string in either
direction. This type of machines have a “read head”, which can move left or
right over the input string.

Like the finite automata, the two-way finite automata also have a finite set
Q of states and they can be either deterministic (2DFA) or nondeterministic
(2NFA).

They accept only regular sets like the ordinary finite automata. Let us
assume that the symbols of the input string are occupying cells of a finite tape,
one symbol per cell as shown in fig. The left and right endmarkers |— and —|
enclose the input string. The endmarkers are not included in the input alphabet
Σ.

|— a1 a2 a3 …… an —|

Q

88 Theory of Automata, Formal Languages and Computation

Def i ni tion

A 2DFA is an octuple

M Q s t r= (, , |—, —|, , , ,)Σ δ

where, Q is a finite set of states
Σ is a finite set of input alphabet.
|— is the left endmarker, |— ∉ Σ,
—| is the right endmarker, —| ∉ Σ,

δ : ({|—, —|}) ({ , })Q Q L R× ∪ → ×Σ is the tran si tion func tion.

s Q∈ is the start state,
t Q∈ is the accept state, and
r Q∈ is the reject state, r t≠

such that for all the states q,

δ
δ

(,) (,) ,
(,—|) (,)
q t u R u Q
q v L v Q

= ∈
= ∈

for some
for some

and for all symbols b ∈ ∪Σ {|—}

δ δ
δ δ

(,) (,), (,) (,)
(,—|) (,), (,—|) (,
t b t R r b r R
t t L r r

= =
= = L).

δ takes a state and a symbol as arguments and returns a new state and a
direction to move the head i.e., if δ (,) (,),p b q d= then whenever the machine
is in state p and scanning a tape cell containing symbol b, it moves its head one
cell in the direction d and enters the state q.

1.6 FINITE AUTOMATA WITH OUTPUT

1.6.1 Def i ni tion

A finite-state machine M Q O q= (, , , , ,)Σ δ λ 0 consists of a finite set Q of
states, a finite input alphabet Σ, a finite output alphabet O, a transition function
δ that assigns to each state and input pair a new state, an output function λ that
assigns to each state and input pair an output, and an initial state q0.

Let M Q O q= (, , , , ,)Σ δ λ 0 be a finite state machine. A state table is used to
denote the values of the transition function δ and the output function λ for all
pairs of states and input.

1.6.2 Mealey Machine

Usually the finite automata have binary output, i.e., they accept the string or do
not accept the string. This is basically decided on the basis of whether the final
state is reached by the initial state. Removing this restriction, we are trying to
consider a model where the outputs can be chosen from some other alphabet.

DFA and NFA 89

The values of the output function F(t) in the most general case is a
function of the present state q(t) and present input x(t).

F t q t x t() ((), ())= λ
where λ is called the output function.

This model is called the “Mealey machine”.
A “Mealey machine” is a six-tuple (, , , , ,)Q O qΣ δ λ 0 where all the symbols

except λ have the same meaning as discussed in the sections above.
λ is the output function mapping Σ × Q into O.

1.6.3 Moore Machine

If the output function F(t) depends only on the present state and is independent
of the present input q(t), then we have the output function f(t) given by

F t q t() (())= λ
A Moore machine is a six-tuple (, , , , ,)Q O qΣ δ λ 0 with the usual

meanings for symbols.

Ì Exam ple 1.6.1: Given state table as shown below that describes a
finite-state machine with states Q q q q q= { , , , },0 1 2 3 input alphabet
Σ = { , }01 and output alphabet O = {0, 1}, sketch the state diagram.

δ λ

State
Input Out put

0 1 0 1

q0 q1 q0 1 0

q1 q3 q0 1 1

q2 q1 q2 0 1

q3 q2 q1 0 0

Solu tion

The given state table corresponds to finite-state machine with output. The
corresponding state diagram is shown below.

90 Theory of Automata, Formal Languages and Computation

q0 q1

q2 q3

1,1

0,1

0,0

0,0

1,0
0,1

1,0

Ì Exam ple 1.6.2: Give examples for Moore and Mealy Models of finite
automata with outputs.

Solu tion

State Table shown in Fig. (a) represents a Moore Machine and that of Fig. (b)
shows a Mealey Machine.

Cur rent
State

Next State δ
Out put

λInput

0 1

Input → q0 q3 q1 0

q1 q1 q2 1

q2 q2 q3 0

q3 q3 q0 0

Fig. (a)

Next State

Input 0 Input 1

State Out put State Out put

Input → q1 q3 0 q2 0
q2 q1 1 q4 0
q3 q2 1 q1 1
q4 q4 1 q3 0

Fig. (b)

1.7 PROPERTIES OF REGULAR SETS (LANGUAGES)

A regular set (language) is a set accepted by a finite automaton.

1.7.1 Clo sure

A set is closed under an operation if, whenever the operation is applied to
members of the set, the result is also a member of the set.

For example, the set of integers is closed under addition, because x + y is
an integer whenever x and y are integers. However, integers are not closed
under division: if x and y are integers, x/y may or may not be an integer.

DFA and NFA 91

There are several operations defined on languages:

L L1 2∪ : strings in either L1 or L2.
L L1 2∩ : strings in both L1 and L2.

L L1 2 : strings com posed of one string from L, fol lowed by one
string from L2.

–L2 : All strings (over the same alpha bet) not in L1.
L1

* : Zero or more strings from L1 con cat e nated together

L L1 2− : strings in L1 that are not in L2.
LR

1 : strings in L1, reversed.

We shall show that the set of regular languages is closed under each of
these operations.

1.7.2 Union, Con cat e na tion, Nega tion, Kleene Star, Reverse

The general approach is as follows:

(i) Build automata (DFA or NFA) for each of the languages involved.
(ii) Show how to combine the automata in order to form a new

automaton which recognizes the desired language.
(iii) Since the language is represented by NFA/DFA, we shall

conclude that the language is regular.

Union of L1 and L2

(a) Create a new start state
(b) Make a λ-transition from the new start state to each of the original

start states.

Con cat e na tion of L1 and L2

(a) Put a λ-transition from each final state of L1 to the initial state of L2.
(b) Make the original final states of L1 nonfinal.

1.7.3 Inter sec tion and Set Dif fer ence

Just as with the other operations, it can be proved that regular languages are
closed under intersection and set difference by starting with automata for the
initial languages, and constructing a new automaton that represents the
operation applied to the initial languages.

In this construction, a completely new machine is formed, whose states are
labelled with an ordered pair of state names: the first element of each pair is a
state from L1 and the second element of each pair is a state from L2.

(a) Begin by creating a start state whose label is (start state of L1, start
state of L2).

92 Theory of Automata, Formal Languages and Computation

(b) Repeat the following until no new arcs can be added:

(1) Find a state (A, B) that lacks a tran si tion for some x in Σ.
(2) Add a transition on x from state (A, B) to state ((,),δ A x

δ (,))B x . (If this state does not already exist, create it).

Nega tion of L1

(a) Start with a complete DFA, not with an NFA
(b) Make every final state nonfinal and every nonfinal state final.

Kleene star of L1

(a) Make a new start state; connect it to the original start state with a
λ-transition.

(b) Make a new final state; connect the original final state (which
becomes nonfinal) to it with λ-transitions.

(c) Connect the new start state and new final state with a pair of
λ-transitions.

Reverse of L1

(a) Start with an automaton with just one final state.
(b) Make the initial state final and final state initial.
(c) Reverse the direction of every arc.

The same construction is used for both intersection and set difference. The
distinction is in how the final states are selected.

Inter sec tion

Make a state (A, B) as final if both

(i) A is a final state in L1 and
(ii) B is a final state in L2

Set Dif fer ence

Mark a state (A, B) as final if A is a final state in L1, but B is not a final state in L2.

1.8 PUMPING LEMMA

1.8.1 Prin ci ple of Pumping Lemma

• If an infi nite lan guage is reg u lar, it can be defined by a DFA.
• The DFA has some finite num ber of states (say).
• Since the lan guage is infi nite, some strings of the lan guage should have

length > n.

DFA and NFA 93

• For a string of length > n accepted by the DFA, the walk through the
DFA must con tain a cycle.

• Repeating the cycle an arbi trary num ber of times should yield another
string accepted by the DFA.

The “pumping lemma” for regular languages is another way of showing
that a given infinnite language is not regular. The proof is always done by
“contradiction”. The technique that is followed is as outlined below:

(i) Assume that the language L is regular.
(ii) By Pigeon-hole principle, any sufficiently long string in L should

repeat some state in the DFA, and therefore, the walk contains a
“cycle”.

(iii) Show that repeating the cycle some number of times (“pumping”
the cycle) yields a string that is not in L.

(iv) Conclude that L is not regular.

1.8.2 Applying the Pumping Lemma

Def i ni tion of Pumping Lemma

If L is an infinite regular language, then there exists some positive integer ‘m’
such that any string w L∈ , whose length is ‘m’ or greater can be decomposed
into three parts, xyz where

(i) | xy | is less than or equal to m.
(ii) | y | > 0,

(iii) w xy zi
i= is also in L for all i = 0, 1, 2, 3, ……

To use this lemma, we need to show:

(i) For any choice of m,
(ii) For some w L∈ that we get to choose (and we will choose one of

length at least ‘m’).
(iii) For any way of decomposing w into xyz, so long as |xy| is not

greater than m and y is not λ,
(iv) We can choose an i such that xyiz is not in L.

Ì Exam ple 1.8.1: Prove that L a b nn n= ≥{ : }0 is not regular.

Solu tion

(i) We don’t know m, but let us assume that there is one.
(ii) Choose a string w = anbn, where n > m, so that any prefix of length

‘m’ consists only of a’s.

94 Theory of Automata, Formal Languages and Computation

(iii) We don’t know the decomposition of w into xyz, but since | |xy m≤ ,
xy must consist entirely of a’s. Moreover, y cannot be empty.

(iv) Choose i = 0. This has the effect of dropping | y | a’s out of the
string, without affectng the number of b’s. The resultant string has
fewer a’s than b’s, hence does not belong to L.

Therefore L is not regular.

Ì Exam ple 1.8.2: Prove that L a b n k nn k= > ≥{ : }and 0 is not regular.

Solu tion

(i) We do not know ‘m’, but assume there is one.
(ii) Choose a string w a bn k= , where n > m, so that any prefix of

length ‘m’ consists entirely of a’s, and k = n – 1, so that there is just
one more a than b.

(iii) We do not know the decomposition of w into xyz, but since
| | ,xy m≤ xy must consist entirely of a’s. Moreover, y cannot be
empty.

(iv) Choose i = 0. This has the effect of dropping | y | a’s out of the
string, without affecting the number of b’s. The resultant string
fewer a’s than before, so it has either fewer a’s than b’s, or the
same number of each. Either way, the string does not belong to L,
so L is not regular.

Ì Exam ple 1.8.3: Show that L a nn= { : is a prime number} is not
regular.

Solu tion

(i) We don’t know m, but assume there is one.
(ii) Chose a string w = an where n is a prime number and

| |xyz n m= > +1. (This can always be done because there is no
largest prime number). Any prefix of w consists entirely of a’s.

(iii) We do not know the decomposition of w into xyz but since | | ,xy m≤
it follows that | z | > 1. As usual, | y | > 0.

(iv) Since | | , | | .z xy> >1 1. Choose i xz=| | . Then | | | | | | | |xy z xz y xzi = +
 = +(| |) | | .1 y xz
Since (1 + | y |) and | xz | are each greater than 1, the product must
be a composite number.
Therefore | |xy zi is a composite number.

Hence L is not regular.

DFA and NFA 95

1.9 CLOSURE PROPERTIES OF REGULAR LANGUAGES

THE O REM 1: If L1 and L2 are regular over Σ, then L L1 2∪ is regular i.e.,

union of two regular sets is also regular. [Regular sets are closed w.r.t.
union].

Proof: As L1 and L2 are given to be regular; there exists finite automata
M Q q F1 1 1 1= (, , , ,)Σ δ and M Q q F2 2 2 2 2= (, , , ,)Σ δ such that L1 = T(M1) and
L2 = T (M2).

[() { : (,) }*T M x q x F= ∈ ∈Σ δ 0

is a lan guage L(M) accepted by M]

Let us assume that Q Q1 2∩ = ∅.
Let us define NFA with ∈-transitions as follows:

M Q q F3 0= (, , , ,)Σ δ
where

(i) Q Q Q q= ∪ ∪1 2 0{ } where q0 is a new state not in Q Q1 2∪
(ii) F F F= ∪1 2

(iii) δ is defined by δ(,) { , }q q q0 1 2∈ = (a)

δ δ
δ(,)

(,)
(,)

q a
q a q Q
q a q Q

= ∈
∈





1 1

2 2

if
if (b)

It is obvious that δ(,) { , }q q q0 1 2∈ = induces ∈-transitions either to the
initial state q1 of M1 or initial state q2 of M2.

From (b), the transitions of M are the same as transitions M1 or M2

depending on whether q1 or q2 reached by ∈-transitions from q0.
Since F F F= ∪1 2 , any string accepted by M1 or M2 accepted by M.
There fore L L T M1 2∪ = () and so is reg u lar. ¨

THE O REM 2: If L is regular and L ⊆ Σ* , then Σ* − L is also a regular set.

Proof: Let L = T(M) where M Q q F= (, , , ,)Σ δ 0 is an FA.
Though L ⊆ Σ* , δ (q, a) need not be defined as for all ‘a’ in Σ.

δ (q, a) is defined for some ‘a’ in Σ eventhough ‘a’ does not find a place in
the strings accepted by M.

Let us now modify Σ,Q and δ as defined below.

(i) If a ∈ −Σ Σ1 , then the symbol ‘a’ will not appear in any string of
T(M). Therefore we delete ‘a’ from Σ1 and all transitions defined
by the symbol ‘a’. T(M) is not affected by this).

(ii) If Σ Σ− ≠ ∅1 , we add a dead state d to Q. We define δ(,)d a d=
for all ‘a’ in Σ and δ(,)d a d= for all q in Q and ‘a’ in Σ Σ− 1 .

Once again T(M) is not affected by this.

96 Theory of Automata, Formal Languages and Computation

Let us consider M got after applying (i) and (ii) to Σ,Q and δ. We write the
modified M as

(, , , ,)Q q FΣ δ 0 .

Let us now define a new automaton M ′ by

M Q q Q F′ = −(, , , ,)Σ δ 0 .

We can see that w T M∈ ′() iff δ(,)q w Q F0 ∈ − and w T M∉ ().
There fore Σ* ()− = ′L T M and there fore reg u lar. ¨

THE O REM 3: If L1 and L2 are regular, so is L L1 2∩ [Regular sets are closed
w.r.t. Intersection]

Proof: It is important to note that

L L L Lc c c
1 2 1 2∩ = ∪()

If L1 and L2 are regular, then L Lc c
1 2, are regular by theorem 1.

Therefore ()L Lc c c
1 2∪ is regular by theorem 2.

Hence L L1 2∩ is reg u lar. ¨

1.10 MYHILL-NERODE THEOREM

1.10.1 Myhill-Nerode Rela tions

Isomorphism

Two DFAs given by M Q s FM m m m= (, , , ,)Σ δ and N Q s FN n n n= (, , , ,)Σ δ are
said to be “isomorphic” if there is a one-to-one and onto mapping
f Q QM N: → such that

(i) f s sM N() ,=
(ii) f p a f p aM N((,)) ((),)δ δ= for all P Q aM∈ ∈, ,Σ

(iii) p F if f p FM N∈ ∈() .

Isomorphic automata accept same set.

Myhill-Nerode Rela tions

Let R ⊆ Σ* be a regular set, and let M Q s F= (, , , ,)Σ δ be a DFA for R with no
inaccessible states.

The automaton M induces an equivalence relation ≡ M on Σ* defined by

x y s x s yM

def
≡ ⇔ =$,) $ (,)δ (δ

It is easy to show that the relation ≡ M is an equivalence relation, meaning
it is reflexive, symmetric and transitive.

DFA and NFA 97

A few properties satisfied by ≡ M are as follows:

(a) It is a right congruence: for any x y, *∈ Σ and a ∈ Σ,

x y xa yM M a≡ ⇒ ≡

Proof: Assume x yM≡ .
Therefore we have

$ (,) ($,),)

($ (,),)

δ δ δ (
δ δ

s xa s x a

s y a

=
= (by assumption)

= s ya$ (,)δ ¨

(b) It refines R : for any x y, *∈ Σ ,

x y x R y RM≡ ⇒ ∈ ⇔ ∈().

Proof: Since $ (,) $ (,),δ δs x s y= which is either an accept state or a reject state,
so either both x and y are accepted or both are rejected. ¨

(c) It is of “Finite index”: i.e., it has only finitely many equivalence class.
This is because there is exactly one equivalence class

{ | $ (,) }*x s x q∈ =Σ δ

corresponding to each state q of M.

Hence the equivalence relation ≡ on Σ* is a “Myhill-Herode relation” for R if it
satisfies properties (a), (b) and (c). i.e., if it is a right congruence of finite index
refining R.

1.10.2 Myhill-Nerode The o rem

Let R ⊆ Σ* . The following statements are equivalent.

(i) R is regular
(ii) There exists a Myhill-Nerode relation for R

(iii) The relation ≡ R is of finite index.

(The proof is beyond the scope of this book).

Ì Exam ple 1.10.1: Using Myhill-Nerode Theorem verify whether
L a b nn n= ≥{ : }0 is regular or not.

Solu tion

This is done by determining the ≡ R -classes. If k m≠ , then a ak
L

m/≡ , since

98 Theory of Automata, Formal Languages and Computation

a b Lk k ∈ but a b Lm k ∉ . Hence there are infinitely many ≡ L -classes, at least

one for each a kk , .≥ 0
Hence by Myhill-Nerode Theorem L is not regular. (The application of

Myhill-Nerode theorem has been illustrated above).

GLOSSARY

Automaton: Abstract model of a digital computer.
Acceptor: Automaton whose output response is “Yes” or “No”
DFA: Deterministic Finite Automata.
NFA: Non-deterministic Finite Automata.
Regular Language: Language that can be constructed from the set

operations—Union, Concatenation and Kleene star.
Regular expression: Mathematical tool built from a set of primitives and

operations.
Two-way Finite Automata: Machines that can read input string in either

direction.
Moore machine: Output function depends only on present state and

independent of present input.
Mealey machine: Value of the output function is a function of the present

state and present input in a Mealey Machine.
Pumping lemma: A way to show that an infinite language is not regular.

REVIEW QUESTIONS

1. Define the term ‘Automata’ with an example.
2. What are the types of Automaton?
3. Explain Deterministic automata with an example.
4. Explain Non-deterministic automaton with an example.
5. Distinguish between DFA and NFA.
6. Explain the terms:

(a) State Table diagram
(b) State Transition diagram.

7. Define Non-deterministic Finite automata.
8. Comment on the equivalence of NFA and DFA.
9. What are regular expressions?

10. Define a regular language.
11. Give examples for regular expressions.

DFA and NFA 99

12. Comment on the correspondence between regular expressions and the
languages they denote.

13. How will you convert an NFA to a regular expression?
14. What do you mean by two way finite automata?
15. What do you mean by finite automata with output.
16. What do you mean by a Mealy machine?
17. What do you mean by a Moore machine?
18. Give examples for Moore and mealy models of finite automata with

outputs.
19. State the properties of regular sets.
20. State the principle of pumping lemma.
21. Define Pumping lemma.
22. Explain the closure properties of Regular languages.
23. What is Isomorphism?
24. State the Myhill-Nerode relations.

EXERCISES

1. For Σ = { , }a b construct DFA that accepts the following set of strings
(a) all strings with exactly one ‘a’
(b) all strings with at least one ‘a’
(c) all strings with no more than three a’s
(d) all strings with at least one ‘a’ and exactly two b’s.
(e) L = { w : | w | mod 3 = 0 }
(f) L = { w : | w | mod 5 ≠ 0 }

2. Determine a DFA that accepts all strings on {0,1} except those
containing the substring 001.

3. Obtain the NFA for a language defined by

L a b n mn m= ≥{ , }.1

and its associated state table diagram.
4. Construct an NFA for the state table given below.

δ 0 1

q0 {q0, q1} {q3}

q1 {q0} {q1, q3}

q2 ∅ {q0, q2}

q3 {q1, q2, q3} {q1}

100 Theory of Automata, Formal Languages and Computation

5. Obtain the language recognised by the NDA shown below.

6. Convert the NDA to DFA given M q q q a b q= ({ , , },{ , }, , ,0 1 2 0δ { })q1
with state table as given below

a b

q0 {q1, q2} ∅
q1 ∅ {q2}

q2 ∅ {q2}

7. Determine the DFA that accepts the language

L aa aba b()* * *+ +

8. Determine the DFA that accepts the language

L ab a ab a aa((())*+ + .

9. Determine the regular expression for the languages accepted by the
following automata:

(a)

(b)

(c)

DFA and NFA 101

a a a

b ba

a a

b b

b

a
b

b

b

a

q3q1

q2 q4

q0

0

1

0,1
1

0

1

0

0

10. Construct the state diagram for the finite-state machine with the state
table shown below.

g h

Input Input

State 0 1 0 1

s0 s1 s0 1 0

s1 s3 s0 1 1

s2 s1 s2 0 1

s3 s2 s1 0 0

11. Construct the state table for the finite-state machine with the state
diagram shown below.

12. In a given coding algorithm, when three consecutive 1’s appear in a
message, the receiver of the message knows that there has been a
transmission error. Construct a finite state machine that gives a 1 as its
output but if and only if the last three bits received are all 1’s.

13. Obtain the state tables for the finite-state machines with the following
state diagrams.

(a)

102 Theory of Automata, Formal Languages and Computation

s2s1

s3 s4

s0
Start

1,1

1,0

0,0

0,00,0

1,0

1,0

s1s0

s2 s3

Start
1,1

1,00,0

0,0

1,1

1,1

0,0

0,0

(b)

14. For the finite-state machine shown in problem (13), determine the
output for each of the following input strings
(a) 0111
(b) 11011011
(c) 01010101010

15. Construct a finite-state machine that delays an input string two bits,
giving 00 as the first two bits of output.

16. Construct a finite state machine that determines whether the input string
has a 1 in the last position and a 0 in the third to the last position read so
far.

17. Construct the state table for the Moore machine with the state diagram
shown below. Each input string to a Moore machine M produces an
output string. The output corresponding to an input string
a a ak1 2, , ,KK is the string g s g s g sk() () ()0 1 KK where
s f s ai a i1 = −(,) for i k= 1 2, , KK .

18. Determine the output generated by the Moore machine shown in
problem (17), with each of the input strings shown below.

(a) 0101 (b) 111111 (c) 11101110111
19. Construct a Moore machine that determines whether an input string

contains an even or odd number of 1s. The machine should give 1 as
output if an even number of 1s are in the string and 0 as output if an odd
number of 1s are in the string.

20. Obtain the languages recognized by each of the following Finite-state
automata shown below.

DFA and NFA 103

s0

s1

s2

Start

1

0

0

1

1

0

1

0

s0

s1

s2

Start

1,1

0,1

1,0

0,0

0,0

1,0

(a)

(b)

(c)

21. Obtain the NDA with state table shown below.

f

Input

State 0 1

s0 s0, s1 s3

s1 s0 s1, s3

s2 s0, s2

s3 s0, s1, s2 s1

22. Determine the state table for the NDA with state diagram as shown
below.

23. Determine a DFA that recognizes the same language as the NDA shown
in problem 2.2 (Determine the language first).

24. Determine the language recognized by the NDA shown below.

104 Theory of Automata, Formal Languages and Computation

s3s1

s2 s4

s0
Start

0

0,1

1

1

0

0

s0 s1
Start

1 0,1

s0 s1
Start s2 s3

0 1 0,1

1

0
0,1

s0 s1
Start s2 s3

1

1

0

0,1

0

0,1

(a)

(b)

(c)

25. Determine the languages recognized by the given DFA.

(a)

(b)

26. Determine a DFA that recognizes each of the following

(a) { | , , , }1 1 2 3n n = KK

(b) {1, 00}
(c) {0}

27. Show that there is no finite-state automaton that recognizes the set of bit
strings containing an equal number of 0s and 1s.

28. What are the strings in the regular sets specified by the regular
expressions given below.
(a) 10*

(b) (10)*

(c) 0 01∪
(d) 0 0 1()*∪
(e) (0 * 1)*.

29. Construct a NDA that recognizes the regular set 1 01* ∪ .

DFA and NFA 105

s1 s2
0Start s0

1

0

1

0,1

s0 s1
Start s2

0,1 1

0

s0 s1 s2
0 1

0

0

1

s1 s2 s3
0 0,1

1

0Start s0
1

0

0

30. Determine a regular grammar that generates the regular set recognized
by the finite state automaton shown in Fig.

31. Prove that the set { | , , , }o nn n1 0 1 2= KK made up of all strings
consisting of a block of 0s followed by a block of an equal number of 1s,
is not regular.

32. Express each of the following sets using a regular expression.
(a) the set of strings of one or more 0s followed by a 1.
(b) the set of strings of two or more symbols followed by three or more
0s.

33. Show that if A is a regular set, then set AR, the set of all reversals of
strings in A, is also regular.

34. Find an NDA which recognizes the set 0*1*.
35. Show that the set {02n 1n} is not regular using pumping lemma.
36. Show that the set of palindromes over {0,1} is not regular using

pumping lemma.
37. Convert the NFA to DFA of the NFA shown below.

38. Convert the regular expression ()*ab a∪ to an NFA.

39. Convert the regular expression ()*a b aba∪ to an NFA.

40. Using pumping lemma show that the following languages are not
regular.
(a) L nn n n

1 0 1 2 0= ≥{ | }

(b) L a n
n

2
2 0= ≥{ | } (a

n2 means a string of 2n a’s).

41. Give regular expressions for each of the following subsets of {a, b}*.
(a) {x | x contains an even number of a’s }

106 Theory of Automata, Formal Languages and Computation

3

1

2

b a

a,b
a

ε

s0

s1

s2

Start

1

0

0

0

1

1

(b) {x | x contains an odd number of b’s}
(c) {x | x contains an even number of a’s or an odd number of b’s}
(d) {x | x contains an even number of a’s and an odd number of b’s}

42. Give the DFA accepting the sets of strings matching the following
regular expressions:
(a) (000* + 111*)*
(b) (01 + 10) (01 + 10) (01 + 10)
(c) (0 + 1 (01*0)*1)*

43. Show that the following sets are not regular.
(a) { | }a b n mn m = 2

(b) { { , , } |*x a b c x∈ is a palindrome}

(c) { { , , } |*x a b c∈ the length of x is a square}

44. Consider the NFA shown below.

(a) Construct an equivalent DFA.
(b) Give an equivalent regular expression.

45. Convert the NDA to equivalent DFA for each of the following:

(a)

(b)

46. Give the regular expressions for each of the following subsets of {a, b}*.
(a) {x | x does not contain the substring a}
(b) {x | x does not contain the substring ab}
(c) {x | x does not contain the substring aba}

47. Match each NFA with an equivalent regular expression.

(a)

DFA and NFA 107

s0 s1 s2 s3

a,b

a a b

s0 s1 s2 s3

a,b

a a b

a,b

q0 q1 q2
0 0 1

0

1

q0 q1

a

b

a

b

(b)

(c)

(d)

(e)

(i) ∈ + +0 01 1 00 01() ()* * *

(ii) ∈ + +0 10 1 10 10()* * *

(iii) ∈ + +0 10 1 00 0()* *

(iv) ∈ + +0 01 1 00 0()* *

(v) ∈ + +0 10 1 10 1()* *

48. Define an NFA with four states equivalent to the regular expression

()*01 011 0111+ + .

Convert this automaton to an equivalent deterministic one.
49. Obtain the DFA equivalent to the following regular expressions:

(a) (00 + 11)* (01 + 10) (00 + 11)*

(b) (000)* 1 + (00)*1
(c) (0 (01)* (1 + 00) + 1 (10)* (0 + 11))*

SHORT QUESTIONS AND ANSWERS

1. What is an automaton?
An Automaton is an abstract model of a digital computer. It has a

mechanism to read input, which is a string over a given alphabet. This
input is actually written on an “input” file, which can be read by the
automaton but cannot change it.

2. What are the types of Automaton?
(a) Deterministic Automata

108 Theory of Automata, Formal Languages and Computation

q0 q1 q2
1

0

1 0

1

q0 q1 q2
0

0

0 1

1

q0 q1 q2

0

0
1

1

1

q0 q1 q2
0

0

1 0

1

(b) Non-deterministic Automata
3. What do you mean by deterministic automata?

If the internal state, input and contents of storage are known, it is
possible to predict the future behaviour of the automaton. This is said to
be deterministic automaton.

4. What do you mean by non-deterministic automata?
If the internal state, input and contents of storage are known, if it is

not possible to predict the future behaviours of the automaton, it is said
to be non-determine automaton.

5. Give the formal definition of Deterministic Finite Automaton (DFA).
A Deterministic Finite Automaton (DFA) is a t-tuple

M Q q F= (, , , ,)Σ δ 0

where
Q = Finite state of “internal states”
Σ = Finite state of symbols called ‘Input Alphabet’.
δ :Q Q× →Σ = Transition function
q Q0 ∈ = Initial state
F Q⊆ = Set of Final states.

6. Define the transition function δ in DFA.
If δ (,)q a q0 1= , then if the DFA is in state q0 and the current input

symbol is a, the DFA will go into state q1.
7. Give the formal definition of Non-deterministic Finite Automata

(NFA).
A non-deterministic Finite Automata (NFA) is defined by a 5-tuple

M Q q F= (, , , ,)Σ δ 0

where Q q F, , , ,Σ δ 0 are defined as follows:
Q = Finite set of internal states
Σ = Finite set of symbols called ‘Input alphabet’

δ λ= × ∪ →Q Q({ })Σ 2

q Q0 ∈ is the ‘Initial state’
F Q⊆ is a set of Final states.

8. What is the difference between NFA and DFA in terms of the transition
function δ?

NFA differs from DFA is that, the range of δ in NFA is in the
powerset 2Q.

9. When is a string accepted by an NFA?
A string is accepted by an NFA if there is some sequence of possible

moves that will put the machine in the final state at the end of the string.

DFA and NFA 109

10. When are two finite acceptors M1 and M2 said to be equivalent?
Two finite acceptors M1 and M2 are said to be equivalent if

L M L M() ()1 2=

i.e., if both accept the same language.
11. Is it possible to convert every NFA into an equivalent DFA?

Yes, it is possible to convert every NFA into an equivalent DFA and
vice-versa.

12. What are regular languages?
Regular languages are those languages that can be constructed from

the three set operations (a) Union (b) Concatenation and (c) Kleene star.
13. Give the formal definition of a regular language.

Let Σ be an alphabet. The class of ‘regular languages’ over Σ is
defined inductively as follows:

(a) ∅ is a reg u lar lan guage
(b) For each σ σ∈ Σ, { } is a regular language
(c) For any natural number n ≥ 2 if L L Ln1 2, ,KK are regular

languages, then so is L L Ln1 2∪ ∪KK .
(d) For any natural number n ≥ 2 if L L Ln1 2, ,KK are regular

languages, then so is L L Ln1 2o o KK o .
(e) If L is a regular language, then so is L*.
(f) Nothing else is a regular language unless its construction

follows from rules (a) to (e).
14. Give an example of a regular language.

The language over the alphabet {0, 1} whose strings contain an even
number of 0’s can be constructed by

1*((01*)(01*))*)

or simply 1*(01*01*)*.
15. What is the motivation behind writing regular expressions?

Regular expresions were designed to represent regular languages
with a mathematical tool, a tool built from a set of primitives and
operations.

16. How are regular expressions formed?
A regular expression is obtained from the symbols {a, b, c}, empty

string ∈, and empty set ∅ performing the operations +, ⋅ and * (union
concatenation and Kleene star).

17. What do the following regular expressions represent?
(a) (0 + 1) 1 (b) () ()a b b c+ ⋅ + (c) (0 + 1)* (d) 0 (e) (0 + 1)+

(a) (0 + 1) 1 rep re sents the set {01, 11}
(b) () ()a b b c+ ⋅ + represents the set {ab, bb, ac, bc}

110 Theory of Automata, Formal Languages and Computation

(c) (0 + 1)* represents the following:

() () () ()* *0 1 0 1 0 1 0 1+ = ∈ + + + + + + =LL Σ

(d) 0 represents the set { 0 }
(e) () () () { }* *0 1 0 1 0 1+ = + + = = − ∈+ +Σ Σ

18. What are the languages defined by the following regular expressions?
(a) ∅ (b) r r1 2 (c) r r1 2+

(a) For ∅, the lan guage is { }
(b) For r r1 2 , the language is L r L r() ()1 2 .
(c) For r r1 2+ , the language is L r L r() ()1 2∪ .

19. Sketch the NFA for (a) x ∈ Σ (b) λ (c) ∅.

(a) NFA for x:

(b) NFA for λ:

(c) NFA for ∅:
20. What do you mean by two-way finite automata?

Two way-finite automata are machines that can read input string in
either direction.

21. What is the kind of arrangement you have for the “read head” in a
two-way automata machine?

These types of machines have a ‘read head’, which can move left or
right over the input string.

22. State a common characteristic between Finite automata and two-way
finite automata?

Both Finite automata and two-way finite automata have the same
finite set Q of states. They accept only regular sets.

23. What are the types of two-way finite automata?
(a) 2DFA (Deteministic)
(b) 2NFA (Non-deterministic)

24. Give the formal definition of a 2DFA (two-way DFA).
A 2DFA is an octuple

M Q s t r= (, , |–, –| , , , ,)Σ δ

where, Q is a fine set of states,

Σ is a finite set of input,
|– is the left end marker, |– ∉ Σ ,
–| is the right end marker, –|∉ Σ ,
δ :Q Q L R× ∪ → ×({|–, –|} ({ , })Σ is the transition function

DFA and NFA 111

x

λ

s Q∈ is the start state,
t Q∈ is the accept state, and
r Q∈ is the reject state, r t≠ .

25. What is a Mealey Machine?
Usually the finite automata have binary output i.e., they accept the

string or do not accept the string. This is basically decided on the basis
of whether the final state is reached by the initial state. Removing this
restrictin, we are trying to consider a model where the outputs can be
chosen from some other alphabet. The value of the output function F(t)
in the most general case is a function of the present state q(t) and present
input x(t).

F t q t x t() ((), ())= λ

where λ is called the output function. This model is called the
“Mealey Machine”.

26. What is a Moore Machine?
If the output function F (t) depends only on the present state and is

independent of the present input q (t), then we have the output function
F(t) given by

F t q t() (())= λ

A Moore machine is a six-tuple (, , , , ,)Q qΣ 0 0δ λ with the usual
meanings for symbols.

27. What is a regular set?
A set which is accepted by a finite automaton is called a regular set.

28. What is closure property of a regular set?
A set is closed under an operation if, whenever the operation is

applied to members of the set, the result is also a member of the set.
29. State the meanings of the following operations made on languages:

(a) L L1 2∪ (b) L L1 2∩ (c) – L2 (d) L1 – L2 (e) L1
* (f) LR

1 .

(a) L L1 2∪ : Strings in either L1 or L2.
(b) L L1 2∩ : Strings in both L1 and L2.
(c) – L2: All strings (over the same alphabet) not in L1.
(d) L1 – L2: Strings in L1 that are not in L2.
(e) L1

* : Zero or more strings from L1 concatenated together.

(f) LR
1 : Strings in L1, reversed.

30. What is meant by Pumping Lemma?
The Pumping Lemma for regular languages is another way of

showing that a given infinite language is not regular.
31. What is the method of proof used by Pumping Lemma?

The proof is always done by contradiction.

112 Theory of Automata, Formal Languages and Computation

32. State the principle of Pumping Lemma.
If an infinite language is regular,k it can be defined by a DFA. The

DFA has some finite number of states (say n). Since the language is
infinite, some strings of the language should have length >n. For a string
of length >n accepted by DFA, the walk through of the DFA must
contain a cycle. Repeating the cycle an arbitrary number of times should
yield aother string accepted by the DFA.

33. How will you show that a given infinite language is not regular using a
Pumping Lemma?

(i) Assume that the lan guage L is reg u lar
(ii) By Pigeon-hole principle, any sufficiently long string in L

should repeat some state in the DFA, and therefore, the walk
contains a “cycle”.

(iii) Show that repeating the cycle some number of times
(“pumping” the cycle) yields a string that is not in L.

(iv) Conclude that L is not regular.
33. Give the formal definition of a Pumping Lemma.

If L is an infinite regular language, then there exists some positive
integer ‘m’ such that any string w L∈ , whose length is ‘m’ or greater can
be decomposed into three parts, xyz where

(i) | xy | is less than or equal to m
(ii) | y | > 0,

(iii) w xy zi
i= is also in L for all i = 0 1 2 3, , , ,KK

34. Is the language L a b nn n= ≥{ : }0 regular or not.
The language L is not regular.

35. Are the following languages regular or not.
(a) L a b n k nn k= > ≥{ : }and 0

(b) L a nn= { : is a prime number}.

(a) Not reg u lar
(b) Not regular.

36. State the closure property of Regular Languages.

(a) If L1 and L2 are reg u lar over Σ, then L L1 2∪ is reg u lar, i.e.,
union of two reg u lar sets is also reg u lar. Reg u lar sets are
closed w.r.t. union.

(b) If L1 and L2 are regular, so is L L1 2∩ , i.e., regular sets are
closed w.r.t. intersection.

37. State the Myhill-Nerode Theorem.
Let R ⊆ Σ* . The following statements are equivalent

(i) R is reg u lar

DFA and NFA 113

(ii) there exists a Myhill-Nerode relation for R.
(iii) the relation ≡ R is of finite index.

38. What is an acceptor?
Automaton whose output response is ‘Yes’ or ‘No’ is called an

acceptor.
39. What is a regular expression?

It is a mathematical tool built from a set of primitive and operations.
40. What are the properties of regular sets?

(a) Clo sure
(b) Union
(c) Concatenation
(d) Negation
(e) Kleene star
(f) Intersection
(g) Set difference

114 Theory of Automata, Formal Languages and Computation

Chap ter 2

Con text-Free Gram mars

2.1 INTRODUCTION

2.1.1 Def i ni tion of CFG

A context-free grammar is a 4-tuple (V, T, S, P) where

(i) V is a finite set called the variables
(ii) T is a finite set, disjoint from V, called the terminals

(iii) P is a finite set of rules, with each rule being a variable and a string
of variables and terminals, and

(iv) S V∈ is the start variable.

If u, v and w are strings of variables and terminals, and A w→ is a rule of
the grammar, we say that uAv yields uwv, written uAv uwv⇒ .

2.1.2 Exam ple of CFG

Given a grammar G = ({S}, {a, b}, R, S).
The set of rules R is

S aSb
S SS
S

→
→
→ ∈

This grammar generates strings such as

abab aaabbb aababb, , and

If we assume that a is left paranthesis ‘(’ and b is right paranthesis ‘)’, then
L(G) is the language of all strings of properly nested parantheses.

2.1.3 Right-Lin ear Gram mar

In general productions have the form:

() ()*V T V T∪ → ∪+ .

In right-linear grammar, all productions have one of the two forms:

V T V→ *

or V T→ *

i.e., the left hand side should have a single variable and the right hand side
consists of any number of terminals (members of T) optionally followed by a
single variable.

2.1.4 Right-Lin ear Gram mars and NFAs

There is a simple connection between right-linear grammars and NFAs, as
shown in the following illustration.

As an example of the correspondence between an NFA and a right linear
grammar, the following automaton and grammar both recognize the set of set
of strings consisting of an even number of 0’s and an even number of 1’s.

2.1.5 Left-Lin ear Gram mar

In a left-linear grammar, all productions have one of the two forms:

V VT→ *

or V T→ *

i.e., the left hand side must consist of a single varibale, and the right-hand side
consists of an optional single variable followed by one number of terminals.

116 Theory of Automata, Formal Languages and Computation

A Bx

A
x y

B
z

A Bλ

A x

A xB→

A xyzB→

A B→

A x→

1

1

1

1

0 0 0 0

S A

B C

S → λ

S B→ 0

S A→ 0

A C→ 0

A S→ 1

B S→ 0

B C→ 1

2.1.6 Con ver sion of Left-lin ear Gram mar into
Right-Lin ear Gram mar

Step Method

(a) Con struct a right-lin ear
 grammar for the dif fer ent
 languages LR.

Replace each pro duc tion A x→ of L
with a pro duc tion A x R→ and
replace each pro duc tion A Bx→
with a pro duc tion A x BR→

(b) Con struct an NFA for LR from
the right-lin ear gram mar. This
NFA should have just one
final state.

Refer to sec tion 2.1.4 for deriv ing an
NFA from a right-lin ear gram mar.

(c) Reverse the NFA for LR to
obtain an NFA for L.

(i) Con struct an NFA to
 recognize the lan guage L.

(ii) Ensure the NFA has only a
sin gle final state

(iii) Reverse the direc tion of arcs

(iv) Make the ini tial state final and
final state ini tial

(d) Con struct a right-lin ear
 grammar for L from the
NFA for L.

This is the tech nique described in
the pre vi ous sec tion.

Ì Exam ple 2.1.1: Give some example of context-free languages.

Solu tion

(a) The grammar G = ({S}, {a, b}, S, P) with productions

S aSa S bSb S→ → →, , λ
is context free.

S aSa aaSaa aabSbaa aabbaa⇒ ⇒ ⇒ ⇒

Thus we have L a ww w a bR() { : { , } }*= ∈ .
This language is context free.

(b) The grammar G, with production rules given by

S abB
A aaBb
B bbAa
A

→
→
→
→

,
,
,

λ

is context free.

Con text-free Grammars 117

The language is

L G ab bbaa bba ba nn n() { () () : }= ≥ 0

Ì Exam ple 2.1.2: Construct right-and left-linear grammars for the
language L a b n mn m= ≥ ≥{ : , }2 3 .

Solu tion

Right-Linear Grammar:

S aS
S aaA
A bA
A bbb

→
→
→
→

Left-Linear Grammar:

S Abbb
S Sb
A Aa
A aa

→
→
→
→

2.2 DERIVATION TREES

A ‘derivation tree’ is an ordered tree which the the nodes are labeled with the
left sides of productions and in which the children of a node represent its
corresponding right sides.

2.2.1 Def i ni tion of a Der i va tion Tree

Let G = (V, T, S, P) be a CFG. An ordered tree is a derivation tree for G iff it
has the following properties:

(i) The root of the derivation tree is S.
(ii) Each and every leaf in the tree has a label from T ∪ { }λ .

(iii) Each and every interior vertex (a vertex which is no a leaf) has a
label from V.

(iv) If a vertex has label A V∈ , and its children are labeled (from left to
right) a a an1 2, , KK , then P must contain a production of the
form

A a a an→ 1 2, , K K

(v) A leaf labeled λ has no siblings, that is, a vertex with a child
labeled λ can have no other children.

118 Theory of Automata, Formal Languages and Computation

2.2.2 Sentential Form

For a given CFG with productions S aA A aB B bB B a→ → → →, , , . The
derivation tree is as shown below.

S aA aaB aabB aaba⇒ ⇒ ⇒ ⇒

The resultant of the derivation tree is the word w = aaba.
This is said to be in “Sentential Form”.

2.2.3 Par tial Der i va tion Tree

In the definition of derivation tree given, if every leaf has a label from
V T∪ ∪ { }λ it is said to be “partial derivation tree”.

2.2.4 Right Most/Left Most/Mixed Der i va tion

Consider the grammar G with production

1
2
.
.
S aSS
S b

→
→







Now, we have

S aSS

aaSSS

aabSS

aabaSSS

aababSS

aababbS

a

⇒

⇒

⇒

⇒

⇒

⇒

⇒

1

1

2

1

2

2

2

ababbb

(Left Most Der i va tion)

The sequence fol lowed is “left most der i va tion”, fol low ing “1121222”, giv -
ing “aababbb”.

Con text-free Grammars 119

a

b

S

A

B

B

a

a

S aSS

aSb

aaSSb

aabSb

aabaSSb

aabaSbb

aabab

⇒

⇒

⇒

⇒

⇒

⇒

⇒

1

2

1

2

1

2

2

bb

(Mixed Der i va tion)

The sequence 1212122 represents a “Mixed Derivation”, giving
“aababbb”.

S aSS

aSb

aaSSb

aaSaSSb

aaSaSbb

aaSabbb

aab

⇒

⇒

⇒

⇒

⇒

⇒

⇒

1

2

1

1

2

2

2

abbb

(Right Most Der i va tion)

The sequence 1211222 represents a “Right Most Derivation”, giving
“aababbb”.

Ì Exam ple 2.2.1: A grammar G which is context-free has the
productions

S aAB
A Bba
B bB
B c

→
→
→
→ .

(The word w = acbabc is derived as follows)

S aAB a Bba B acbaB acba bB acbabc⇒ → ⇒ ⇒ ⇒() () .

Obtain the derivation tree.

120 Theory of Automata, Formal Languages and Computation

Solu tion

Ì Exam ple 2.2.2: A CFG given by productions is

S a
S aAS
A bS

→
→
→

,
,

and

Obtain the derivation tree of the word w = abaabaa.

Solu tion

w = abaabaa is derived from S as

S aAS a bS S abaS aba aAS
abaa bs S
abaabaS
abaab

⇒ ⇒ ⇒ ⇒
⇒
⇒
⇒

() ()
()

aa

The derivation tree is sketched below.

Con text-free Grammars 121

a

S

A S
b

S a S

a a

A

b
S

a

a

S

A
B

(a) S aAB→ (b) A Bba→

a

S

A
B

B
b

a

(c) B →

a

S

A
B

B
b

a

c

(d) B bB→

a

S

A B

B
b

a

c

b B

(e) B c→

a

S

A B

B
b

a b c

c

Ì Exam ple 2.2.3: Given a CFG given by G = (N, T, P, S)

with N = {S}, T = {a, b}, P =
()
()
1
2

S aSb
S ab

→
→






.

Obtain the derivation tree and the language generated L(G).

Solu tion

S ab
S aSb

aabb
S aSb

aaSbb
aaabbb
a b

ab L G⇒
⇒
⇒
⇒
⇒
⇒
⇒

∈

3 3

i.e.

i

, ()

.e.

i.e.
and so on

, ()

, (),

a b L G

a b L G

2 2

3 3

∈

∈

Derivation tree is as follows.

Language generated L G a b nn n() { | }= ≥1 .

Ì Exam ple 2.2.4: Given a CFG G = (N, T, P, S)

with N = {S}, T = {a, b, c} and P
S aSa
S bSb
S c

=
→
→
→













()
()
()

1
2
3

.

Obtain the derivation tree and language generated L(G).

Solu tion

(i) S c c L G⇒ ∈, ()

(ii) S aSa aca L G⇒ ⇒ ∈ ()

122 Theory of Automata, Formal Languages and Computation

a

S

S

a
S

b

b

a b

S

C

a

S

S

c

a

(iii) S bSb bcb L G⇒ ⇒ ∈ ()

(iv) S aSa
abSba
abcba L G

⇒
⇒
⇒ ∈ ()

and so on.
Hence the language generated L(G) is given by

L G wcw w a bR() { | { , } }*= ∈

where wR = reversal of w

i.e., if w a a a an n= −1 2 1KK
then w a a a aR

n n= −1 2 1KK .

Ì Exam ple 2.2.5: Given G = (N, T, P, S) with
 N = {E}, S = E, T = {id, +, *, c}

and

P E E E
E E E
E E
E id

: .
. *
. ()
.

1
2
3
4

→ +
→
→
→

.

Obtain the derivation tree.

Solu tion

Con text-free Grammars 123

a

S

S

S

a

b b

c

E

E

*

E

E E

+

id id

id

⇒ id * id + id

E

E

E

E

()

*

id id

id

E E
+

⇒ (id + id) * id

Ì Exam ple 2.2.6: Obtain the language generated L(G) for a CFG given

G(N, T, P, S) with N = {S}, T{a}, P:
1
2
.
.
S SS
S a

→
→







Solu tion

S SS aS aSS aaS aaa⇒ ⇒ ⇒ ⇒ ⇒ and so on....

Therefore the language generated is

L G a nn() { | }= ≥1

Ì Exam ple 2.2.7: Obtain the language generated by each of the following
production rules.

(a) A a
A aB
A

→
→
→ ∈

(b) S aS
S

→
→ ∈

(c) A a
A aB
A

→
→
→ ∈

(d) A aS
S bS
S

→
→
→ ∈

(e) S aS
S bS
S a

→
→
→

(f) S ab
S bs
S a
S b

→
→
→
→

Solu tion

(a) The language generated is a “type-3 language” or “regular set”.

(b) S
S aS a
S as aaS aa

⇒∈
⇒ ⇒
⇒ ⇒ ⇒

and so on.
Hence the language generated is

L G a nn() { | }= ≥ 0

124 Theory of Automata, Formal Languages and Computation

S

S

S

a
a

S SS
 aS
 aa

⇒
⇒
⇒

S

a

S a⇒

(c) A
A a
A aB

⇒∈
⇒
⇒

 L G ww w a bR() { | { , } }= ∈ +

(d) S aS
S bS L G a b
S

→
→ =
→ ∈

() { , }*

Language generated of any string of a,b
(e) S aS

S bS L G a b a
S a

→
→ =
→

() { , }*

(f) S ab
S bS L G a b
S a
S b

→
→ =
→
→

+() { , } .

Ì Exam ple 2.2.8: Given a CFG G = (N, T, P, S)

with N = {S, A}, T = {a, b} and P

S aS
S aA
A bA
A b

=

→
→
→
→

















1
2
3
4

.
.
.
.

Obtain the derivation tree and L(G).

Solu tion

S aA ab
S aS aaA aab
S aS aaS aaaA aaabA aaabb

⇒ ⇒
⇒ ⇒ ⇒
⇒ ⇒ ⇒ ⇒ ⇒

 and so on ...

The derivation tree has been shown here in fig.

The language generated is

 L G a b n mn m() { , }= ≥ ≥1 1

Con text-free Grammars 125

Ì Exam ple 2.2.9: Given a CFG with

P
S aA
A bS
A b

=
→
→
→













1
2
3

.
.
.

. Obtain the derivation tree and L(G).

Solu tion

S aA ab⇒ ⇒

S aA abS abaA abab⇒ ⇒ ⇒ ⇒ K K

The derivation trees suggest ab, abab,
Therefore the language generated

L G ab nn() {() | }= ≥1

Ì Exam ple 2.2.10: Obtain the production rules for CFG given the
language generated as

(a) L G w w a b w wa b() { | { , } , () ()}*= ∈ =
(b) L G w w a b w wa b() { | { , } , () ()}*= ∈ = 2

(c) L G w w a b w wa b() { | { , } , () ()}*= ∈ = 3

Solu tion

(a) S SaSbS
S
S SbSaS

→
→ ∈
→

(b) S SaSaSbS
S SaSbSaS
S SbSaSaS
S

→
→
→
→ ∈

126 Theory of Automata, Formal Languages and Computation

a

S

b

A

a

S

A

b S

a A

b

(c) S SaSaSaSbS
S SaSaSbSaS
S SaSbSaSaS
S SbSaSaSaS
S

→
→
→
→
→ ∈

Ì Exam ple 2.2.11: Given a grammar G with production rules

S aB
S bA
A aS
A bAA
A a
B bS
B aBB
B b

→
→
→
→
→
→
→
→

Obtain the (i) leftmost derivation, and (ii) rightmost derivation for the
string “aaabbabbba”.

Solu tion

(i) Leftmost derivation:

S aB aaBB aaaBBB aaabBB aaabbB
aaabbabB aaabbabbB

⇒ ⇒ ⇒ ⇒ ⇒
⇒ ⇒ ⇒ aaabbabbbS aaabbabbba

aaabbabb
⇒

⇒

(ii) Rightmost der i va tion:

S aB aaBB aaBbS aaBbbA aaaBBbba
aaabBbba aaabbSbba

⇒ ⇒ ⇒ ⇒ ⇒
⇒ ⇒ ⇒ ⇒aaabbaBbba aaabbabbba

2.3 PARSING AND AMBIGUITY

2.3.1 Parsing

A grammar can be used in two ways:

(a) Using the grammar to generate strings of the language.
(b) Using the grammar to recognize the strings.

“Parsing” a string is finding a derivation (or a derivation tree) for that
string.

Parsing a string is like recognizing a string. The only realistic way to
recognize a string of a context-free grammar is to parse it.

Con text-free Grammars 127

2.3.2 Exhaus tive Search Parsing

The basic idea of the “Exhaustive Search Parsing” is to parse a string w,
generate all strings in L and check if w is among them.

Problem arises when L is an infinite language. Therefore a systematic
approach is needed to achieve this, as it is required to know that no strings are
overlooked. And also it is necessary so as to stop after a finite number of steps.

The idea of exhaustive search parsing for a string is to generate all strings
of length no greater than | w |, and see if w is among them.

The restrictions that are placed on the grammar will allow us to generate
any string w L∈ in at most 2 | w | – 1 derivation steps.

Exhaustive search parsing is inefficient. It requires time exponential in | |w.
There are ways to further restrict context free grammar so that strings may

be parsed in linear or non-linear time (which methods are beyond the scope of
this book).

There is no known linear or non-linear algorithm for parsing strings of a
general context free grammar.

2.3.3 Top down/Bottomup Parsing

Sequence of rules are applied in a leftmost derivation in Topdown parsing.
(Refer to section 2.2.4.)

Sequence of rules are applied in a rightmost derivation in Bottomup
parsing.

This is illustrated below.
Consider the grammar G with production

1
2
.
. .
S aSS
S b

→
→

The parse trees are as follows.

aababbb → Left parse of the string with the sequence 1121222.
This is known as “Topdown Parsing.”

128 Theory of Automata, Formal Languages and Computation

a

S

S
S

a
S S

b a
S

S

b

b
b

Fig. Top down pars ing.

“Right Parse” is the reversal of sequence of rules applied in a rightmost
derivation.

aababbb → Right parse of the string with the sequence 2221121.
This is known as “Bottom-up Parsing.”

2.3.4 Ambi gu ity

The grammar given by

G S a b S S aSb bSa SS= →({ },{ , }, , | | |)λ

generates strings having an equal number of a’s and b’s.
The string “abab” can be generated from this grammar in two distinct

ways, as shown in the following derivation trees:

Similarly, “abab” has two distinct leftmost derivations:

S aSb abSab abab
S SS aSbS abS abaSb abab

⇒ ⇒ ⇒
⇒ ⇒ ⇒ ⇒ ⇒ .

Also, “abab” has two distinct rightmost derivations:

S aSb abSab abab
S SS SaSb Sab aSbab abab

⇒ ⇒ ⇒
⇒ ⇒ ⇒ ⇒ ⇒

Each of the above derivation trees can be turned into a unique rightmost
derivation, or into a unique leftmost derivation. Each leftmost or rightmost
derivation can be turned into a unique derivation tree. These representations
are largely interchangeable.

Con text-free Grammars 129

S

S

S

b

S

aa a b b b

S S S

Fig. Bot tom-up pars ing.

a

S

b

b

S

a
S

λ

S

S

S

a b
S

λ

a b
S

λ

2.3.5 Ambig u ous Gram mars/Ambig u ous Lan guages

Since derivation trees, leftmost derivations, and rightmost derivations are
equivalent rotations, the following definitions are equivalent:

Definition: Let G N T P S= (, , ,) be a CFG.
A string w L G∈ () is said to be “ambiguously derivable “if there are two or

more different derivation trees for that string in G.

Definition: A CFG given by G = (N, T, P, S) is said to be “ambiguous” if there
exists at least one string in L(G) which is ambiguously derivable. Otherwise it
is unambiguous.

Ambiguity is a property of a grammar, and it is usually, but not always
possible to find an equivalent unambiguous grammar.

An “inherantly ambiguous language” is a language for which no
unambiguous grammar exists.

Ì Exam ple 2.3.1: Prove that the grammar

S aB ab
A aAB a
B ABb b

→
→
→

| ,
| ,
|

is ambiguous.

Solu tion

It is easy to see that “ab” has two different derivations as shown below.
Given the grammar G with production

1
2
3
4
5
6

.
.
.
.
.
.

S aB
S ab
A aAB
A a
B ABb
B b

→
→
→
→
→
→

Using (2),
Using (1),
and then (6).

S ab
S aB ab

⇒
⇒ ⇒







Ì Exam ple 2.3.2: Show that the grammar S S S S a→ →| , is ambiguous.

Solu tion

In order to show that G is ambiguous, we need to find a w L G∈ (), which is
ambiguous.

130 Theory of Automata, Formal Languages and Computation

Assume w = abababa.

The two derivation trees for w = abababa is shown below in Fig. (a) and (b).

Therefore, the grammar G is ambiguous.

Ì Exam ple 2.3.3: Show that the grammar G with production

S a aAb abSb
A aAAb bS

→
→

| |
|

is ambiguous.

Solu tion

S abSb S abSb
abab S a

⇒ →
⇒ →

()
()
Q
Q

Similarly,

S aAb S aAb
abSb A bS
abab

⇒ →
⇒ →
⇒

()
()
Q
Q

Since ‘abab’ has two different derivations, the grammar G is ambiguous.

2.4 SIMPLIFICATION OF CFG

2.4.1 Sim pli fi ca tion of CFG-Intro duc tion

In a Context Free Grammar (CFG), it may not be necessary to use all the
symbols in V T∪ , or all the production rules in P while deriving sentences.

Let us try to eliminate symbols and productions in G which are not useful
in deriving sentences.

Let G V T S P= (, , ,) be a context-free grammar. Suppose that P contains a
production of the form

A x B x→ 1 2 .

Con text-free Grammars 131

S

S

S

S S
b

b S

S

S

S S
b

a

S S
b

a

a a

S S
b

a a a a

b

(a) (b)

Assume that A and B are different variables and that

B y y yn→ 1 2| | | .LL

is the set of all productions in P which have B as the left side.
Let $ (, , , $)G V T S P= be the grammar in which $P is constructed by deleting

A x B x→ 1 2

from P, and adding to it

A x y x x y x x y xn→ 1 1 2 1 2 2 1 2| | | .L

Then L G L G($) ()= .

Sub sti tu tion Rule

A production A x Bx→ 1 2 can be eliminated from a grammar if we put in its
place the set of productions in which B is replaced by all strings it derives in
one step. In this result, it is necessary that A and B are different variables.

An illustration is given in examples 2.4.1 and 2.4.2.

2.4.2 Abol ishing Use less Pro duc tions

In the grammar G with P,

S aSb A
A aA

→
→

| |
.

λ

the production S A→ does not play any role because A cannot be transformed
into a terminal string. ‘A’ can occur in a string derived from S, this can never
lead to a sentential form. Hence this production rule can be removed, which
does not affect the language.

Definition: Let G V T S P= (, , ,) be a CFG.
A variable A V∈ is said to be “useful” iff there is at least one w L G∈ ()

such that

S xAy w⇒ ⇒* *

with x, y in ()*V T∪ , i.e., a variable is useful iff it occurs in at least one
derivation.

Illustration: Consider the grammar G with P

S A
A aA
B bA

→
→
→

|
.
λ

Here the variable B is said to be “useless”, hence the production B bA→ is

also “useless”. There is no way to achieve S xBy⇒* .

132 Theory of Automata, Formal Languages and Computation

THE O REM: Let G = (V, T, S, P) be a CFG. There exists an equivalent
grammar $ ($, $, , $)G V T S P= that does not contain any useless variables or
productions.

Procedure: The first Part-A is to find G1 using the algorithm.

Step 1: Set V1 to ∅

Step 2: Repeat the following step until no more variables are added to V1.
For every A V∈ for which P has a production of the form.

A x x x x V Tn i→ ∪1 2 1KK , . ,with all in add A to V1.

Step 3: Take P1 as all the productions in P whose symbols are all in ()V T1 ∪ .

Thus the gram mar G1 can be gen er ated from G by the above algo rithm.
Here G V T S P1 1 2 1= (, , ,) such that V1 con tains only vari ables A for which

A w T⇒ ∈* *

The next step is to check whether every A for which A w ab⇒ =*
K is

added to V1 before the procedure terminates.
Step below describes the second Part B.
“Dependency graph” is drawn to find all the variables that cannot be

reached from the start symbol S. These variables are removed from the
variable set and also all the productions involving the variables.

The resultant obtained is $.G

(a) Empty Pro duc tion Removal

The productions of context-free grammars can be coerced into a variety of
forms without affecting the expressive power of the grammars.

If the empty string does not belong to a language, then there is a way to
eliminate the productions of the form A → λ from the grammar.

If the empty string belongs to a language, then we can eliminate λ from all
productions save for the single production S → λ. In this case we can also
eliminate any ocurrences of S from the right-hand side of productions.

Let us illustrate this through the Example 2.4.4. Any production of a CFG
of the form

A → λ

is called a λ-production. Any variable A for which the derivation

A ⇒* λ is pos si ble.

is called “NULLABLE”.

Con text-free Grammars 133

Let G be any CFG with λ not in L(G). Then there exists an equivalent
grammar $G having no λ-productions.

Pro ce dure to find CFG with out λ-Pro duc tions

Step (i): For all productions A → λ, put A into VN.
Step (ii): Repeat the following steps until no further variables are added to VN.

For all productions

B A A An→ 1 2 KK .

where A A A An1 2 3, , , ,KK are in VN, put B into VN.
To find $P, let us consider all productions in P of the form

A x x x mm→ ≥1 2 1KK ,

for each x V Ti ∈ ∪ .

For each such production of P, we put into $P that production as well as
all those generated by replacing nullable variables with λ in all possible
combinations.

(If all xi are nullable, the pro duc tion A → λ is not put into $P).

Let us illustrate this procedure through an example as shown in example
2.4.5.

(b) Unit Pro duc tions Removal

Any production of a CFG of the form

A B→

where A B V, ∈ is called a “Unit-production”. Having variable one on either
side of a production is sometimes undesirable.

“Substitution Rule” is made use of in removing the unit-productions.
Given G = (V, T, S, P), a CFG with no λ-productions, there exists a CFG

$ ($, $, , $)G V T S P= that does not have any unit-productions and that is equivalent
to G.

Let us illustrate the procedure to remove unit-production through example
2.4.6.

Pro ce dure to remove the unit pro duc tions:

Find all variables B, for each A such that

A B⇒*

This is done by sketching a “depending graph” with an edge (C, D)

134 Theory of Automata, Formal Languages and Computation

whenever the grammar has unit-production C D→ , then A B⇒
*

 holds
whenever there is a walk between A and B.

The new grammar $G, equivalent to G is obtained by letting into $P all
non-unit productions of P.

Then for all A and B satisfying A B⇒
*

, we add to $P

A y y yn→ 1 2| | |KK

where B y y yn→ 1 2| | |KK is the set of all rules in $P with B on the left.

(c) Left Recursion Removal

A variable A is left-recursive if it occurs in a production of the form

A Ax→

for any x V T∈ ∪() .*

A grammar is left-recursive if it contains at least one left-recursive
variable.

Every content-free language can be represented by a grammar that is not
left-recursive.

Ì Exam ple 2.4.1: Given a grammar G A B a b c A P= ({ , },{ , , }, ,) with
productions

A a aaA abBc
B abbA b

→
→

| |
| .

obtain an equivalent grammar $G such that both G and $G would accept the string
“aaabbc”.

Solu tion

Given G as

A a aaA abBc→ | | (1)

B abbA b→ | . (2)

Making use of (2) in (1), we have the grammar $G with productions

A a aaA ababbAc abbc
B abbA b

→
→

| | |
| .

$G is equivalent to G.
Thus the string “aaabbc” is derived as

A aaA aaabBc aaabbc G⇒ ⇒ ⇒ ()with

Con text-free Grammars 135

and

A aaA aaabbc G⇒ ⇒ (with)$

since G and $G are equivalent.

Ì Exam ple 2.4.2: Given a CFG as

G S A B C E a b c P S= ({ , , , , },{ , , }, ,)

with production P given by

S AB
A a
B b
B C
E c

→
→
→
→
→ / λ

Obtain L(G) and obtain an equivalent grammar L($G) by eliminating
useless terminals and productions.

Solu tion

L(G) is obtained as follows:

S AB aB ab⇒ ⇒ ⇒ .

Therefore, L(G) = {ab}.

Here $ ({ , , },{ , }, ,)G S A B a b P S= ′ .

where P′ has the production rules

S AB
A a
B b

→
→
→

We have eliminated C as it does not derive terminal string. E and C do not
appear in any sentential form.

E → λ is a null production and hence eliminated. B C→ simply replaces
B by C.

Ì Exam ple 2.4.3: Given G = (V, T, S, P) with P given by

S aS A C
A a
B aa
C aCb

→
→
→
→

| |

Eliminate the useless symbols and productions from G.

136 Theory of Automata, Formal Languages and Computation

Solu tion

Here V = {S, A, B, C}. Let us determine the set of variables that can lead to a
terminal string.

Since A a→ and B aa→ , implies A and B belong to this set. Also S
belongs to this set, since S A a⇒ ⇒ .

But C does not belong to this set because C does not produce terminals
since C aCb→ .

Thus C is removed and its corresponding productions are also removed.

S aS A
A a
B aa

→
→
→

|

Here V1 = {S, A, B}.

To eliminate the variables that cannot be reached from the start variable, a
“dependency graph” is drawn and decided.

The dependency graph for V1 = {S, A, B} is drawn as below.

A variable is useful only if there is a path from the vertex labeled S to the
vertex labeled with that variable.

From the above fig. it is obvious B is useless. Hence we have

$ ($, $, , $)G V T S P= with $ { , }V S A= , $ { }T a= and P given by

S aS A
A a

→
→

|
.

Ì Exam ple 2.4.4: Given a CFG with P given by

S aS b
S aS b

→
→

1

1 1 | λ

obtain a new set of P for a gram mar same as the given CFG.

Solu tion

The given grammar

S aS b
S aS b

→
→

1

1 1 | λ

gen er ates the λ-free lan guage given by

Con text-free Grammars 137

S BA

{ : }a b nn n ≥1

The λ-pro duc tion in P viz.,

S1 → λ

is removed after adding new productions by substituting λ for S1 where it
occurs on the right. Hence we get

S aS b ab
S aS b ab

→
→

1

1 1

|
|

which is the new set of P that produces the same language given by
{ : }a b nn n ≥1 .

Ì Exam ple 2.4.5: Determine a CFG without λ-production equivalent to
the grammar given by P as

S ABaC A BC B b C D D d→ → → → →, , | , | ,λ λ

Solu tion

Refer to the procedure outlined in section 2.4.2 to find CFG without
λ-productions.

Step 1: The “Nullable variables” are A, B and C.

Step 2:

S ABaC BaC ABa AaC Aa Ba ac a
A B C BC
B b
C D
D d

→
→
→
→
→

| | | | | | |
| |

The above set of rules represent P′ for the new CFG after elimination of
λ-productions.

Ì Exam ple 2.4.6: Eliminate unit productions from the grammar G given
by productions (P).

S AB
A a
B C b
C D
D E
E a

→
→
→
→
→
→

|

.

138 Theory of Automata, Formal Languages and Computation

Solu tion

A a B b E a→ → →, , are nonunit production. Therefore $P will contain these
productions.

Since B E⇒
*

, and E a→ is a non-unit production, include B a→ in $P.

Since C E D E⇒ ⇒
*

, , include C a D a→ →, in $P.
Hence we have the equivalent grammar without unit productions as $G

defined by

$ ({ , , , , , },{ , }, $,)G S A B C D E a b P S=

with $P given by

S AB
A a
B b
B a
C a
D a

→
→
→
→
→
→

Ì Exam ple 2.4.7: Given a CFG with P given by

S AB
A a
B C
C D
D b

→
→
→
→
→ .

Eliminate the unit productions to obtain an equivalent grammar.

Solu tion

In the grammar defined by P, we have

B C
C D

→
→

as unit-pro duc tions.

We can replace

B C
C D

→
→

and D b→

by B b→ ,

Con text-free Grammars 139

we have $P for an equivalent grammar given by

S AB
A a
B b

→
→
→

Ì Exam ple 2.4.8: Eliminate the unit-production from the CFG with P
given by

S Aa B
B A bb
A a bc B

→
→
→

|
|
| | .

Solu tion

From the given P we shall draw the dependency graph as follows.

From this we see that

S A

S B

B A

A B

⇒

⇒

⇒

⇒

*

*

*

*

Therefore these rules are added to the original non-unit productions

S Aa
A a bc P
B bb

→
→
→

| (from given)

the following new rules

S a bc bb
A bb
B a bc

→
→
→

| |

|

in order to obtain

S a bc bb Aa
A a bb bc
B a bb bc

→
→
→

| | |
| |
| |

which is $P for the new gram mar gen er ated equiv a lent to the given gram mar.

140 Theory of Automata, Formal Languages and Computation

S BA

Ì Exam ple 2.4.9: Given a CFG with P given by

S AB a
A b

→
→

|

Eliminate the useless symbols to obtain an equivalent grammar.

Solu tion

Given S AB a
A b

→
→

|

B is a non-generating symbol. a and b generate themselves. S generates a and A
generates b.

When B is eliminated, S AB→ is eliminated. Therefore we have

S a
A b

→
→

S and a are only reachable from S. Therefore we eliminate A and b, therefore
we have

S a→

as the new $P for equivalent grammar.

Ì Exam ple 2.4.10: Given the CFG with P given by

S AB
A aAA
B bBB

→
→
→

|
| .
λ
λ

Eliminate the λ-productions to obtain $P for an equivalent CFG.

Solu tion

A and B are “Nullable Symbols” as they have λ-productions. S is also
“Nullable”, because it has the production S AB→ , which has only “Nullable
symbols”, A and B.

For S AB→ , we have three ways viz.,

S AB A B→ | |

For A aAA→ , we have four ways viz.,

A aAA aA aA a→ | | |

For B bBB→ , we have three ways viz.,

B bBB bB b→ | |

Con text-free Grammars 141

Therefore, the new set of productions $P for the grammar equivalent to the
given CFG is

S AB A B
S aAA aA a
B bBB bB b

→
→
→

| |
| |
| | .

2.5 NORMAL FORMS

Two kinds of normal forms viz., Chomsky Normal Form and Greibach
Normal Form (GNF) are considered here.

2.5.1 Chomsky Nor mal Form (CNF)

Any context-free language L without any λ-production is generated by a
grammar is which productions are of the form A BC→ or A a→ , where
A B VN, ,∈ and a VT∈ .

Pro ce dure to find Equiv a lent Gram mar in CNF

(i) Eliminate the unit productions, and λ-productions if any,
(ii) Eliminate the terminals on the right hand side of length two or

more.
(iii) Restrict the number of variables on the right hand side of

productions to two.

Proof:

For Step (i): Apply the following theorem:

“Every context free language can be generated by a grammar with no
useless symbols and no unit productions”.

At the end of this step the RHS of any production has a single terminal or
two or more symbols. Let us assume the equivalent resulting grammar as
G V V P SN T= (, , ,).

For Step (ii): Consider any production of the form

A y y y mm→ ≥1 2 2KK , .

If y1 is a terminal, say ‘a’, then introduce a new variable Ba and a
production

B aa →

Repeat this for every terminal on RHS.

Let P′ be the set of productions in P together with the new productions

142 Theory of Automata, Formal Languages and Computation

B aa → . Let VN
′ be the set of variables in VN together with ′B sa introduced for

every terminal on RHS.
The resulting grammar G V V P SN T1 = ′ ′(, , ,) is equivalent to G and every

production in P′ has either a single terminal or two or more variables.

For step (iii): Consider A B B Bm→ 1 2 KK

where Bi’s are variables and m ≥ 3.
If m = 2, then A B B→ 1 2, is in proper form.
The production A B B Bm→ 1 2 KK is replaced by new productions

A B D
D B D

D B Bm m m

→
→

→− −

1 1

1 2 2

2 1

,
,

LL LL
LL LL

where ′D Si are new variables.
The grammar thus obtained is G2, which is in CNF.

Ì Exam ple 2.5.1: Obtain a grammar in Chomsky Normal Form (CNF)
equivalent to the grammar G with productions P given

S aAbB
A aA a
B bB b

→
→
→

|
| .

Solu tion

(i) There are no unit productions in the given set of P.
(ii) Amongst the given productions, we have

A a
B b

→
→

,

which are in proper form.
For S aAbB→ , we have

S B AB B
B a
B b

a b

a

b

→
→
→

,

.

For A aA→ , we have

A B Aa→

For B bB→ , we have

B B Bb→ .

Con text-free Grammars 143

Therefore, we have G1 given by

G S A B B B a b P Sa b1 = ′({ , , , , },{ , }, ,)

where P′ has the productions

S B AB B
A B A
B B B

B a
B b

A a
B b

a b

a

b

a

b

→
→
→
→
→
→
→

(iii) In P′ above, we have only

S B AB Ba b→

not in proper form.

Hence we assume new variables D1 and D2 and the productions

S B D
D AD
D B B

a

b

→
→
→

1

1 2

2

Therefore the grammar in Chomsky Normal Form (CNF) is G2 with the
productions given by

S B D
D AD
D B B

A B A
B B B

B a
B b

A a

a

b

a

b

a

b

→
→
→
→
→
→
→
→

1

1 2

2

,
,
,
,
,

,
,
,

and B b→ .

Ì Exam ple 2.5.2: Obtain a grammar in Chomsky Normal Form (CNF)
equivalent to the grammar G with productions P given by

S ABa
A aab
B AC

→
→
→

144 Theory of Automata, Formal Languages and Computation

Solu tion

(i) The given set P does not have any unit productions or
λ-productions.

(ii) None of the given rules is in proper form.

For S ABa→ , we have

S ABBa→
 and B aa →

For A aab→ , we have

A B B Ba a b→
 and B bb → .

For B Ac→ , we have

B ABc→
 and B cc →

Therefore G1 has a set of productions ′P given by

S ABB
A B B B
B AB

B a
B b
B c

a

a a b

c

a

b

c

→
→
→
→
→
→

(iii) In ′P above, we have

S ABB
A B B B

a

a a b

→
→

not in proper form.

Hence we assume new variables D1 and D2 and the productions

S AD
D BB

A B D
D B B

a

a

a b

→
→
→
→

1

1

2

2

,
,

,
.

Thus the grammar in Chomsky Normal Form (CNF) is G2 given by the
productions given by

S AD
D BB

A B D
D B B

a

a

a b

→
→
→
→

1

1

2

2

,
,

,
,

Con text-free Grammars 145

B AB
B a
B b

c

a

b

→
→
→

,
,
,

and B cc → .

Ì Exam ple 2.5.3: Reduce the given CFG with P given by

S abSb a aAb→ | | and A bS aAAb→ |

to Chomsky Normal Form (CNF).

Solu tion

(i) There are neither λ-productions nor unit product in the given set of
P.

(ii) Among the given productions, we have

S a→
in proper form.
For S abSb→ , we have

S B B SBa b b→ , B aa → , and B bb → .

For S aAb→ , we have

S B ABa b→ .

For A bS→ , we have

A B Sb→ .

For A aAAb→ , we have

A B AABa b→ .

Therefore, we have G1 given by

G S A B B a b P Sa b1 = ′({ , , , },{ , }, ,)

which has P′ given by

S B B SB
S B AB
A B AAB
A B S

B a
B b

a b b

a b

a b

b

a

b

→
→
→
→
→
→

 and S a→ .

(iii) In P′ above, we have

S B B SB
S B AB

a b b

a b

→
→

146 Theory of Automata, Formal Languages and Computation

 and A B AABa b→

not in proper form.
Hence we assume new variables D1, D2, D3, D4 and D5 with
productions given as below:
For S B B SBa b b→ , we have

S B D D B D D SBa b b→ → →1 1 2 2, ,

For S B ABa b→ , we have

S B D
D AB

a

b

→
→

3

3

For A B AABa b→ , we have

A B D
D AD
D AB

a

b

→
→
→

4

4 5

5

Therefore, the grammar in Chomsky Normal Form (CNF) is G2

with production given by

S B D
D B D
D SB

S B D
D AB

A B D
D AD
D AB

A

a

b

b

a

b

a

b

→
→
→
→
→
→
→
→

1

1 2

2

3

3

4

4 5

5

→
→
→

B S
B a
B b

b

a

b

 and S a→ .

Ì Exam ple 2.5.4: Obtain the grammar G given by P as S a b cSS→ | | .

Solu tion

(i) There are no λ-productions and no unit productions in given P.
(ii) Among the given productions,

S a→
 and S b→

are in proper form.

Con text-free Grammars 147

For S cSS→ , we have

S B SSc→ .
B cc → .

Therefore we have G1 given by

G S a b c P S1 = ′({ },{ , , }, ,)*

which has P′ given by

S B SS
B c

S a
S b

c

c

→
→
→
→

(iii) In P′ above, we have

S B SSc→

not in proper form.
Hence we have new variable D1 and new productions,

S B D
D SS

c→
→

1

1

Therefore the grammar in Chomsky Normal Form (CNF) is G2

with productions given by

S B D
D SS
B c

S a

c

c

→
→
→
→

1

1

 and S b→ .

2.5.2 Greibach Nor mal Form

In Chomsky’s Normal Form (CNF), restrictions are put on the length of right
sides of a production, whereas in Greibach Normal Form (GNF), restriction
are put on the positions in which terminals and variables can appear.

GNF is useful in simplifying some proofs and making constructions such
as Push Down Automaton (PDA) accepting a CFG.

Definition: A context-free grammar is said to be in Greibach Normal Form
(GNF) if all productions have the form

A ax→ ,

where a T x V∈ ∈and * .

148 Theory of Automata, Formal Languages and Computation

For a grammar in GNF, the RHS of every production has a single terminal
followed by a string of variables.

The procedure of getting a grammar in GNF is beyond the scope of this
book.

GLOSSARY

CFG: Context-Free Grammar.
Left-Linear Grammar: All productions are either of the form

V VT→ *

or V T→ *

Right-Linear Grammar: All productions are either of the form

V T V→ *

or V T→ *

Parsing: Finding a derivation of the string.
Topdown Parsing: Sequence of rules applied in the leftmost derivation
Bottomup Parsing: Sequence of rules applied in a rightmost derivation.
Ambiguous Grammar: A CFG is said to be “ambiguous” if there exists at

least one string in the language of the CFG which is ambiguously
derivable. Otherwise it is unambiguous.

Useless Production: A production rule not affecting the language
Unit Production: Any production of a CFG of the form A B→ where

A B V, ∈ is called a Unit-Production.
Chomsky Normal Form: A CFG without any λ-productions is generated by

a grammar in which productions are of the form A BC→ or A a→ ,
where A, B ∈ VN and a VT∈ .

REVIEW QUESTIONS

1. Define the term: Context-Free Grammar (CFG).
2. Give an example of a CFG.
3. What do you mean by a right linear grammar?
4. Show the relationship existing between right-linear grammars and

NFAs. Give an example.
5. What is a left-linear grammar?
6. Compare right-linear grammar with left-linear grammar.
7. Give some examples of Context-free languages.
8. What are derivation Trees?

Con text-free Grammars 149

9. Define ‘derivation tree’.
10. When is an ordered tree said to be a derivation tree?
11. What do you mean by sentential form?
12. What is a partial derivation tree?
13. Explain (a) Rightmost (b) Leftmost and (c) Mixed derivation.
14. What do you mean by the terms

(a) Parsing
(b) Ambiguity.

15. What do you mean by exhaustive search parsing?
16. Distinguish between top-down and bottom-up parsing.
17. Define the terms:

(a) Ambiguous Grammar (b) Ambiguous Language.
18. What do you mean by inherantly ambiguous language?
19. Explain the method of simplifying a CFG.
20. State the substitution rule.
21. How will you abolish useless production in CFG?
22. What do you mean by empty production removal? Explain with an

example.
23. State the procedure to find CFG without λ-productions.
24. What do you mean by unit production removal?
25. What do you mean by left recursion removal?
26. What are the kinds of Normal Forms?
27. What do you mean by Chomsky Normal Form (CNF)?
28. State the procedure to find equivalent grammar in CNF.
29. What do you mean by Greibach Normal Form (GNF).
30. When is a CFG said to be in GNF?

EXERCISES

1. Generate the Context-Free Grammars that give the following languages.
(a) {w | w contains at least three 1s}
(b) {w | w starts and ends with the same symbol}
(c) {w | the length of w is odd}
(d) {w | w = wR, that is, w is a palindrome}

2. Determine the CFG that generates the following languages.
(a) The set of strings over the alphabet {a, b} with twice as many a’s as
b’s.
(b) The complement of the language {an bn | n ≥ 0}

3. Determine a derivation tree of a b a b* *+ given that a b a b* *+ is in
L G() where G is given by the productions S S S S S a b→ + | * | | .

150 Theory of Automata, Formal Languages and Computation

4. Given grammar G with productions

S aB bA A a aS bAA B b bs aBB→ → →| , | | , | | .

For the string aaabbabbba, find a rightmost derivation, leftmost
derivation and parse tree.

5. Obtain the derivation tree for the string a2b2c in the grammar
G N T P S= (, , ,) where N x x T a b c S x= = =(,), (, ,),0 1 0 ,
P x ax bx x bx c= → →{ | , | }0 0 1 1 1 .

6. Obtain a CFG that generates the language L a b c i j ki j k= ≥{ | , , 0 and
either i = j or j = k}. Is the grammar you have generated ambiguous?

7. Let GA and GB be context-free grammars, generating the languages
L(GA) and L(GB), respectively. Show that there is a context-free
grammar generating each of the following sets.

(a) L G L GA B() ()∪ (b) L G L GA B() () (c) L GA()* .

8. Given V = {S, A, B, a, b} and T = {a, b}. Determine whether G = (V, T, S,
P) is a type 0 grammar but not a type 1 grammar, a type 1 grammar but
not a type 2 grammar, or a type 2 grammar but not a type 3 grammar if P,
the set of productions is
(a) S aAB A Bb B→ → →, , λ; (b) S ABa AB a→ →, ;
(c) S bA A B B a→ → →, , ; (d) S bA A b S→ → →, , λ;
(e) S aA A bB B b B→ → → →, , , .λ

9. Given G is a grammar with V a b c S T a b c= ={ , , , }, { , , }, starting symbol
S, and productions S abS→ , S bcS→ , S bbS→ , S a→ and S cb→ .
Construct derivation trees for:
(a) bcbba
(b) bbbcbba
(c) bcabbbbbcb.

10. For a grammar G with productions

S aAS a
A SbA SS ba

→
→

|
| | .

Show that S aabbaa⇒
*

 and construct a derivation tree for aabbaa.
11. Obtain a CFG for generating all integers.
12. Given the grammar G:

S aAD
A aB bAB
B b
D d

→
→
→
→

|

Reduce the grammar G to Chomsky Normal Form.

Con text-free Grammars 151

13. Obtain a grammar in Chomsky Normal Form equivalent to
S aAbB A aA a B bB b→ → →, | , | .

14. Convert the following NFA to DFA.

15. Prove that for every NFA there is an equivalent NFA that has only one
final state.

16. Given M q q q q= ({ , },{ , }, , ,{ })0 1 0 101 ∆ is an NFA with

∆ = {(, ,), (, ,), (, ,), (, ,), (, ,q q q q q q q q q q0 0 0 1 0 1 1 0 10 0 1 1 1 1)}

Draw the state transition diagram for M. Convert to a DFA using subset
construction.

17. Show that the grammar with productions S aSb SS→ | | λ, is ambiguous.
18. Show that the grammar

S aSbS bSaS→ | | λ
is ambiguous.

19. Give the derivation tree for ((() *)) ,a b c a b+ + + using the grammar

G V T E P
V E T F I

E T
T F
F I
E E T
T T F
F E
I a

=
=

→
→
→
→ +
→
→
→

(, , ,)
{ , , , }

*
(),

| |b c

20. Eliminate useless productions from

S a aA B C
A aB
B Aa
C cCD
D ddd

→
→
→
→
→

| | |
|

,

λ

21. Show that the two grammars

S abAaA abAbb ba
A aaa

→
→

| | ,

152 Theory of Automata, Formal Languages and Computation

q0 q4

q3

q5

λ

λλ

aaba

and S abAB ba

A aaa
B aA bb

→
→
→

| ,
,

|

are equivalent.
22. Eliminate all the λ-productions from

S AaB aaB
A
B bbA

→
→
→

| ,

| .
λ

λ

23. Say whether the following grammars are in CNF:
(a) S AS a

A SA b
→
→

|
|

; (b) S AS AAS
A SA aa

→
→

| ,
| .

24. Convert the grammar S aSb ab→ | into Chomsky Normal Form.
25. Convert the grammar with productions

S abAB
A bAB
B BAa A

→
→
→

,
| ,
| |
λ

λ

into Chomsky Normal Form.
26. Give a grammar with no ∈- or unit productions generating the set

L G() { },− ∈ where G is the grammar

S aSbb T
T bTaa S

→
→ ∈

| ,
| | .

27. Give grammars in Chomsky Normal Form for the following CFGs.
(a) {a, b}*-(palindromes)
(b) { | , , , }a b c k m n k nk m n ≥ ≥1 2

(c) { | , }a b a k nn k n ≥1

(d) { | , }a b c k nn n k2 1≥ .

SHORT-QUESTIONS AND ANSWERS

1. Define a Context-Free Grammar (CFG).
A context-free grammar is a 4-tuple (V, T, S, P) where

(i) V is a finite set called the variables
(ii) T is a finite set, disjoint from V, called the terminals.

(iii) P is a finite set of rules, with each rule being a variable and a
string of variables and terminals, and

(iv) S V∈ is the start variable.

Con text-free Grammars 153

If u, v and w are strings of variables and terminals and A w→ is a
rule of the grammar, we say that uAv yields uwv, written uAv uwv⇒ .

2. Give an example of CFG.
Given a grammar of G S a b R S= ({ },{ , }, ,). The set of rules R is

S aSB
S SS
S

→
→
→ ∈

This grammar generates strings such as abab, aaabbb and aababb.
3. What is a left linear grammar?

A grammar is which all productions are either of the form

V VT→ *

 or V T→ *

is called a left linear grammar.
4. What is right linear grammar?

A grammar is which all productions are either of the form

V T V→ *

 or V T→ *

is called a right linear grammar.
5. What do you mean by Parsing?

Finding a derivation of the string is called Parsing.
6. What are derivation trees?

A derivation tree is an ordered tree in which the nodes are labeled
with the left sides of productions and in which the children of a node
represent its corresponding right sides.

7. What do you mean by sentential form?
The resultant of the derivation tree is a word something like

w = aaba for a CFG with productions S aA A aB B bB→ → →, , ,
B a→ . This word is said to be in sentential form.

8. Sketch the derivation tree for the CFG given by S aA A aB→ →, ,
B bB→ , B a→ .

154 Theory of Automata, Formal Languages and Computation

a

b

S

A

B

B

a

a

9. What is a partial derivation tree?
In the definition of derivation tree given, if every leaf has a label

from V T∪ ∪ { }λ then it is said to be a partial derivation tree.
10. What do you mean by Topdown Parsing?

The sequence of rules being applied in the leftmost derivation is
referred to as Topdown Parsing.

11. What is meant by bottomup Parsing?
Sequence of rules applied in a rightmost derivation is referred to as

bottom-up parsing.
12. What is an ambiguous grammar?

A CFG is said to be ambiguous if there exists at least one string in the
language of the CFG which is ambiguously derivable. Otherwise it is
unambiguous.

13. What is meant by a useless production?
A production which does not affect a language is called a useless

production.
14. What is an Unit Production?

Any production of a CFG of the form A B→ where A B V, ∈ is
called a Unit Production.

15. What do you mean by exhaustive search parsing?
To parse a string w, that generates all strings in L and check if w is

among them is called exhaustive search parsing.
16. Give the formal definition of an ambiguous CFG.

Let G N T P S= (, , ,) be a CFG. A string w L G∈ () is said to be
“ambiguously derivable” if there are two or more different derivation
trees for that string in G.

17. What is an inherantly ambiguous language?
A language for which no unambiguous grammar exists, is called an

inherantly ambiguous language.
18. Give examples for ambiguous grammars.

(a) A CFG which has the production rules

S SbS S a→ →, is ambig u ous.

(b) A CFG which has the production rules

S a aAb abSb A aAAb bS→ →| | , | is ambig u ous.

19. What do you mean by substitution rule?
A production A x Bx→ 1 2 can be eliminated from a grammar if we

put in its place the set of productions in which B is replaced by all strings
it derives in one step. In this result, it is essential that A and B are
different variables.

Con text-free Grammars 155

20. Give the formal definition of a useful production.
Let G = (V, T, S, P) be a CFG. A variable A V∈ is said to be ‘useful’

iff there is at least one w L G∈ () such that.

S xAy w⇒ ⇒
* *

with x, y in ()*V T∪ , i.e., a variable is useful if it occurs in at least
one derivation.

21. Give an example of a grammar with useless production.
In the grammar G with production rules P given by

S aSb A
A aA

→
→

| |λ

The production S A→ does not play any role because ‘A’ cannot be
transformed into a terminal string. ‘A’ can occur in a string derived from
S, this can never lead to a sentential form.

22. Determine whether the grammar G with P

S A
A aA
B bA

→
→
→

| λ

has a useless production?
Here the variable B is “useless”, therefore B bA→ is also useless.

There is no way to achieve S xBy⇒
*

. Therefore B bA→ is a useless
production.

23. What is a λ-production?
Any production of a CFG of the form

A → λ

is called a λ-production.
24. When is a variable said to be “nullable”?

Any variable A for which the derivation

A ⇒
*

λ

is possible is called “Nullable”.

25. Write a procedure to find CFG without λ-productions
(i) For all production A → λ, put A into VN.

(ii) Repeat the following steps until no further variables are added
to VN.

For all productions

B A A An→ 1 2 KK

where A1, A2, A3, KK An are in VN, put B into VN .

156 Theory of Automata, Formal Languages and Computation

26. What is meant by a Unit Production?
Any production of a CFG of the form

A B→
where A B V, ∈ is called a ‘Unit Production’.

27. State the procedure to remove the unit productions.
(i) Find all variables B, for each A such that

A B⇒
*

This is done by sketching a “dependency graph” with an edge
(C, D) whenever the grammar has unit production C D→ ,

then A B⇒
*

 holds whenever there is a walk between A and B.
(ii) The new grammar $G, equivalent to G is obtained by letting

into $P all non-unit productions of P.

(iii) Then for all A and B satisfying A B⇒
*

, we add to $P

A y y yn→ 1 2| | |KK

where B y y yn→ 1 2| | |KK is the set of all rules in $P with B

on the left.
28. What do you mean by left recursion?

A variable A is left-recursive if it occurs in a production of the form

A Ax→

for any x V T∈ ∪()* .

A grammar is left-recursive if it contains at least one
left-recursive variable.

29. Can every CF language be represented by a grammar that is not
left-recursive?

YES.
30. What are the kinds of Normal Forms?

There are two kinds of Normal Forms viz.,
(a) Chomsky Normal Form (CNF)
(b) Greibach Normal Form (GNF)

31. What do you mean by Chomsky Normal Form?
A CFG without any λ-production is generated by a grammar in

which productions are of the form A BC A a→ →or , where A B VN, ∈
and a VT∈ .

32. Differentiate between Chomsky’s Normal Form (CNF) and Greibach
Normal Form (GNF).

Con text-free Grammars 157

In CNF, restrictions are put on the length of right sides of
production, whereas in Greibach Normal Form (GNF), restrictions are
put on the positions in which terminals and variables can appear.

33. What is meant by Greibach Normal Form?
A CFG is said to be in Greibach Normal Form if all productions have

the form

A ax→

where a T∈ and x V∈ * .

158 Theory of Automata, Formal Languages and Computation

Chap ter 3

Pushdown Autom ata

3.1 DEFINITIONS

Let us consider a finite automata which accepts the language

L M a b m nm n
1 1() { | , }.= ≥

We see that M moves from q0 to q1, on the occurence of a’s. On seeing ‘b’,
M moves from q1 to q2 and continues to be in the state q2 on getting more b’s.

Assume that the input string is given by

a bm n ,

then the resulting state is final state and so M accepts a bm n .
Consider the language L M a b nn n

2 1() { | }= ≥ where the number of b’s

and a’s are equal. The FA constructed for L1 differs from that of L2.
For the language L M a b m nm n

1 1() { | , }= ≥ there is not necessity to

remember the number of a’s. The following have to be remembered.

(a) Whether the first symbol is ‘b’ (to reject the string)
(b) Whether ‘a’ follows ‘b’ (to reject the string)
(c) Whether ‘a’ follows ‘a’ and ‘b’ follows ‘b’ (to accept the string).

We know that FA has only a finite number of states, M cannot remember
the number of a’s in anbn where ‘n’ is larger than the number of states of M.

The FA does not accept the sets of the form { | }.a b nn n ≥1 This is taken
care by a “PUSHDOWN AUTOMATA”.

Let us illustrate a Pushdown Automata (PDA) model.

3.1.1 Nondeterministic PDA (Def i ni tion)

An NPDA is defined by the 7-tuple

M Q q Z F= (, , , , , ,)Σ Γ δ 0

where Q = Finite set of inter nal states of the con trol unit
Σ = Input alpha bet
Γ = Finite set of sym bols called “Stack alpha bet”

δ : Q × ∪ ×({ })Σ Γλ → finite sub sets of Q × Γ * is the
tran si tion func tion

q0 = Ini tial state of the con trol unit ∈Q
Z = Stack start sym bol

F Q⊆ = Set of Final states.

The arguments of δ are the current state of the control unit, the current
input symbol, and the current symbol on the top of the stack.

The result is a set of pairs (q, x)

where q = next state of the con trol unit
x = string that is put on top of the stack in place of the sin gle

sym bol there before.

The ‘stack’ is an additional component available as part of PDA. The
‘stack’ increases its memory. With respect to { | },a b nn n ≥1 we can store a’s in
the stack. When the symbol ‘b’ is encountered, an ‘a’ from the stack can be
removed. If the stack becomes empty on the completion of processing a given
string, then the PDA accepts the string.

3.1.2 Tran si tion Func tions for NPDA

The transition function for an NPDA has the form

δ λ: ({ })Q × ∪ × →Σ Γ Finite sub sets of Q × Γ

δ is now a function of three arguments.
The first two arguments are the same as before:

(i) the state
(ii) either λ, or a symbol from the input alphabet.

The third argument is the symbol on top of the stack. Just as the input
symbol is “consumed” when the function is applied, the stack symbol is also
“consumed” (removed from the stack).

160 Theory of Automata, Formal Languages and Computation

a

Input File

Finite State
Control

Z

Pushdown Store

Fig. Model of Pushdown Autom a ton (PDA)

Note that while the second argument may be λ, rather than a member of
the input alphabet (so that no input symbol is consumed), there is no such
option for the third argument.

δ always consumes a symbol from the stack, no move is possible if the
stack is empty.

There may also be a λ-transition, where the second argument may be λ,
which means that a move that does not consume an input symbol is possible.
No move is possible if the stack is empty.

Example: Consider the set of transition rules of an NPDA given by

δ λ(, ,) {(,), (,)}q a b q cd q1 2 3=

If at any time the control unit is in state q1, the input symbol read is ‘a’,
and the symbol on the top of stack is ‘b’, then one of the following two cases
can occur:

(a) The control unit tends to go into the state q2 and the string ‘cd’
replaces ‘b’ on top of the stack.

(b) The control unit goes into state q3 with the symbol b removed from
the top of the stack.

In the deterministic case, when the function δ is applied, the automaton
moves to a new state q Q∈ and pushes a new string of symbols x ∈Γ * onto the
stack. As we are dealing with nondeterministic pushdown automaton, the
result of applying δ is a finite set of (q, x) pairs.

3.1.3 Draw ing NPDAs

NPDAs are not usually drawn. However, with a few minor extensions, we can
draw an NPDA similar to the way we draw an NFA.

Instead of labeling an are with an element of Σ, we can label arcs with
a x y| , where a x∈ ∈Σ Γ, and y∈Γ * .

Let us consider the NPDA given by

({ , , , }, { , }, { , }, , , , { })Q q q q q a b q Z F q= = = = =0 1 2 3 0 30 1 0Σ Γ δ

where

δ λ
δ λ λ
δ

(, ,) {(,), (,)}
(, ,) {(,)}
(,

q a q q
q q
q a

0 1 3

0 3

1

0 10
0

=
=

,) {(,)}
(, ,) {(,)}
(, ,) {(,)}

1 11
1
1

1

1 2

1 2

=
=
=

q
q b q
q b q

δ λ
δ λ
δ(, ,) {(,)}q q2 30λ λ=

Pushdown Automata 161

This NPDA is drawn as follows.

Please note that the top of the stack is considered to be the left, so that, for
example, if we get an ‘a’ from the starting position, the stack changes from ‘0’
to ‘10.’.

3.1.4 Exe cu tion of NPDA

Assume that someone is in the middle of stepping through a string with a DFA,
and we need to take over and finish the job. There are two things that are
required to be known:

(a) the state of the DFA is in, and
(b) what the remaining input is.

But if the automaton is an NPDA we need to know one more viz., contents
of the stack.

Instan ta neous Descrip tion of a PDA

The Instantaneous description of a PDA is a triplet (q, w, u),

where q = cur rent state of the autom a ton
w = unread part of the input string
u = stack con tents (writ ten as a string, with the leftmost

sym bol at the top of the stack).

Let the symbol “|–” denote a move of the NPDA, and suppose that
δ(, ,) {(,), },q a x q y1 2= K then the following is possible:

(, ,) |– (, ,)q aW xz q W yz1 2

where W indicates the rest of the string following ‘a’ and Z indicates the rest of
the stack contents underneath the x.

This notation tells that in moving from state q1 to state q2, an ‘a’ is
consumed from the input string aW, and the x at the top (left) of the stack xZ is
replaced with y, leaving yZ on the stack.

3.1.5 Accepting Strings with an NPDA

Assume that you have the NPDA given by

M Q q z F= (, , , , , ,).Σ Γ δ 0

162 Theory of Automata, Formal Languages and Computation

q0 q1

q3 q2

a/1,11

b/1,λ

a/0,10

a/0,λλ/0,λ

λ/0,λ

b/1,λ

To recognize string w, begin with the instantaneous assumption

(, ,)q w z0

where q0 = start state
w = entire string to be pro cessed, and
z = start stack sym bol.

Starting with this instantaneous description, make zero or more moves,
just as is done with an NFA.

There are two kinds of moves that can be made:

(a) λ-Transitions: If you are in state q1, x is the top (leftmost) symbol
in the stack, and

δ λ(, ,) {(,), }q x q w1 2 2= KK

then you can replace the symbol x with the string w2 and move to q2.
(b) Nonempty transitions: If you are in the state q1, ‘a’ is the next

unconsumed input symbol, x is the top (leftmost) symbol in the
stack, and

δ(, ,) {(,), }q a x q w1 2 2= KK

then you can remove the ‘a’ from the input string, replace the
symbol x with the string w2, and move to state q2.

If you are in the final state when you reach the end of the string (and may
be make some λ-transition after reaching the end), then the string is accepted
by the NPDA. It does not matter what is on the stack.

3.1.6 An Exam ple of NPDA Exe cu tion

Let us consider the NPDA given by

δ λ
δ λ λ
δ

(, ,) {(,), (,)}
(, ,) {(,)}
(,

q a q q
q q
q a

0 1 3

0 3

1

0 10
0

=
=

,) {(,)}
(, ,) {(,)}
(, ,) {(,)}

1 11
1
1

1

1 2

2 2

=
=
=

q
q b q
q b q

δ λ
δ λ
δ(, ,) {(,)}q q1 30λ λ=

It is possible for us to recognize the string “aaabbb” using the following
sequence of “Moves”:

(, ,) |– (, ,)
|– (, ,)
|– (,

q aaabbb q aabbb
q abbb
q b

0 1

1

1

0 10
110

bb
q bb
q b
q

,)
|– (, ,)
|– (, ,)
|– (, ,)

1110
110

10
0

2

2

2 λ

Pushdown Automata 163

3.1.7 Accepting Strings with NPDA (For mal Ver sion)

The nota tion “|–” is used to indi cate a sin gle move of an NPDA.

“|–*” is used to indicate a sequence of zero or more moves.

“|– + ” is used to indicate a sequence of one or more moves.

If M Q q F= (, , , , , ,)Σ Γ Ζδ 0 is an NPDA, then the language accepted by
M, L(M), is given by

L M w q w z p u p F u() { : (, ,) |– (, ,), , }* * *= ∈ ∈ ∈Σ Γ0 λ .

Ì Exam ple 3.1.1: Construct a Push Down Automata (PDA) accepting
{ | , }a b a m nn m n ≥1 by empty store.

Solu tion

The PDA which will accept

{ | , }a b a m nn m n ≥1

is given below

PDA = ({ , }, { , }, { , }, , , ,)q q a b a z q z0 1 0 0 0δ φ

where δ is given by

(1) δ (, ,) {(,)}q a z q a z0 0 0 0=
(2) δ (, ,) {(,)}q a a q aa0 0=
(3) δ (, ,) {(,)}q b a q a0 1=
(4) δ (, ,) {(,)}q b a q a1 1=
(5) δ λ(, ,) {(,)}q a a q1 1=
(6) δ λ λ(, ,) {(,)}q z q1 0 1=

Therefore we can see that we start storing a’s till b occurs ((1) and (2)). When
the current input symbol is b, the state changes, but no change in PDS occurs
((3)). Once all the b’s in the input string acts over ((4)), the remaining a’s are
erased ((5)).

Using (6), z0 is erased.
Therefore we have

(, ,) |—— (, ,) |—— (, ,)*q a b a z q z qn m n
0 0 1 0 1λ λ λ

Therefore we see that a b a Nn m n ∈ (PDA).

Ì Exam ple 3.1.2: Construct a PDA accepting { | }a b nn n2 1≥ by empty
store.

164 Theory of Automata, Formal Languages and Computation

Solu tion

The PDA that will accept { | }a b nn n2 1≥ is given by

PDA = ({q0, q1, q2}, {a, b}, {a, z0}, δ, q0, z0, φ)

where δ is given by
δ (, ,) {(,)}q a z q a z0 0 1 0=
δ (, ,) {(,)}q a a q a a1 1=
δ (, ,) {(,)}q b a q a1 2=
δ λ(, ,) {(,)}q b a q2 1=
δ λ λ(, ,) {(,)}q z q1 0 1=

Ì Exam ple 3.1.3: Obtain the PDA accepting { | , }a b c m nm m n ≥1 by
empty store.

Solu tion

The PDA which will accept { | , }a b c m nm m n ≥1 by empty store is given below.

PDA = ({ , }, (, , }, { , }, , , ,)q q a b c z z q z0 1 0 1 0 0δ φ
where δ is given by

δ (, ,) {(, ,)}q a z q z z0 0 0 0=
δ (, ,) {(,)}q a z q z z0 1 0 1 1=
δ λ(, ,) {(,)}q b z q0 1 1=
δ λ(, ,) {(,)}q b z q1 1 1=
δ (, ,) {(,)}q c z q z1 0 1 0=
δ λ λ(, ,) {(,)}q z q1 0 1=

When an ‘a’ is read z1 is added. When a ‘b’ is read then z1 is removed.

Ì Exam ple 3.1.4: Construct a PDA accepting { | , }a b a m nn m n ≥1 by
final state.

Solu tion

THEOREM: If A Q q z F= (, , , , , ,)Σ Γ δ 0 0 is a PDA accepting L by null store,
we can find a PDA

B Q q z FB= ′ ′ ′ ′ ′(, , , , , ,)Σ Γ δ 0 0

which accept L by final state, i.e.,
L = N(A) = T(B).

Using the above theorem, we have
B q q q q a b a z z q z qf f= ′ ′ ′ ′({ , , , }, { , }, { , , }, , , ,{ })0 1 0 0 0 0 0δ

where δ is given by
δ λ(, ,) {(,)}′ ′ = ′q z q z z0 0 0 0 0

Pushdown Automata 165

δ λ λ δ λ(, ,) {(,)} (, ,)q z q q zf0 0 0 0′ = = ′
δ λ λ δ λ(, ,) {(,)} (, ,)q z q q zf1 0 1 0′ = = ′
δ (, ,) {(,)}q a z q a z0 0 0 0=
δ (, ,) {(,)}q a a q aa0 0=
δ (, ,) {(,)}q b a q a0 1=
δ (, ,) {(,)}q b a q a1 1=
δ λ(, ,) {(,)}q a a q f1 =
δ λ λ(, ,) {(,)}q z q1 0 1=

Ì Exam ple 3.1.5: Given L a b n mm n= <{ | }.
Derive (i) a context-free grammar that accepts L

(ii) a PDA accepting L by empty store
(iii) a PDA accepting L by final state.

Solu tion

(i) Given L a b n mm n= <{ | }
CFG is given by G S a b P S= ({ }, { , }, ,), where productions P are

S aSb
S aS
S a

→
→
→







(ii) The PDA that will accept L(G) by empty store is given by
A q a b S a b q S= ({ }, { , }, { , , }, , , ,),δ φ

where δ is defined by the rule:
δ λ(, ,) {(,), (,), (,)}q S q aSb q aS q a=
δ δ λ(, ,) (, ,) {(,)}q a a q b b q= =

(iii) B Q q z FB= ′ ′ ′ ′ ′(, , , , , ,)Σ Γ δ 0 0 , where
′ = ′ ′ = ′ =Q q q q S a b z F qf f{ , , }, { , , , }, { }.0 0 0Γ

δB is given by
δ λB q z q z z(, ,) {(,)}′ ′ = ′0 0 1 0 0
δ λB q S q aSb q aS q a(, ,) {(,), (,), (,)}=
δ λ δB Bq a a q q b b(, ,) {(,)} (, ,)= =
δ λ λB fq z q(, ,) {(,)}1 0′ =
where
δ δ φB q a S q a S(, ,) (, ,)= = and
δ δ φB q b S q b S(, ,) (, ,) .= =

3.2 RELATIONSHIP BETWEEN PDA AND CONTEXT FREE
 LANGUAGES

3.2.1 Sim plifying CFGs

The productions of context-free grammars can be coerced into a variety of
forms without affecting the expressive power of the grammar.

166 Theory of Automata, Formal Languages and Computation

(a) Empty Pro duc tion Removal

If the empty string does not belong to a language, then there is no way to
eliminate production of the form A → λ from the grammar.

If the empty string belongs to a language, then we can eliminate λ from all
productions same for the single productions S → λ. In this case we can
eliminate any occurrences of S from the right-hand-side of productions.

(b) Unit Pro duc tion Removal

We can eliminate productions of the form A B→ from a CFG.

(c) Left Recursion Removal

A variable A is left-recursive if it occurs in a production of the form

A Ax→

for any x V T∈ ∪() .* A grammar is left-recursive if it contains at least one
left-recursive variable.

Every CFL can be represented by a grammar that is not left-recursive.

3.2.2 Nor mal Forms of Con text-Free Gram mars

(a) Chomsky Nor mal Form

A grammar is in Chomsky Normal form if all productions are of the form

A BC→
or A a→

where A, B and C are variables and ‘a’ is a terminal. Any context-free grammar
that does not contain λ can be put into Chomsky Normal Form.

(b) Greibach Nor mal Form (GNF)

A grammar is in Greibach Normal Form if all productions are of the form

A ax→

where ‘a’ is a terminal and x V∈ * .
Grammars in Greibach Normal Form are much longer than the CFG from

which they were derived. GNF is useful for proving the equivalence of NPDA
and CFG.

Thus GNF is useful in converting a CFG to NPDA.

3.2.3 CFG to NPDA

For any context-free grammar in GNF, it is easy to build an equivalent
nondeterministic pushdown automaton (NPDA).

Pushdown Automata 167

Any string of a context-free language has a leftmost derivation. We set up
the NPDA so that the stack contents “corresponds” to this sentential form:
every move of the NPDA represents one derivation step.

The sentential form is

(The char ac ters already read) + (sym bols on the stack)
 – (Final z (ini tial stack sym bol)

In the NPDA, we will construct, the states that are not of much
importance. All the real work is done on the stack. We will use only the
following three states, irrespective of the complexity of the grammar.

(i) start state q0 just gets things initialized. We use the transition from
q0 to q1 to put the grammar’s start symbol on the stack.

δ λ(, ,) {(,)}q Z q Sz0 1→

(ii) State q1 does the bulk of the work. We represent every derivation
step as a move from q1 to q1.

(iii) We use the transition from q1 to qf to accept the string

δ λ(, ,) {(,)}q z q zf1 →

Example Consider the grammar G S A B a b S P= ({ , , },{ , }, ,), where

P S a S aAB A aA A a B bB B b= → → → → → →{ , , , , , }

These productions can be turned into transition functions by rearranging
the components.

Thus we obtain the following table:

(Start) δ λ(, ,) {(,)}q z q Sz0 1→
S a→ δ λ(, ,) {(,)}q a S q1 1→
S aAB→ δ(, ,) {(,)}q a S q AB1 1→
A aA→ δ(, ,) {(,)}q a A q A1 1→
A a→ δ λ(, ,) {(,)}q a A q1 1→
B bB→ δ(, ,) {(,)}q b B q B1 1→
B b→ δ λ(, ,) {(,)}q b B q1 1→
(fin ish) δ λ(, ,) {(,)}q z q zf1 →

168 Theory of Automata, Formal Languages and Computation

S a AB

δ q ,a,S()1 {(,)}q AB1

For example, the derivation

S aAB aaB aabB aabb⇒ ⇒ ⇒ ⇒

maps into the sequence of moves

(, ,) |– (, ,)
|– (, ,)
|– (, ,

q aabb z q aabb Sz
q abb ABz
q bb Bz

0 1

1

1)
|– (, ,)
|– (, ,)
|– (, ,)

q b Bz
q z
q

1

1

2

λ
λ λ

3.2.4 NPDA to CFG

(a) We have shown that for any CFG, an equivalent NPDA can be obtained.
We shall show also that, for any NPDA, we can produce an equivalent CFG.
This will establish the equivalence of CFGs and NFDAs.

We shall assert without proof that any NPDA can be transformed into an
equivalent NPDA which has the following form:

(i) The NPDA has only one final state, which it enters if and only if
the stack is empty.

(ii) All transitions have the form

δ(, ,) { , , , }q a A c c c= 1 2 3 KK

where each ci has one of the two forms

(,)q j λ
 or (,)q BCj

(b) When we write a grammar, we can use any variable names we choose. As
in programming languages, we like to use “meaningful” variable names.

When we translate an NPDA into a CFG, we will use variable names that
encode information about both the state of the NPDA and the stack content
variable names will have the form

[],q Aqi j

where q i and q j are states and A is a variable.

The “meaning” of the variable [qi Aqj] is that the NPDA can go from state
qi with Ax on the stack to state qj with x on the stack.

Each transition of the form δ λ(, ,) (,)q a A qi j= results in a single
grammar rule.

Each transition of the form

δ(, ,) { ,)q a A q BCi j=

Pushdown Automata 169

results is a multitude of grammar rules, one for each pair of states qx and qy in
the NPDA.

3.2.5 Deter min is tic Pushdown Autom ata

A Non-deterministic finite acceptor differs from a deterministic finite acceptor
in two ways:

(i) The transition function δ is single-valued for a DFA, but
multi-valued for an NFA.

(ii) An NFA may have λ-transitions.

A non-deterministic pushdown automaton differs from a pushdown
automaton in the following ways:

(i) The transition function δ is at most single-valued for a DPDA,
multi-valued for an NPDA.
Formally: | (, ,)| ,δ q a b1 0 1= or for every q Q a∈ ∈ ∪, { }Σ λ , and
b ∈Γ.

(ii) Both NPDA and DPDA may have λ-transitions; but a DPDA may
have a λ-transition only if no other transition is possible.
Formally: If | (, ,)| ,δ λq b ≠ ∅ then δ(, ,)q c b = ∅ for every c∈ Σ.

A deterministic CFL is a language that can be recognized by a DPDA. The
deterministic context-free languages are a proper subset of the context-free
languages.

3.3 PROPERTIES OF CONTEXT FREE LANGUAGES

3.3.1 Pumping Lemma for CFG

A “Pumping Lemma” is a theorem used to show that, if certain strings belong
to a language, then certain other strings must also belong to the language.

Let us discuss a Pumping Lemma for CFL.
We will show that , if L is a context-free language, then strings of L that are

at least ‘m’ symbols long can be “pumped” to produce additional strings in L.
The value of ‘m’ depends on the particular language.

Let L be an infinite context-free language. Then there is some positive
integer ‘m’ such that, if S is a string of L of Length at least ‘m’, then

(i) S = uvwxy (for some u, v, w, x, y)
(ii) | |vwx m≤

(iii) | |vx ≥1
(iv) uv wx y Li i ∈ .

for all non-negative values of i.

170 Theory of Automata, Formal Languages and Computation

It should be understood that

(i) If S is sufficiently long string, then there are two substrings, v and
x, somewhere in S. There is stuff (u) before v, stuff (w) between v
and x, and stuff (y), after x.

(ii) The stuff between v and x won’t be too long, because | vwx | can’t
be larger than m.

(iii) Substrings v and x won’t both be empty, though either one could
be.

(iv) If we duplicate substring v, some number (i) of times, and
duplicate x the same number of times, the resultant string will also
be in L.

3.3.2 Def i ni tions

A variable is useful if it occurs in the derivation of some string. This requires
that

(a) the variable occurs in some sentential form (you can get to the
variable if you start from S), and

(b) a string of terminals can be derived from the sentential form (the
variable is not a “dead end”).

A variable is “recursive” if it can generate a string containing itself. For
example, variable A is recursive if

S uAy⇒
*

for some values of u and y.
A recursive variable A can be either

(i) “Directly Recursive”, i.e., there is a production

A x Ax→ 1 2

for some strings x x T V1 2, () ,*∈ ∪ or

(ii) “Indirectly Recursive”, i.e., there are variables xi and productions

A X
X X
X X
X AN

→
→
→
→

1

1 2

2 3

K
K K
K K
K K

3.3.3 Proof of Pumping Lemma

(a) Suppose we have a CFL given by L. Then there is some context-free
Grammar G that generates L. Suppose

Pushdown Automata 171

(i) L is infinite, hence there is no proper upper bound on the length of
strings belonging to L.

(ii) L does not contain λ.
(iii) G has no productions or λ-productions.

There are only a finite number of variables in a grammar and the
productions for each variable have finite lengths. The only way that a grammar
can generate arbitrarily long strings is if one or more variables is both useful
and recursive.

Suppose no variable is recursive.
Since the start symbol is nonrecursive, it must be defined only in terms of

terminals and other variables. Then since those variabls are non recursive, they
have to be defined in terms of terminals and still other variables and so on.
After a while we run out of “other variables” while the generated string is still
finite. Therefore there is an upperbond on the length of the string which can be
generated from the start symbol. This contradicts our statement that the
language is finite.

Hence, our assumption that no variable is recursive must be incorrect.

(b) Let us consider a string X belonging to L.
If X is sufficiently long, then the derivation of X must have involved

recursive use of some variable A.
Since A was used in the derivation, the derivation should have started as

S uAy⇒
*

for some values of u and y. Since A was used recursively the derivation must
have continued as

S uAy uvAxy⇒ ⇒
* *

Finally the derivation must have eliminated all variables to reach a string
X in the language.

S uAy uvAxy uvwxy x⇒ ⇒ ⇒ =
* * *

This shows that derivation steps

A vAx⇒
*

and A w⇒
*

are possible. Hence the derivation

A vwx⇒
*

must also be possible.

172 Theory of Automata, Formal Languages and Computation

It should be noted here that the above does not imply that a was used

recursively only once. The * of ⇒
*

 could cover many uses of A, as well as other
recursive variables.

There has to be some “last” recursive step. Consider the longest strings
that can be derived for v, w and x without the use of recursion. Then there is a
number ‘m’ such that | vwx | < m.

Since the grammar does not contain any λ-productions or unit
productions, every derivation step either introduces a terminal or increases the

length of the sentential form. Since A vAx⇒
*

, it follows that | | .vx > 0

Finally, since uvAxy occurs in the derivation, and A vAx⇒
*

 and A w⇒
*

 are
both possible, it follows that uv wx yi i also belongs to L.

This completes the proof of all parts of Lemma.

3.3.4 Usage of Pumping Lemma

The Pumping Lemma can be used to show that certain languages are not
context free.

Let us show that the language

L a b c ii i i= >{ | }0

is not context-free.

Proof: Suppose L is a context-free language.

If string X L∈ , where | |X m> , it follows that X = uvwxy, where | |vwx m≤ .

Choose a value i that is greater than m. Then, wherever vwx occurs in the
string a b ci i i , it cannot contain more than two distinct letters it can be all a’s,
all b’s, all c’s, or it can be a’s and b’s, or it can be b’s and c’s.

Therefore the string vx cannot contain more than two distinct letters; but
by the “Pumping Lemma” it cannot be empty, either, so it must contain at least
one letter.

Now we are ready to “pump”.
Since uvwxy is in L, uv wx y2 2 must also be in L. Since v and x can’t both be

empty,

| | | | ,uv wx y uvwxy2 2 >

so we have added letters.
Both since vx does not contain all three distinct letters, we cannot have

added the same number of each letter.
Therefore, uv2wx2y cannot be in L.
Thus we have arrived at a “contradiction”.

Pushdown Automata 173

Hence our original assumption, that L is context free should be false.
Hence the lan guage L is not con text-free. ¨

Ì Exam ple 3.3.1: Check whether the language given by

L a b c m n mm m n= ≤ ≤{ : }2

is a CFL or not.

Solu tion

Let s = anbnc2n, n being obtained from Pumping Lemma.

Then s = uvwxy, where 1 ≤ ≤| | .vx n
Therefore, vx cannot have all the three symbols a, b, c.
If you assume that vx has only a’s and b’s then we can shoose i such that

uviwxiy has more than 2n occurrence of a or b and exactly 2n occurences of c.
Hence uv wx y Li i ∉ , which is a contradiction. Hence L is not a CFL.

Ì Exam ple 3.3.2: “If L is regular and L ⊆ Σ* , then Σ* − L is also a regular
set”—Prove this theorem.

Proof: Let L = T(M) where M Q q F= (, , , ,)Σ δ 0 is a Finite Automata.
We modify Σ,Q and δ as follows:

(a) If a ∈ −Σ Σ1 , then the symbol ‘a’ will not appear in any string of
T(M).
Therefore we can delete ‘a’ from Σ1 and all transitions defined by
‘a’.
Here T(M) is not affected.

(b) If Σ Σ− ≠ ∅1 , we can add a dead state d to Q. Let us define
δ(,) ,d a d= for all ‘a’ in Σ and δ(,) ,q a d= for all q in Q and a in
Σ Σ− 1 .
Hence also T(M) is not affected.

Let us consider M obtained by applying (a) and (b) to Σ,Q and δ.
The new M is now written as (, , , ,)Q q FΣ δ 0 . Let us define a new

automaton ‘M’ such that M Q Q F′ = (, , , ,)Σ δ , where M ′ differs from M only in
its final states.

There w T M∈ ′() iff δ(,)q w Q F0 ∈ − and w T M∉ ().
There fore, Σ* ()− = ′L T M is reg u lar. ¨

Ì Exam ple 3.3.3: Prove that the language L given by

L a b n nn n= ≥ ≠{ | , }0 1000

is context-free.

174 Theory of Automata, Formal Languages and Computation

Proof: Let us assume that

L a bA = { }.1000 1000

Then, since L1 is finite, it is regular.
It is obvious that

L a b n Ln n= ≥ ∩{ | } .0 1

According to the theorem: “If L1 is a CFL and L2 is a regular language,
L L1 2∩ is context-free”, we have the following.

By closure of regular languages under complementation and closure of
context free languages under regular intersection, the language L given by

L a b n nn n= ≥ ≠{ | , }0 1000

is con text-free. ¨

Ì Exam ple 3.3.4: Check whether the language given by

L w a b c n w n w n wa b c= ∈ = ={ { , , } | () () ()}*

is not context-free.

Proof: If L is assumed to be context-free, then

L L a b c a b c nn n n∩ = ≥() { | }.* * * 0

which is also context-free.
But it is a fact that the latter is not context-free.
Therefore we conclude that

L w a b c n w n w n wa b c= ∈ = ={ { , , } | () () ()}*

is not con text-free. ¨

Ì Exam ple 3.3.5: Determine whether the language given by

L a nn= ≥{ | }
2

1 is context-free or not.

Solu tion

Let us assume that

s a n=
2
.

s = uvwxy, where 1 ≤ ≤| | .vx n which is true

since, | | (vwx n≤ by Pumping Lemma)

Pushdown Automata 175

Let | | , .vx m m n= ≤

By Pumping Lemma, uv wx y2 2 is in L.

Since | | ,
| | .
uv wx y n
uv wx y k

2 2 2

2 2 2
>
=

where k n≥ +1.
But | | .uv wx y n m n n2 2 2 2 2 1= + < + +
Therefore, | |uv wx y2 2 lies between n2 and (n + 1)2.

Hence, uv wx y L2 2 ∉ , which is a contradiction.

Therefore, { : }a nn2
1≥ is not context-free.

3.4 DECISION ALGORITHMS

THE O REM: Given L is a regular set, i.e., a language accepted by a finite
automaton. There exists a constant ‘n’ such that if ‘s’ in any string in L and
| | ,s n≥ then s uvw= such that | | ,uv n≤ | |v ≥1 and for all i uv w Li≥ ∈0, .

Proof: Let us assume that L = T(M) where M Q q F= (, , , ,)Σ δ 0 and ‘n’ be the
number of states in Q.

Let w a a a Lm= ∈1 2 KK where m c≥
and δ(, , ,) .q q q a qi i0 1 2 KK =

Since m n≥ , the number of states, the sequences q q qm0 1, ,KK will have
some repeated states.

Hence there are two integers j and k, 0 ≤ < <j k n such that qi = qk.
Let us assume that k is least in the chosen pair (j, k).
For this we have

(a) qi = qk
(b) if 0 < 1< k, then q qi j≠ for all 0 1≤ <i , therefore q q qk0 1 1, ,KK −

are distinct states in Q and k n≤ .

Let u a a a v a aj j k= = +1 2 1KK KK; , and w a ak n= +1, ,KK .
Therefore s = uvw (as shown in Fig.).

Since δ δ(,) , (,) .q v q q q v qi k j j
i

j= = =

Therefore δ(,) .q uv w q Fi
m0 = ∈

176 Theory of Automata, Formal Languages and Computation

q0 q = qi k qm

a , aj+ k1

a a1 ja2 a , ak+ m1

This illustrates that uv w Li ∈ , for all i ≥ 0.
Since uv a a ak= 1 2 KK and

k n uv n≤ ≤, | | .

Hence, | | .v ≥1 ¨

THE O REM: The set of strings that is accepted by a finite automaton which has
‘n’ state is

(a) nonempty if and only if M accepts some string of length less than
n.

(b) infinite, if an only if M accepts some string of length k where
n k n≤ < 2 .

Thus there is a DECISION ALGORITHM, to find out whether M accepts
zero, a finite number, or an infinite number of strings.

Algorithm (i): Let us give an algorithm to decide if T M() .= ∅
Let us consider the strings of length less than n. Test if any of these strings

is in T(M). If so, T M() .= ∅ Otherwise, T(M) is empty.

Algorithm (ii): Let us give an algorithm to decide if T(M) is infinite.
Let us consider the strings of length k, where n k n≤ ≤ −2 1. Test if any

such string is found in T(M). If so, T(M) is infinite, otherwise T(M) is finite.

Ì Exam ple 3.4.1: Prove that there exists an algorithm to find if two finite
automata M1 and M2 accept the same language.

Proof: Let us assume that

L T M
L T M

1 1

2

=
=

()
().

and

2

Let us define L L L L L= − ∪ −() ().1 2 2 1

The language L is regular.

Let us assume that M is a finite automaton such that L = T(M).

Now, if L = ∅, iff L L1 2= .

Since there is an algorithm (decision algorithm) to test if L is a empty, we
have an algorithm to check if L1 = L2. ¨

Ì Exam ple 3.4.2: Check whether the language defined by

L a pp= ={ is a prime number} is regular or not.

Pushdown Automata 177

Solu tion

Let us assume that L T M= (), where the automaton M has n states.
If p is a prime number greater than n, consider

z a Lp= ∈ .

By using pumping lemma, s = uvw and uv w Li ∈ for i ≥1.

Also uv w LP + ∈1 .

But | | | | | |uv w uvw v p pmP P+ = + = +1 where m = | v |.

This is a contradiction as we see that p + pm cannot be prime.

Therefore the language L is not prime.

Ì Exam ple 3.4.3: Construct a deterministic Pushdown Automata to
accept L() , the language of nested, balanced parantheses.

Solu tion

The idea is to store all left parantheses on the stack and then pop them off as
each one matches a right parantheses.

Let us define

M q q q q= ({ , },{(,)}, , ,{ })0 1 0 1δ

where δ is given in the table below.

Table: Tran si tion Table for DPDA.

Tran si tion
Num ber

Cur rent
state

Input
sym bol

Stack
Top

New
state

Input
op

Stack
op

1 q0 (> q0 + push (

2 q0 ((q0 + push (

3 q0) (q0 + pop

4 q0 > > q1 0 0

5 q0 > (q2 0 0

6 q0) > q2 0 0

Transitions (1) and (2) are used to push opening parantheses on the stack;
transition (3) is used to to match a closing paranthesis with an open one on the
stack; (4) accepts the input, and (5) and (6) send the machine into a rejecting
state, which halts the machine.

178 Theory of Automata, Formal Languages and Computation

Consider M on input (() ()):

(, [, (() ())], [,] |– (, [, (() ())], [, (])

|– (

q q

q

M

M

0 0

0

1 1 2 1λ

, [, (() ())], [, ((])

|– (, [, (() ())], [, (])

|– (,

3 1

4 10

0

M

M

q

q [, (() ())], [, (])

|– (, [, (() ())], [, (])

|– (, [

5 1

6 1

7

0

0

M

M

q

q , (() ())], [,])

|– (, [, (() ())], [,])

1

7 11

λ

λ
M

q

Therefore,

([, (() ()], [,]) |– (, [, (() ()], [,])
*

q q
M0 11 1 7 1λ λ

and since q1 is an accepting state, all input has been read, and the stack is
empty, we have (() ()) ().∈L M

Let us consider M on the input string ()). We get the following
computations.

(, [, ()], [,] |– (, [, ())], [, (])

|– (, [, ())

q q

q
M

M

0 0

0

1 1 2 1

3

λ

], [,])

|– (, [, ())], [,])

1

3 12

λ

λ
M

q

No further transitions of M can be applied, q2 is not an accepting state, and
so ()) .()∉ L

GLOSSARY

NDPDA: Non-deterministic Pushdown automata
PDA: Pushdown automata
Transition Function of NPDA: Are of the form

δ λ= × ∪ ×Q ({ })Σ Γ

These are finite subsets of Q × Γ ∗ .

Pushdown Automata 179

Stack: One additional component available as part of PDA.
More of NPDA: |– denotes a move of NPDA.
PDA: Has (q, w, u),

where q = cur rent state of autom a ton
w = unreal part of input string
u = stack con tents.

Simplifying CFG: Done either through (i) Empty Production removal (ii)
Unit production removal (iii) Left recursion removal.

DPDA: Deterministic PDA, which has a transition function as single-valued
for DFA and has λ-transitions.

Pumping Lemma: Theorem used to show that if certain strings belong to a
language, then certain other strings must also belong to the language.

Decision Algorithm: To find out if M accepts zero, a finite number, or an
infinite number of strings.

REVIEW QUESTIONS

1. Define a Pushdown automata.
2. Define a Nondeterministic Pushdown automata.
3. State the general form of transition function for an NPDA.
4. Give the instantaneous description of a PDA.
5. Explain how the strings are accepted with an NPDA.
6. What are the kinds of moves that can be made while accepting strings

with an NPDA?
7. Explain the terms (a) λ-transitions (b) Non-empty transitions
8. Give an example of NPDA execution.
9. State the relationship between PDA and context free languages.

10. Explain: (a) Empty Production removal (b) Unit Production removal.
11. What are the Normal forms of CFGs?
12. How will you convert a CFG to NPDA?
13. How will you convert a NPDA to CFG?
14. What do you mean by deterministic pushdown automata?
15. State the properties of Context free languages.
16. State the pumping lemma for CFG.
17. Give the proof for pumping lemma.
18. State the usuage of pumping lemma.
19. What are decision algorithms?
20. State the usefulness of decision algorithms.

180 Theory of Automata, Formal Languages and Computation

EXERCISES

1. Construct a Pushdown automata (PDA) accepting the language

L i ji i j j= ≥ ∪ ≥{ | } { | }0 1 0 0 1 02 .

2. For Σ = { , },0 1 design DPDAs to accept the following languages:
(a) 0*
(b) { | , }0 1 0 1 0i i j j i j ≥
(c) { | }0 1 12i i i ≥
(d) { | }0 1m n m n≠

3. Define the concepts of string and language acceptance for PDAs.
4. For Σ = { , },01 design PDA to accept the following languages:

(a) { | { , } }*xx x ∈ 0 1

(b) { | { , } }*x x x x R∈ =0 1 and

(c) { | }0 1 2m n n m n≤ ≤
(d) { | }0 1 3 7m n n m n≤ ≤

5. Construct a PDA accepting { | }a b nn n3 1≥ by empty store.

6. Obtain the PDA accepting { | , }a b c m nm n n ≥1 by empty store.

7. Obtain the PDA accepting { | , }a b c m nm n n ≥1 by final state.

8. Given L a b m nn m= <{ | }. Derive

(a) a CFG that accepts L
(b) a PDA accepting L by empty store
(c) a PDA accepting L by final state.

9. Construct a PDA accepting L wcw w a bT= ∈{ : { , } }* by final state.

10. Construct a PDA accepting L wcw w a bT= ∈{ : { , } }* by empty store.

11. If the PDA A Q q Z F= { , , , , , ,)Σ Γ δ 0 0 accepts L by final state, prove that
there exists another PDA B accepting L by empty store, i.e., T(A) = T(B)
= L.

12. Find PDA accepting the following sets by final state
(a) { { , } : () ()}*x a b n x n xa b∈ >

(b) x a b n x x xa b∈ <{ , } : () ()}*

13. Design a PDA recognizing the set L of all non-palindromes over {a, b}.
14. Construct a PDA equivalent to the CFG.

S BB B S B S B→ → → →0 0 1 0, , ,

15. Construct a CFG accepting L a b n mm n= <{ | } and construct a PDA
accepting L by empty store.

Pushdown Automata 181

16. Construct a PDA accepting L by empty store where

L a b a n jj n n= ≥ ≥{ | , }1 0

17. Construct a PDA accepting { : , }a b c n jj n n ≥ ≥1 1 by final state.

18. Constuct a CFG generating { | } { | }a b n a b mn n m m≥ ∪ ≥1 12 . Using this
CFG, construct a PDA accepting the given set by empty store.

19. Using Pumping lemma show that the language L a b c ii i i= ≥{ | }0 is not
context free.

20. Using Pumping lemma show that the language

L a b c m n pm n p= ≤ ≤ ≤{ | }0

is not a CFL.
21. Using Pumping Lemma prove that the language L ww w= ∈{ | { , }*0 1 is

not a CFL.
22. Consider the set of all strings over {a, b} with no more than twice as

many a’s as b’s:

{ { , } | # () # ()}*x a b a x b x∈ ≤ 2

(a) Give a CFG for this set, and prove that it is correct.
(b) Give a PDA for this set. Show sample runs on the input strings

aabbaa, aaabbb and aaabaa.
23. Consider the set

a b c a b c nn n n* * * — { | }≥ 0

the set of all strings of a’s followed by b’s followed by c’s such that the
number of a’s, b’s and c’s are not all equal.
(a) Give a CFG for the set, and prove that your grammar is correct.
(b) Give an equivalent PDA.

24. Show that { , } — { | }*a b a b nn n� ≥
2

0 is not context free.

SHORT QUESTIONS AND ANSWERS

1. What is PDA and NDPDA?
PDA means Push Down Automata and NDPDA means

non- deterministic Push Down Automata.
2. Define an NDPDA.

An NDPDA is defined by the 7-tuple

M Q q Z F= (, , , , , ,)Σ Γ δ 0

182 Theory of Automata, Formal Languages and Computation

 where Q = Finite set of inter nal states of the con trol unit
Σ = input alpha bet
Γ = Finite set of sym bols called ‘stack alpha bet’.

δ λ: ({ })Q × ∪ × →Σ Γ Finite sub sets of Q × Γ * is the tran si tion func tion.
q0 = Ini tial state of the con trol unit ∈Q
Z = Stack start sym bol

F Q⊆ →Set of Final states.
3. What is the data structure used in a Push Down Automaton?

Stack is the data structure used in a PDA.
4. What is the general form of a transition function of an NPDA?

δ λ: ({ })Q × ∪ × →Σ Γ Finite subsets of Q × Γ * . where δ has now
three arguments:

(a) the state
(b) either λ, or a symbol from the input alphabet.
(c) symbol on the top of the stack.

5. State the requirements for execution of an NPDA.

(a) The state of the DFA is in
(b) What the remaining input is.

6. Given an instantaneous description of a PDA.
The instantaneous description of a PDA is a triplet (q, w, u), where

q = cur rent state of the autom a ton
w = unreal part of the input string
u = stack con tents (writ ten as a string, with the leftmost

sym bol at the top of the stack).
7. What are the types of moves that are made while accepting strings with

an NPDA?
(a) λ-transition.
(b) Non-empty transition.

8. What do you mean by a λ-transition in PDA?
If you are in a state q1, x is the top (leftmost) symbol in the stack, and

δ λ(; ,) {(,), }q x q w1 2 2= K

then you can replace the symbol x with the string w2 and move to q2.
9. What are non-empty transitions in an NPDA?

If you are in the state q1, ‘a’ is the next unconsumed input symbol, x
is the top (leftmost) symbol in the stack, and

δ(, ,) {(,), }q a x q w1 2 2= K

then you can remove the ‘a’ from the input string, replace the
symbol x with the string w2, and move to the state q2.

Pushdown Automata 183

10. State the meanings of |–, |–
*
 and |–

+
 while accepting strings with NPDA.

|– is used to indicate a single move of an NPDA

 |–
*
 is used to indicate a sequence of zero or more moves

 |–
+
 is used to indicate a sequence removal in a PDA.

11. What is meant by Empty Production removal in a PDA?
If the empty string does not belong to a language, the there is no way

to eliminate production of the from A → λ from the grammar. If the
empty string belongs to a language, then we can eliminate λ from all
productions for the single production S → λ. In this case we can
eliminate any occurrences of S from the right hand side of productions.

12. What is meant by unit production removal in PDA?
Eliminating productions of the form A B→ from a CFG is called a

unit production removal in PDA.
13. What is meant by left recursion removal in PDA?

A variable A is left recursive if it occurs in a production of the form

A Ax→

for any x V T∈ ∪() .* A grammar is left-recursive if it contains at
least one left-recursive variable. Every CFL can be represented by a
grammar that is not left-recursive.

14. What are the Normal Forms of CFGs?

(a) Chomsky Nor mal Form.
(b) Greibach Normal Form.

15. How is an NPDA built from a CFL?
Any string of a CFL has a leftmost derivation. NPDA is set up so that

the stack contents corresponds to this sentential form, every move of the
NPDA represents one derivation step.

16. How is the sentential form obtained while converting a CFG into an
NPDA?

The sentential form is obtained as
[The characters already read] + [symbols on the stack] – [Final z (initial
stack symbol)]

17. What are the two ways in which deterministic pushdown finite acceptor
differs from a non-deterministic finite acceptor?

(a) The transition function δ is single-valued for a DFA, but
multi-valued for an NFA.

(b) An NFA may have λ-transitions.
18. What are the ways in which a non-deterministic pushdown automaton

differs from a Pushdown automata

184 Theory of Automata, Formal Languages and Computation

(a) The transition function δ is at most single-valued for a DPDA,
multi-valued for an NPDA.
Formally: | (, ,)| ,δ q a b l= 0 or
for every q Q a∈ ∈ ∪, { },Σ λ and b ∈Γ.

(b) Both NPDA and DPDA may have λ-transitions, but a DPDA
may have a λ-transition only if no other transition is possible.
Formally: If δ λ(, ,)q b ≠ ∅, then δ(, ,)q c b = ∅ for every c∈ Σ.

19. State the Pumping Lemma for Context Free Grammars.
Let L be an infinite context-free language. Then there is some

positive integer ‘m’ such that, if S is a string of L of length at least ‘m’,
then

(i) S uvwxy= (for some u, v, w, x, y)
(ii) | |vwx m≤

(iii) | |vx ≥1
(iv) uv wiy Li ∈ , for all non-negative values of i.

20. State one usage of a Pumping Lemma.
The Pumping Lemma can be used to show that certain languages are

not context free.
21. What is a decision algorithm?

The set of strings that is accepted by a finite automaton M which has
‘n’ state is

(a) non empty, if and only if M accepts some string of length less
than n.

(b) infinite, if and only if M accepts some string of length k where
n k n≤ ≤ 2 .

22. State the use of decision algorithm:
It is used to find out whether a finite automaton M accepts zero, a

finite number, or an infinite number of strings.
23. What are the ways to simplify a CFG to an NPDA?

(a) Empty Production Removal
(b) Unit Production Removal
(c) Left Recursion Removal.

24. How is a ‘move’ of an NPDA denoted?
|– denotes a move of NPDA.

Pushdown Automata 185

Chap ter 4

Turing Machines

4.1 TURING MACHINE MODEL

4.1.1 What is a Turing Machine?

A Turing Machine is like a Pushdown Automaton. Both have a finite-state
machine as a central component, both have additional storage.

A Pushdown Automaton uses a “stack” for storage whereas a Turing
Machine usea a “tape”, which is actually infinite in both the directions. The
tape consists of a series of “squares”, each of which can hold a single symbol.
The “tape-head”, or “read-write head”, can read a symbol from the tape, write
a symbol to the tape and move one square in either direction.

There are two kinds of Turing Machine available.

(a) Deterministic Turing Machine.
(b) Non-deterministic Turing Machine.

We will discuss about Deterministic Machines only. A Turing Machine
does not read “input”, unlike the other automata. Instead, there are usually
symbols on the tape before the Turing Machine begins, the Turing Machine
might read some. all, or none of these symbols. The initial tape may, if desired,
be thought of as “input”.

“Acceptors” produce only a binary (accept/reject) output. “Transducers”
can produce more complicated results. So far all our previous discussions were
only with acceptors. A Turing Machine also accepts or rejects its input. The
results left on the tape when the Turing Machine finshes can be regarded as the
“output” of the computation. Therefore a Turing Machine is a “Transducer”.

4.1.2 Def i ni tion of Turing Machines

A Turing Machine M is a 7-tuple

(, , , , , # ,)Q q FΣ Γ δ 0

where Q is a set of states
Σ is a finite set of symbols, “input alphabet”.
Γ is a finite set of symbols, “tape alphabet”.
δ is the partial transition function

∈T is a symbol called ‘blank’
q Q0 ∈ is the initial state
F Q⊆ is a set of final states

As the Turing machine will have to be able to find its input, and to know
when it has processed all of that input, we require:

(a) The tape is initially “blank” (every symbol is #) except possibly
for a finite, contiguous sequence of symbols.

(b) If there are initially nonblank symbols on the tape, the tape head is
initially positioned on one of them.

This emphasises the fact that the “input” viz., the non-blank symbols on
the tape does not contain #.

4.1.3 Tran si tion Func tion, Instan ta neous Descrip tion
and Moves

The “Transition Function” for Turing Machine is given by

δ : { , }Q Q L R× → × ×Γ Γ

When the machine is in a given state (Q) and reads a given symbol (Γ) from the
tape, it replaces the symbol on the tape with some other symbol (Γ), goes to
some other state (Q), and moves the tape head one square left (L) or right (R).

An “Instantaneous Description” or “Configuration” of a Turing machine
requires.

(a) the state the Turing machine is in
(b) the contents of the tape
(c) the position of the tape head on the tape.

This is written as a string of the form

x x q x xi j m k lKK KK

where the x’s are the symbols on the tape, qm is the current state, and the tape
head is on the square containing xk (the symbol immediately following qm).

The “Move” of a Turing machine can therefore be expressed as a pair of
instantaneous descriptions, separated by a symbol “|–”.

For example, if

δ(,) (, ,)q b q c R5 8=

then a possible move can be

abbabq babb abbabcq abb5 8|–

Turing Machines 187

4.1.4 Pro gramming a Turing Machine

As we have the “productions” as the control theme of a grammar, the
“transitions” are the central theme of a Turing machine. These transitions are
given as a table or list of S-tuples, where each tuple has the form

(cur rent state, sym bol read, sym bol writ ten, direc tion, next state)

Creating such a list is called “programming” a Turing machine.
A Turing machine is often defined to start with the read head positioned

over the first (leftmost) input symbol. This is not really necessary, because if
the Turing machine starts anywhere on the nonblank portion of the tape, it is
simple to get to the first input symbol.

For the input alphabet Σ = { , }a b , the following program fragment does the
trick, then goes to state q1.

(, , , ,)
(, , , ,)
(, # , # , ,)

q a a L q
q b b L q
q R q

0 0

0 0

0 1

4.1.5 Turing Machines as Accep tors

A Turing machine halts when it no longer has available moves. If it halts in a
final state, it accepts its input, otherwise it rejects its input.

A Turing machine T Q q F= (, , , , , # ,)Σ Γ δ 0 accepts a language L(M),
where

L M w q w x q x q F x xi f j f i j() (: |– , ,),
*

*= ∈ ∈ ∈+Σ Γ0 for some

with the assumption that the Turing machine starts with its tape head
positioned on the leftmost symbol.

A Turing Machine accepts its input if it halts in a final state. There are two
ways this could fail to happen:

(a) The Turing machine could halt in a nonfinal state or
(b) The Turing machine could never stop i.e., it enters an “infinite

loop”.

4.1.6 How to Recognize a Language

This machine will match strings of the form

{ : }a b nn n ≥ 0

q1 is the only “final state”.
q4 (which has no available moves at all) serves as an “error state”.

188 Theory of Automata, Formal Languages and Computation

Cur rent
state

Sym bol
read

Sym bol
writ ten

Direc tion Next
state

Find the left end of the input

q0 a a L q0

q0 b b L q0

q0 # # R q1

If leftmost sym bol is “a”, erase it, if “b” fail

q1 a # R q2

q1 b # R q4

Find the right end of the input

q2 a a R q2

q2 b b R q2

q2 # # L q3

Erase the “b” at the left end of the input

q3 b # L q0

The basic operation of this machine is a loop:

q0: move all the way to the left
q1: erase on ‘a’
q2: move all the way to the right
q3: Erase a ‘b’
Repeat

If the string is not of the form { : },a b nn n ≥ 0 it will finally either

(a) See an ‘a’ in nonfinal state q3, and halt, or
(b) see a ‘b’ in final state q1, move to nonfinal state q4, and halt.

4.1.7 Turing Machines as Trans ducers

To use a Turing machine as a transducer, treat the entire nonblank portion of
the initial tape as input, and treat the entire nonblank portion of the tape when
the machine halts as output.

A Turing machine defines a function y = f (x) for strings x y, *∈ Σ if

q x q yf0 |–
*

where qf is the final state.

Turing Machines 189

A function index is “Turing computable” if there exists a Turing machine
that can perform the above task.

Ì Exam ple 4.1.1: Design a Turing machine that accepts the set of all even
palindromes over {0,1}.

Solu tion

There are various steps involved in processing even length palindromes. The
TM scans the first symbol of input tape (0 or 1), erases it and changes state (q1,
or q2). TM scans the remaining part without changing the tape symbol until it
encounters b. The read/write head moves to the left. If the rightmost symbol
tallies with the leftmost symbol (which can be erased but remembered), the
rightmost symbol is erased. Otherwise TM halts. The read/write head moves to
the left until b is encountered. The above steps are repeated after changing the
states suitably. The transition table is as shown below.

Pres ent
State

Input Sym bol

0 1 b

→ q0 bRq1 bRq2 bRq7

q1 0Rq1 1Rq1 bLq3

q2 0Rq1 1Rq2 bLq4

q3 bLq5

q4 bLq6

q5 0Lq5 1Lq5 bRq0

q6 0Lq6 1Lq6 bRq0

q7

Ì Exam ple 4.1.2: Given Σ = { , }01 , design a Turing machine that accepts
the language denoted by the regular expression 00*.

Solu tion

Let us start at the left end of the input, we read each symbol and check that it is
a 0. If it is, then we continue by moving right. If a blank is reached without
seeing anything else other than 0, we terminate and accept the string.

If the input contains a 1 anywhere, the string is not in L(00*), and so we
halt in a nonfinal state. In order to keep track of computation, two internal
states Q q q= { , }0 1 and the final state F q= { }1 are enough.

190 Theory of Automata, Formal Languages and Computation

Transition function is taken as

δ(q0, 0) = (q0, 0, R)
δ(q0, o) = (q1, o,R).

The head will move to the right, as long as 0 appears under the read-write
head. If any time a 1 is read, the machine will halt in the nonfinal state q0, since
δ(,)q0 1 is undefined.

Ì Exam ple 4.1.3: Design a Turing machine that accepts

L a b nn n= ≥{ | }.0

Solu tion

Assume that q1 is the “final state”.
q4 (which has no available moves at all) serves as an “error state”.

Cur rent
state

Sym bol
read

Sym bol
writ ten

Direc tion Next
state

Find the left end of the input

q0 a a L q0

q0 b b L q0

q0 # # R q1

If leftmost sym bol is “a”, erase it, if “b”, fail

q1 a # R q2

q1 b # R q4

Find the right end of the input

q2 a a R q2

q2 b b R q2

q2 # # L q3

Erase the “b” at the left end of the input

q3 b # L q0

The basic operation of this machine is a loop:

q0: Move all the way to the left
q1: Erase an ‘a’.

Turing Machines 191

q2: Move all the way to the right
q3: Erase a “b”.
Repeat

If the string is not of the form { | }a b nn n ≥ 0 it will finally either

(a) see an ‘a’ in nonfinal state q3, and halt, or
(b) see a ‘b’ in final state q1, move to nonfinal state q4, and halt.

Ì Exam ple 4.1.4: What does the Turing Machine described by the
5-tuples (, , , ,), (, , , ,)q q R q q R0 0 0 10 0 1 0 , (, , , ,)q B q B R0 2 , (, , , ,)q q R1 10 0 ,
(, , , ,)q q R1 01 1 and (, , , ,)q B q B R1 2 do when given a bit string as input?

Solu tion

If the tape contains at least one 1, the machine changes every other 1 to a 0
starting at the first 1, and halts when it reches the first blank symbol. If the tape
is blank initially the machine halts without changing the tape. If the nonblank
portion of the tape contains all 0s, the machine moves successively through
these 0s and halts.

Ì Exam ple 4.1.5: Let T be the Turing machine defined by the five tuples:
(, , , ,)q q R0 10 1 , (, , , ,)q q R0 11 0 , (, , , ,)q B q R0 1 0 , (, , , ,)q q L1 20 1 ,
(, , , ,)q q R1 11 0 , (, , , ,)q B q L1 2 0 . For each of the following initial tapes,
determine the final tape when T halts, assuming that T begins in initial
position.

(a)

(b)

Solu tion

(a) The nonblank portion of the tape contains the string 1111 when
the machine halts.

(b) The nonblank portion of the tape contains the string 00 when the
machine halts.

4.2 COMPLETE LANGUAGES AND FUNCTIONS

A Turing machine has an output function, the contents of the input tape after
processing, a given input string can be viewed as the result of computation.
Therefore a Turing machine is seen as a computer of functions, from integers
to integers.

192 Theory of Automata, Formal Languages and Computation

B B B B...B B B B

B B 0 0 1 1 B B...

Let us now look at the procedure to compute functions f n n nk(, ,)1 2 KK
where n n nk1 2, , ,KK are non-negative integers.

(a) Represent the integers n n nk1 2, , ,KK in unary i.e., n1 is written
as 0 1n etc. The input (, , ,)n n nk1 2 K is represented by

0 10 101 2n n nkKK where the 1’s are used to separate the unary
representation of n n nk1 2, , ,KK .

(b) After several moves, if the Turing Machine halts (either in a
final state or in any other state) and has 0m in the input tape, then
F (n n nk1 2, , ,KK) = m.

Ì Exam ple 4.2.1: Design a Turing machine to add two given integers.

Solu tion

Assume that m and n are positive integers. Let us represent the input as 0mB0n.
If the separating B is removed and 0’s come together we have the required

output, m + n is unary.

(i) The separating B is replaced by a 0.
(ii) The rightmost 0 is erased i.e., replaced by B.

Let us define M q q q q q B q q= ({ , , , , },{ },{ , }, , , { })0 1 2 3 4 0 40 0 δ . δ is
defined by Table shown below.

Tape Sym bol

State 0 B

q0 (, ,)q R0 0 (, ,)q R1 0

q1 (, ,)q R1 0 (, ,)q B L2

q2 (, ,)q B L3 —

q3 (, ,)q L3 0 (, ,)q B R4

M starts from ID q Bm n
00 0 , moves right until seeking the blank B. M

changes state to q1. On reaching the right end, it reverts, replaces the rightmost
0 by B. It moves left until it reaches the beginning of the input string. It halts at
the final state q4.

Ì Exam ple 4.2.2: Design a Turing Machine that copies strings of 1’s.

Solu tion

Follow the following steps:

Turing Machines 193

(a) Replace every 1 by an x.
(b) Find the rightmost x and replace it with 1.
(c) Travel to the right end of the current nonblank region and create a

1 there.
(d) Repeat steps (b) and (c) until there are no more x’s.

The Transition function is given by

δ
δ
δ

(,) (, ,),
(,) (, ,),
(,) (, ,)

q q x R
q q L
q x q R

0 0

0 1

1 2

1

1

=
=
=

¨ ¨
,

(,) (, ,),
(,) (, ,),

(,) (, ,

δ
δ

δ

q q R
q q L

q q L

2 2

2 1

1 1

1 1
1

1 1

=
=
=

¨
),

(,) (, ,).δ q q R1 3¨ ¨=

where q3 is the only final state.

Ì Exam ple 4.2.3: Design a Turing Machine that multiplies two positive
integers in unary notation.

Solu tion

Assume that the initial and final tape contents are to be as indicated in figure
above. Multiplication is visualized as a repeated copying of the multiplicand y
for each 1 in the multiplies x, whereby the string y is added the appropriate
number of times to the partially computed product. The steps involved in the
process are:

(i) Repeat the following steps until x contains no more 1’s—find a 1
in x and replace it with another symbol a. Replace the leftmost 0
by 0y.

(ii) Replace all a’s with 1’s.

Ì Exam ple 4.2.4: Design a Turing Machine that recognizes the set of bit
strings which have a 1 as their second bit i.e., the regular set
() ()*0 1 1 0 1∨ ∨ .

Solu tion

We would like to have a Turing machine, which, starting at the leftmost
nonblank tape cell, moves right, and determines whether the second symbol is

194 Theory of Automata, Formal Languages and Computation

0 10 1 1 0 1 1 1

y y

10 1 1 0 1 1 1

y y

0 1 1 1.........

a 1. If the second symbol is 1, the machine should more into a final state. If the
second symbol is not a 1, the machine should not halt or it should halt in a
non-final state.

To construct such a machine, we include the five-tuples (q0, 0, q1, 0, R) and
(q0, 1, q1, 1, R) to read in the first symbol and put the Turing machine in state
q1.

Next, we include the five-tuples (q1, 0, q2, 0, R) and (q1, 1, q3, 1, R) to read
in the second symbol and either move to state q2 if this symbol is a 0, or to state
q3 if this symbol is a 1.

We do not want to recognize strings that have a 0 as their second bit, so q2

should not be a final state. We want q3 to be a final state. Therefore we can
include the 5-tuple (q2, 0, q2, 0, R). As we do not want to recognize the empty
string nor a string with one bit, we also include the 5-tuples (q0, B, q2, 0, R) and
(q1, B, q2, 0, R).

The Turing machine T consisting of seven 5-tuples given above will
terminate in the final state q3 if and only if the bit string has at least two bits and
the second bit of the input string is a 1. If the bit string contains fewer than two
bits or if the second bit is not a 1, the machine will terminate in the non final
state q2.

4.3 MODIFICATION OF TURING MACHINES

Two automata are said to be equivalent if they accept the same language. Two
transducers are said to be equivalent if they compute the same function.

A class of automata e.g., Standard Turing machines is equivalent to
another class of automata e.g., nondeterministic Turing machines, if for each
transducer in one class, an equivalent transducer can be found in another class.

At each move of a Turing machine, the tape head may move either left or
right. We can augment this with a “Stay option”, i.e., we will add “don’t move”
to the set {L, R}.

“Turing machines with a stay option are equivalent to Standard
Turing Machines.”

4.3.1 N-Track Turing Machine

An N-track Turing Machine is one in which each square of the tape holds an
ordered n-tuple of symbols from the tape alphabet. This can be thought of as a
Turing machine with multiple tape heads, all of which move in lock-step
mode.

“N-Track Turing machines are equivalent to standard Turing
machines”.

Turing Machines 195

4.3.2 Semi-infi nite tape/Offline/Multitape/ND Turing Machines

(a) A Turing machine may have a “semi-infinite tape”, the nonblank
input is at the extreme left end of the tape.
Turing machines with semi-infinite tape are equivalent to
Standard Turing machines.

(b) An “Offline Turing Machine” has two tapes. One tape is read-only
and contains the input, the other is read-write and is initially blank.
Offline Turing machines are equivalent to Standard Turing
machines”.

(c) A “Multi-tape Turing Machine” has a finite number of tapes, each
with its own independently controlled tape head.
“Multi-tape Turing Machines are equivalent to Standard Turing
Machines”.

(d) A “Nondeterministic Turing Machine” is one in which the DFA
controlling the tape is replaced with an NFA.

“Nondeterministic Turing machines are equivalent to Standard
Turing Machines.”

4.3.3 Mul ti di men sional/Two-state Turing Machine

A “Multidimensional Turing Machine” has a Multidimensional “tape”, for
example, a two-dimensional Turing Machine would read and write on an
infinite plane divided into squares, like a checkerboard. Possible directions
that the tape head could move might be labelled { , , , }N E S W . A
three-dimensional turing machine machine might have possible directions
{ , , , , , }N E S W V D and so on.

“Multidimensional Turing Machines are equivalent to Standard
Turing Machines”.
A “Binary Turing Machine” is one whose tape alphabet consists of

exactly two symbols.

Binary Turing machines are equivalent to Standard Turing Machines.

A “Two-state Turing Machine” is one that has only two states. Two-state
Turing machines are equivalent to Standard Turing Machines.

4.4 CHURCH–TURING’S THESIS

Alan Turing defined Turing machines in an attempt to formalize the notion of
an “effective producer” which is usually called as ‘algorithm’ these days.

Simultaneously mathematicians were working independently on the same
problem.

Emil Post → Production Systems
Alonzo Church → Lambda Calculus

196 Theory of Automata, Formal Languages and Computation

Noam Chomsky → Unrestricted Grammars
Stephen Kleene → Recursive function Theory
Raymond Smullyn → Formal Systems.

All of the above formalisms were proved equivalent to one another. This
led to

(a) Turing’s Thesis (Weak Form): A Turing machine can compute
anything that can be computed by a general-purpose digital
computer.

(b) Turing’s Thesis (Strong Form): A Turing machine can compute
anything that can be computed.

The strong form of Turing’s Thesis cannot be proved it states a
relationship between mathematical concepts and the “real world”.

4.4.1 Counting

Two sets can be put into a one-to-one corresponding if and only if they have
exactly the same number of elements.

Example:

{red, yellow, green, blue}

{apple, banana, cucumber,

b b b b

plum}

One-to-one correspondence with a subset of natural numbers can be done as:

{red, yellow, green, blue}

{1, 2, 3, 4}

↓ ↓ ↓ ↓

4.4.2 Recur sive and Recur sively Enumerable Lan guage

There are three possible outcomes of executing a Turing machine over a given
input.

The Turing machine may

(i) Halt and accept the input
(ii) Halt and reject the input, or

(iii) Never halt.

A language is “recursive” if there exists a Turing machine that accepts
every string of language and rejects every string over the same alphabet that is
not in the language.

If a language L is recursive, then its complement L should also be
recursive.

Turing Machines 197

A language is “recursively enumerable” if there exists a Turing machine
that accepts every string of the language, and does not accept strings that are
not in the language. Strings which are not in the language may be rejected or
may cause the Turing machine to go into an infinite loop.

Every Recursive language is also recursively enumerable. But it is not
clear if every recursively enumerable language is also recursive.

Turing Machines are not “recursive”. The terminology is borrowed from
recursive function theory.

4.4.3 Enu mer ating Strings in a Lan guage

To enumerate a set is to place the elements of the set in a one-to-one
correspondence with the natural numbers. The set of all strings over an
alphabet is denumerable. Let us assume that a string is a number is an | |Σ -ary
number system. The strings in a language from a subset of the set of all strings
over Σ. But is it possible to enumerate the strings in a language?

If a language is recursive, then there exists a Turing machine for it that is
guaranteed to halt. We can generate the strings of Σ* in a shortest first order to
guarantee that every finite string will be generated, test the string with the
Turing machine, and if the Turing machine accepts the string, assign that string
the next available natural number. We can also enumerate the recursively
enumerable languages. We have a Turing machine that will halt and accept any
string that belongs to the language; the trick is to avoid getting hung up on
strings that cause the Turing machine to go into an infinite loop. This is done
using “Time sharing”. Let us illustrate this now.

w N: ; : ;= ∅ = 0
for i: = 1 0to χ do {

add the next string in Σ* to set W;
ini tial ize a Turing machine for this new string;
for each string in set W do {

let the Turing machine for it make one more;
if the Turing machine halts {

accept or reject the string as appro pri ate;
if the string is accepted {

N: = N + 1;

198 Theory of Automata, Formal Languages and Computation

Recursively
Enumerable

LanguagesRecursive
Languages

let this be string N of the lan guage;
}

remove the string from set W;
}

4.4.4 Non-recur sively Enumerable Lan guages

A Language is a subset of Σ* . A language is “any” subset of Σ* . We have
shown that Turing machines are enumerable. Since recursively enumerable
laguages are those whose strings are accepted by a Turing machine, the set of
recursively enumerable languages is also enumerable. The power set of an
infinite set is not enumerable i.e., it has more than χ0 subsets. Each of these
subsets represent a language. Hence there should be languages that are not
computable by a Turing machine.

According to Turing Thesis, a Turing machine can compute any effective
procedure. Therefore there are languages that cannot be defined by any
effective procedure. It is possible to find a non-recursively enumerable
language X by a process called “diagonalisation”.

4.5 UNDECIDABILITY

4.5.1 Halting Prob lem

The input to a Turing machine is a string. Turing machines themselves can be
written as strings. Since these strings can be used as input to other Turing
machines.

A “Universal Turing machine” is one whose input consists of a
description M of some arbitrary Turing machine, and some input w to which
machine M is to be applied, we write this combined input as M + w. This
produces the same output that would be produced by M. This is written as

Uni ver sal Turing Machine (M + w) = M (w).

As a Turing machine can be represented as a string, it is fully possible to
supply a Turing machine as input to itself, for example M (M). This is not even
a particularly bizarre thing to do for example, suppose you have written a C
prettyprinter in C, then used the Prettyprinter on itself. Another common usage
is Bootstrapping—where some convenient languages used to write a minimal
compiler for some new language L, then used this minimal compiler for L to
write a new, improved compiler for language L. Each time a new feature is
added to language L, you can recompile and use this new feature in the next
version of the compiler. Turing machines sometimes halt, and sometimes they
enter an infinite loop. A Turing machine might halt for one input string, but go
into an infinite loop when given some other string.

The halting problem asks: “It is possible to tell, in general, whether a given
machine will halt for some given input?” If it is possible, then there is an

Turing Machines 199

effective procedure to look at a Turing machine and its input and determine
whether the machine will halt with that input. If there is an effective procedure,
then we can build a Turing machine to implement it.

Suppose we have a Turing machine “WillHalt” which, given an input
string M + w, will halt and accept the string if Turing machine M halts on input
w and will halt and reject the string if Turing machine M does not halt on input
w. When viewed as a Boolean function, “WillHalt (M, w)” halts and returns
“TRUE” in the first case, and (halts and) returns “FALSE” in the second.

THE O REM: Turing Machine “WillHalt (M, w)” does not exist.

Proof: This theorem is proved by contradiction.
Suppose we could build a machine “WillHalt”.
Then we can certainly build a second machine,
“LoopIfHalts”, that will go into an infinite loop if and only if “WillHalt”

accepts its input:

Func tion LoopIfHalts (M, w):
if WillHalt (M, w) then

while true do { }
else

return false;

We will also define a machine “LoopIfHaltOnItSelf” that, for any given
input M, representing a Turing machine, will determine what will happen if M
is applied to itself, and loops if M will halt in this case.

Func tion LoopIfHaltsOnItself (M):
return LoopIfHalts (M, M):

Finally, we ask what happens if we try:

Func tion Impos si ble:
return LoopIfHaltsOnItself (LoopIfHaltsOnItself):

This machine, when applied to itself, goes into an infinite loop if and only
if it halts when applied to itself. This is impossible. Hence the theorem is
proved.

200 Theory of Automata, Formal Languages and Computation

Start

Will this
program

halt?

Yes

Halt

4.5.2 Impli ca tions of Halting Prob lem

(a) Pro gramming

The Theorem of “Halting Problem” does not say that we can never determine
whether or not a given program halts on a given input.

Most of the times, for practical reasons, we could eliminate infinite loops
from programs. Sometimes a “meta-program” is used to check another
program for potential infinite loops, and get this meta-program to work most of
the time.

The theorem says that we cannot ever write such a meta-program and have
it work all of the time. This result is also used to demonstrate that certain other
programs are also impossible.

The basic outline is as follows:

(i) If we could solve a problem X, we could solve the Halting problem
(ii) We cannot solve the Halting Problem

(iii) Therefore, we cannot solve problem X.

(b) Arti fi cial Intel li gence (AI)

It has been tried to use the Halting Problem as an argument against the
possibility of intelligent computers. The argument is as follows:

(i) There are things computer cannot do
(ii) We can do those things

(iii) Therefore, we must be superior to computers.

The first premise given above is definitely TRUE. The second premise is
generally supported by displaying a program which solves some subset of the
Halting Problem, then describing a nice trick which is not incorporated into the
program, that solves a slightly larger subset. There may well be valid
arguments against the possibility of AI. This is not one of them.

4.5.3 Reduc tion to Halting Prob lem

In order to reduce a problem P to the Halting problem, look at the following
steps:

(i) Assume that you have an effective procedure—either a Turing
machine or any kind of algorithm to solve problem P.

(ii) Show how to use the program for P to solve the Halting problem.
(iii) Conclude that problem P cannot be solved.

State Entry Prob lem

This problem otherwise called “dead code problem” is to determine whether
Turing machine M, when given input w, ever enters state q. The only way a

Turing Machines 201

Turing machine M halts is if it enters a state q for which some transition
function δ(,)q ai i is undefined. Add a new final state z to the Turing machine,
and add all these missing transitions to lead to state z. Now use the assumed
state-entry procedure to test if state z, is ever entered when M is given input w.
This will let us know if the original machine M halts. We conclude that it
should not be possible to build the assumed state-entry procedure.

Some unsolvable Problems are as follows:

(i) Does a given Turing machine M halts on all input?
(ii) Does Turing machine M halt for any input?

(iii) Is the language L(M) finite?
(iv) Does L(M) contain a string of length k, for some given k?
(v) Do two Turing machines M1 and M2 accept the same language?

It is very obvious that if there is no algorithm that decides, for an arbitrary
given Turing machine M and input string w, whether or not M accepts w. These
problems for which no algorithms exist are called “UNDECIDABLE” or
“UNSOLVABLE”.

4.5.4 Post’s Cor re spon dence Prob lem

Let Σ be a finite alphabet, and let A and B be two lists of nonempty strings over
Σ, with | | | |A B= , i.e.,

A w w w wk= (, , ,)1 2 3 KK
and B x x x xk= (, , ,)1 2 3 KK

Post’s Cor re spon dence Prob lem is the fol low ing.

Does there exist a sequence of integers i i im1 2, , KK such that m ≥1 and

w w w wi i i im1 2 3 KK = x x x xi i i im1 2 3 KK ?

Example: Suppose A = (a, abaaa, ab) and B = (aaa, ab, b). Then the required
sequence of integers is 2, 1, 1, 3 giving

abaaa a a ab = abaaa aaa b.

This example has a solution. It will turn out that Post’s correspondence
problem is insolvable in general.

Ì Exam ple 4.5.1: Prove that if L1 is not recursive, and there is a reduction
from L1 to L2, then L2 is also not recursive.

Solu tion

Assume that L2 is recursive, as decided by Turing machine M2 and let T be the
Turing machine that computes the reduction τ.

202 Theory of Automata, Formal Languages and Computation

Then the Turing machine TM2 would decide L1. But L1 is undeciable—a
contradiction.

4.6 RICE’S THEOREM

A Turing machine (TM) is a way to describe a language and the decision
problem can be interpreted as belonging to the general class of problems:

“Given a Turing machine, does L(TM) have the property P”?

In this case P is the property of containing the null string.

THE O REM: “If P is a property of languages that is satisfied by some but not
all recursively enumerable languages, then the decision problem.

D: Given a TM, does L(TM) have property P is unsolvable.”

Proof: Assume that P is a nontrivial language property. Starting with Turing
machine TM, an arbitrary instance of Accepts (∧). (Which is the other
unsolvable problem), we need to find an instance TM′ of D so that the answer
for TM and TM′ are the same.

The machine TM′ is constructed so that the first things it does it to move its
tape head past the input string and execute TM on input ∧. What TM′ does with
its original input after that depends on the outcome of Accepts (∧).

We would like TM′ to proceed with its original input as if its goal were to
accept some original input as if its goal were to accept some language LA so
that it halts if and only if the original input is in LA. Also we would want TM′ to
proceed as if it were accepted as a different language L.

In order to get everything right, we want LA to be a language satisfying P
and LB to be a language not satisfying P and LB to be a language not satisfying
P. This ensures that if TM′ is a yes-instance of D if and only if TM is a
yes-instance of Accepts (∧).

The problem that exists here is that if TM does not accept ∧, then it will go
into infinite loop. Then TM′ could not accept anything. Therefore LB is an
empty language. Therefore if TM crashed on input ∧, then TM′ also crashes. If
∅ happens to be a language not satisfying the property P, then we have exactly
what we want.

The choice of the language LA is arbitrary subject to the condition LA must
satisfy P; then we have such a language LA, since P is nontrival.

There fore it is proved that if P is any nontrivial prop erty not sat is fied by the
empty lan guage, then D is unsolv able, which proves the Rice’s Theorem. ¨

GLOSSARY

Turing machine: Finite-state machine with storage.

Turing Machines 203

Types of TM: Deterministic TM, non-deterministic TM
Transition function of TM: δ : { , }Q Q L R× → × ×Γ Γ
Configuration of TM: Requires

(i) state of TM
(ii) contents of the tape

(iii) position of the tape head on the tape.
Move of a TM: Pair of instantaneous descriptions, separated by |–.
Programming a TM: Creating current state, symbol read, symbol written,

direction, next state.
Transducer: TM is used as a Tranducer by treating the entire nonblank

portion of the initial tape as input, and treating the entire nonblank
portion of the tape when the machine halts as output.

N-Track Turing machine: One in whch each square of the tape holds an
ordered n-tuple of symbols from the tape alphabet.

Semi-infinite tape TM: TM having an semi-infinite tape, with the non-blank
input at the extreme left of the tape.

Offline TM: TM having two tapes, one tape is read-only and has the input,
the other is read-write and is initially blank.

Multi-tape TM: TM having finite number of tapes, each having its own
independently controlled tape head.

Standard TM: Multi-tape TMs are called so.
Binary TM: One whose tape alphabet consists of exactly two symbols.
Turing Thesis (Weak form): TM can compute anything that can be.

computed by a general-purpose digital computer.
Turing Thesis (Strong Form): TM can compute anything that can be

computed.
Recursively enumerable (R.E.): Language is R.E. if there exists a TM that

accepts every string of the language and does not accept strings that are
not in the language.

REVIEW QUESTIONS

1. What is a Turing machine?
2. What are the types of Turing machines?
3. Give the definition of a Turing machine.
4. Define the term ‘Transition function’ of a TM.
5. Define the term ‘Instantaneous description’ of a TM.
6. Define the term ‘move’ in a TM.
7. What are the requirements of the ‘configuration’ of a TM?
8. How will you program a Turing machine?
9. Explain “Turing machine as acceptors”.

204 Theory of Automata, Formal Languages and Computation

10. How will you recognize a language in a TM?
11. How are Turing machines used as Transducers?
12. Explain what do you mean by an N-Track Turing machine?
13. Explain the following terms

(a) Semi-infinite tape
(b) Offline Turing machine
(c) Multitape Turing machine
(d) Nondeterministic “Multidimensional Turing Machine”

14. What do you mean by “Multidimensional Turing Machine”?
15. What do you mean by a binary TM?
16. State the Church-Turing Thesis.
17. State the weak form and strong form of Turing’s Thesis.
18. What do you mean by Recursively enumerable languages?
19. How will you enumerate strings in language?
20. What are non-recursively enumerable languages?
21. What do you mean by Undecidability?
22. What do you mean by the Halting problem?
23. What is an Universal Turing machine?
24. State the implications of Halting problem.
25. What do you mean by Post’s Correspondence problem?

EXERCISES

1. Design a Turing machine which recognizes the language consisting of
all strings of 0s whose length is a power of 2. i.e., it decides the language

L n
n

= ≥{ | }.0 02

2. Design a Turing machine which recognizes the language
L w w w= ∈{ # | { , } }.*01

3. Design a Turing machine which recognizes the language
L a b c i j k i j ki j k= × = ≥{ | , , }and 1 .

4. Design a deterministic Turing machine (DTM) to accept the language
L a b c ii i i= ≥{ | }0 .

5. Define a DTMs to accept the following languages. Specify the 5-tuple in
each. (Use multi-tape machine if necessary).
(a) { | { , } }*xx x ∈ 01

(b) { | { , } }*x x x x R∈ =01 and

6. Design DTMs to compute the following functions. (Input number can
be in unary, i.e., n is encoded as 1n).
(a) Successor function: f N N: → where f n n() = +1.

Turing Machines 205

(b) f N N N: × → such that  f a b a b(,) /=
(c) f N N: → such that  f n n() log= 2 .

7. Define Nondeterministic Turing machines to accept the following
languages.
(a) { | { , } }*xx x ∈ 01

(b) { | { , } }*x x x x R∈ =01 and

8. Define a multiheaded Turing machine, a model in which each tape can
have k tape heads. Prove that a Deterministic Turing Machine (DTM)
with one work tape can simulate a two-headed Turing machine.

9. Design a Turing machine which computes the function
f n n n n(,) min(,)1 2 1 2= for all non-negative integers n1 and n2.

10. Design a Turing machine which computes the function f n() = 3 if n ≥ 5
and f n() = 0 if n =0, 1, 2, 3 or 4.

11. Construct a Turing machine which computes the function f (n) = n mod
5.

12. Design a Turing machine which recognizes the set { | }0 1 2 0n n n n ≥ .

13. Design a TM that recognizes the set of all bit strings that contain an even
number of 1s.

14. Construct a TM that recognizes the set of all bit strings which end with a
0.

15. Design a Turing machine with tape symbols 0, 1 and B that given a bit
string as input, replaces all but the leftmost 1 on the tape with 0s and
does not change any of the other symbols on the tape.

16. Design a TM with tape symbols 0, 1 and B that replaces the first 0 with a
1 and does not change any of the other symbols on the tape.

17. Design a TM that recognizes the set

{ | }.0 1 02n n n ≥

18. Show that the recursiveness problem of Type-0 grammars is unsolvable.
19. Show that the problem of determining whether or not a TM over {0,1}

will print ever the symbol 1, with a given tape configuration is
unsolvable.

20. Show that there exists a TM for which the halting problem is
unsolvable.

SHORT QUESTIONS AND ANSWERS

1. What is a Turing machine?
A finite-state machine with storage is called a Turing machine.

2. What is the analogy between a Turing machine and a Push Down

206 Theory of Automata, Formal Languages and Computation

Automaton?
Both have a finite-state machine as a central component, both have

additional storage.
3. What are the types of Turing machines?

(a) Deterministic Turing machine.
(b) Non-deterministic Turing machine.

4. Define a Turing machine.
A Turing machine is a 7-Tuple

(, , , , , # ,)Q q FΣ Γ δ 0

where Q is a set of states
Σ is a finite set of sym bols, “Input alpha bet”
Γ is a finite set of sym bols, “Tape alpha bet”
δ is the par tial tran si tion func tion
∈T is a sym bol called ‘blank’
q Q0 ∈ is the ini tial state
F Q⊆ is a set of final states

5. Define the Transition Function for Turing Machine (TM)

δ : { , }Q Q L R× → × ×Γ Γ is the tran si tion func tion.

When a machine is in a given state (Q) and reads a given symbol (Γ)
from the tape, it replaces the symbol on the tape with some other symbol
(Γ), goes to some other state (Q), and moves the tape head one square
left (L) or right (R).

6. State the requirements of an instantaneous description or configuration
of a TM.

TM requires:
(a) the state the TM is in
(b) the contents of the tape
(c) the position of the tape head on the tape.

7. How is move of a Turing machine expressed?
It is expressed as a pair of instantaneous descriptions, separated by a

symbol |–.
8. What do you understand by “programming” a Turing machine?

Creating a list:
(current state, symbol read, symbol written, direction, next state) is

called ‘Programming’ a Turing machine.
9. What are the reasons for a TM not accepting its input?

(a) The TM could halt in a nonfinal state.
(b) The TM could never stop i.e., it enters an “infinite loop”.

10. How is a Turing machine used as a Transducer?

Turing Machines 207

To use a Turing machine as a Transducer, treat the entire nonblank
portion of the initial tape as input, and treat the entire nonblank portion
of the tape when the machine halts as output.

11. When is a function f said to be “Turing computable”?
A Turing machine defines a function y f x= () for strings x y, *∈ Σ if

q x q yf0 |–
*

where q f is the final state.
A function f is ‘Turing Computable” if there exists a Turing machine
that can perform the above task.

12. When are two automata said to be equivalent?
Two automata are said to be equivalent if they accept the same

language.
13. When are two transducers said to be equivalent?

Two transducers are said to be equivalent if they compute the same
function.

14. What do you mean by standard Turing machines?
At each move of a Turing machine, the tape head may move either

left or right. We can augment this with a ‘stay’ option, i.e. we will add
“don’t move” to the set {L, R}.

Turing machines with a stay option are equivalent to Standard
Turing Machines.

15. What is an N-Track Turing machine?
A TM in which each square of the tape holds an ordered n-tuple of

symbols from the tape alphabet is said to be an N-Track Turing
Machine.

16. What is a semi-infinite tape Turing Machine?
A Turing machine having a semi-infinite tape, with the non-blank

input at the extreme left of the tape is called so.
17. What is an offline Turing machine?

A Turing machine having two tapes, one tape being read-only and
has the input, the other being read-write that is initially blank is called an
offline Turing machine.

18. What is a multi-tape Turing machine?
A Turing machine with finite number of tapes, each having its own

independently controlled tape head is called a multi-tape TM.
19. What are standard Turing Machines?

Multi-tape Turing machines are called standard Turing Machines.
20. What is a binary Turing Machine?

A Turing machine whose tape alphabet having exactly two symbols
is a binary Turing Machine.

208 Theory of Automata, Formal Languages and Computation

21. What is the ‘weak form’ of Turing Thesis?
“A Turing machine can compute anything that can be computed by a

general-purpose digital computer.” This is the weak form of Turing
Thesis.

22. What is the ‘strong form’ of Turing Thesis?
“A Turing Machine can compute anything that can be computed”.

This is the strong form of Turing Thesis.
23. When is a language said to be recursively enumerable?

A language is recursively enumerable if there exists a Turing
machine that accepts every string of the language, and does not accept
strings that are not in the language.

24. What is the Post’s correspondence problem?
Let Σ be a finite alphabet, and let A and B be the lists of nonempty

strings over Σ, with | | | | ,A B= i.e.,

A w w wk= (, ,)1 2 KK
 and B x x xk= (, ,)1 2 KK .

Post’s correspondence problem is the following:
“Does there exist a sequence of integers i i im1 2, ,K such that m ≥1

and

w w w w x x x xi i i im i i i im1 2 3 1 2 3KK KK= ?”

Turing Machines 209

Chap ter 5

Chomsky Hier ar chy

5.1 CONTEXT SENSITIVE GRAMMARS AND LANGUAGES

A context-sensitive Language is a language generated by a context sensitive
grammar.

Definition 1: A context-sensitive grammar is one whose productions are all
of the form

xAy xvy→

where A v∈ and x v y V T, , ()*∈ ∪ .
“Context-sensitive” implies the fact that the actual string modification is

given by A v→ , while the x and y provide the context in which the rule may be
applied.

Definition 2: A context-sensitive grammar is one whose productions are all
of the form

x y→

where x y V T x y, () , | | | | .∈ ∪ ≤+ and
This type of grammar is called “Non-contracting” as the derivation steps

never decrease the length of the sentential form.
This definition given above is mostly used. The two kinds of grammar are

almost equivalent generating the same languages with only the exception: One kind
of grammar permits languages to contain the empty string, while the other doesn’t.

A language L is context-sensitive if there exists a context sensitive
grammar G such that either L L G L L G= = ∪() () { }.or λ

Ì Exam ple 5.1.1: Show that the language L a b c nn n n= ≥{ | }1 is a
context-sensitive language.

Solu tion

Let us prove this by showing a context-sensitive grammar for the language.

A kind of grammar is

S abc aAbc
Ab bA
Ac Bbcc
bB Bb
aB aa aa A

→
→
→
→
→

| ,
,

,
,
|

Let us see how this works by looking at the derivation of a b c3 3 3 .

S aAbc abAc abBbcc
aBbbcc aaAbbcc aabAbcc
aabbAcc

⇒ ⇒ ⇒
⇒ ⇒ ⇒
⇒ ⇒ aabbBbccc

aabBbbccc aaBbbbccc
aaabbbccc

⇒ ⇒
⇒ .

This uses the variables A and B. Since the language is not context-free, it is
said to be context-sensitive language.

5.2 LINEAR BOUNDED AUTOMATA

A Turing machine has an infinite supply of blank tape. A linear-bounded
automaton is a Turing machine whose tape is only αn squares long, where ‘n’ is
the length of the input string and α is a constant associated with the particular
linear-bounded automaton.

THE O REM (I): For every context-sensitive language L there exists a
linear-bounded automaton M such that L = L(M), i.e., M accept exactly the
strings of L.

THE O REM (II): For every language L accepted by a linear-bounded
automaton that produces exactly L or L − { }λ , depending on the definition
of context sensitive grammar.

5.3 RELATIONSHIP OF OTHER GRAMMARS

THE O REM (I): Every context-free language is context-sensitive.

Proof: The productions of a context-free language have the form A v→ . The
productions of a context-sensitive language have the form xAy xvy→ , where x
and y are permitted to be λ.

Hence the result. ¨

THE O REM (II): There exists a context-sensitive language that is not
context-free.

Chomsky Hierarchy 211

Proof: The language { | }a b c nn n n ≥ 0 is not context-free (which could be
proved using a pumping lemma).

It can be shown that it is context-sensitive by providing an approprite
grammar.

The productions of one such grammar is given here.

S aABC
A aBC
bB bb

S aBC
CB BC
bC bc

A aABC
aB ab
cC cc

→
→
→

→
→
→

→
→
→

¨

THE O REM (III): Every context-sensitive language is recursive.

Proof: A context-sensitive grammar is noncontracting. Moreover, for any
integer n there are only a finite number of sentential forms of length n.
Therefore, for any string w we could set a bound on the number of derivation
steps required to generate w, hence a bound on the number of possible
derivations. The string w is in the language if and only if one of these
derivations produces w.

5.4 THE CHOMSKY HIERARCHY

The Chomsky Hierarchy, as originally defined by Noam Chomsky, comprises
four types of languages and their associated grammars and machines.

Lan guage Gram mar Machine Exam ple

Reg u lar lan -
guage

Reg u lar gram mar
—Right-lin ear gram mar
—Left-lin ear gram mar

Deter min is tic
 or
Nondeter-
ministic
finite-state
accep tor

a*

Con text-free
lan guage

Con text-free gram mar Nondeter-
ministic
pushdown
autom a ton

anbn

Con text-sen si -
tive lan guage

Con text sen si tive
gram mar

Lin ear-
 bounded
autom a ton

anbncn

Recur sively
enumerable
lan guage

Unre stricted gram mar Turing
machine

Any
com put able
func tion

212 Theory of Automata, Formal Languages and Computation

5.5 EXTENDING THE CHOMSKY HIERARCHY

So far we have discussed about other types of languages besides those in the
“classical Chomsky hierarchy. For example, we noted that deterministic
pushdown automaton were less powerful than nondeterministic pushdown
automata. The table below shows a table of some of the language classes we
have covered that fit readily into the hierarchy.

Lan guage Machine

Reg u lar lan guage Deter min is tic or Non-deter min is tic
finite-state accep tor

Deter min is tic con text-free lan guage Deter min is tic Pushdown Autom a ton

Con text-free lan guage Non-deter min is tic pushdown Autom -
a ton

Con text-Sen si tive lan guage Lin ear-bounded Autom a ton

Recur sive lan guage Turing machine that halts

Recur sively enumerable lan guage Turing machine

It should be noted that not all language classes fit into a hierarchy. When
linear languages are considered, they fit neatly between the regular languages
and the context-free languages. However there are languages that are linear but
not deterministic context-free, and there are languages that are deterministic
context-free but not linear.

5.6 UNRESTRICTED GRAMMAR

The grammars in the Chomsky hierarchy allows productions of the form

α β→

where α and β are arbitrary strings of grammar symbols, with α λ≠ .
These types of grammars as called “Unrestricted grammars”. The 4-tuple

notation G V T P S= (, , ,) is used for unrestricted grammars also.

L G w w T S w() { | }* *= ⇒is in and

⇒
*

 denotes the reflexive and transitive closure of the relation ⇒.

THE O REM (I): If L is L(G) for unrestricted grammar G V T P S= (, , ,) , then L
is an r.e. language.

THE O REM (II): If L is an r.e. language, then L L G= () for some unrestricted
grammar G.

Chomsky Hierarchy 213

5.7 RANDOM-ACCESS MACHINE

A randon access machine is defined as follows:

Data Types: The only data type supported is the Natural Numbers 0, 1, 2, 3,
......... But the numbers may be very large.

Variables: An orbitrary number of variables are allowed. Each variable is
capable of holding a single natural number. All variables are initialized to 0.

Tests: The only test allowed is <variable> = 0.

Statements: There are the following types of statements in the language:

(a) if <test> then <statement> else <statement>;
(b) while <test> do <statements>;
(c) <variable> : = <variable> +1; (increment)
(d) <variable>: = <variable> –1; (decrement)

It is to be noted that decrementing a variable whose value is already zero
has no effect.

Statements to be executed in sequence (<statement>; <statement>;
<statement>; are allowed and parantheses are used to group a sequence of
statement into a single statement. This language is very equivalent in power to
a Turing machine. This can be proved by using the language to implement a
Turing machine, and then using a Turing machine to enulate the language.

This language is so powerful to compute anything that can be computed in
any programming language.

GLOSSARY

Context sensitive language: Language generated by a context-sensitive
grammar.

Context-sensitive grammar: It is one whose productions are of the form

xAy xVy→

 where A V∈ and x v y V T, , () .*∈ ∪
Linear Bounded automata (LBA): It is a TM whose tape is only αn squares

long, where ‘n’ is the length of input string and α is a constant
associated with the LBA.

Chomsky hierarchy: Has 4 types of languages viz.,

(a) Regular language
(b) Context-free language
(c) Context-sensitive language
(d) Recursively enumerable language.

214 Theory of Automata, Formal Languages and Computation

Unrestricted grammar: Production of the form α β→ where α β, are
arbitrary strings of grammar symbols, with α λ≠ forms unrestricted
grammar.

REVIEW QUESTIONS

1. What do you mean by a context-sensitive grammar?
2. What do you mean by a context-sensitive language?
3. What do you mean Linear bounded automata?
4. Prove: “Every context-free language is context-sensitive”.
5. Prove: “There exists a context-sensitive language that is not

context-free”.
6. Prove: “Every context-sensitive language is recursive”.
7. Given an example for

(a) Regular language (b) Context-free language.
8. Give an example for

(a) Context-sensitive language (b) Recursively enumerable language.
9. What do you mean by Chomsky hierarchy of languages?

10. What are the machines corresponding to each of the following?
(a) Recursively enumerable language
(b) Context sensitive language
(c) Context-free language
(d) Regular language.

11. What do you mean by unrestricted grammar?
12. What do you mean by a random access machine?

EXERCISES

1. Check whether the language given by

L a b nn n= ≥{ | }1

is a context-sensitive language or not.
2. Check whether the language

L nn n= ≥{ | }1 0 1

is a context-sensitive language or not.
3. Explain the Chomsky hierarchy of languages with an example.
4. Explain the concept of unrestricted grammar with examples.
5. Show that every context-free language is context sensitive.

Chomsky Hierarchy 215

6. Prove that exists a context-sensitive language that is not context-free.
7. Show that every context sensitive language is recursive.

SHORT QUESTIONS AND ANSWERS

1. What is a context-sensitive language?
A language generated by a context-sensitive grammar is called a

context-sensitive language.
2. Define a context sensitive grammar.

A context-sensitive grammar is one whose productions are all of the
form

xAy xVy→

where A v∈ and x v y V T, , ()*∈ ∪ .

3. Give an alternative definition of context-sensitive grammar.
A context-sensitive grammar is one whose productions are all of the

form

x y→

where x y V T x y, () | | | | .∈ ∪ ≤+ and

4. What is meant by “non-contracting” grammar?
Grammar is which the derivation steps never decrease the length of

the sentential form is called a ‘non-contracting’ grammar.
5. When is a language said to be context sensitive?

A language L is context-sensitive if there exists a content-sensitive
grammar G, such that either L L G L L G= = ∪() () { }or λ

6. Give an example for a context-sensitive language.
L a b c nn n n= ≥{ | }1 is an example of a context-sensitive language.

7. What is a linear bounded automata?
A linear bounded automaton is a Turing machine whose tape is only

αn squares long, where ‘n’ is the length of the input string and α is a
constant.

8. Say True or False: “Every context-free language is context-sensitive.”
TRUE.

9. Say True or False: “There exists a context-sensitive language that is not
context-free.”

TRUE.
10. Say True or False: “Every context-sensitive language need not be

recursive”.
FALSE, every context-sensitive language is recursive.

216 Theory of Automata, Formal Languages and Computation

11. Give an example of a regular language
a*.

12. Give an example of a context-free language?
a nbn.

13. Give an example of a context-sensitive language
a b cn n n .

14. Give an example of a recursively enumerable language.
Any computable function is an example.

15. What are kinds of regular grammars?
(a) Right-linear grammar.
(b) Left-linear grammar.

16. Give an example of a machine which applies context-free language.
Nondeterministic Pushdown Automaton

17. Give an example of a machine which applies context-sensitive
language.

Linear Bounded Automaton
18. Give an example of a machine which applies recursively enumerable

language.
Turing machine.

19. What is the grammar corresponding to a recursively enumerable
language.

Unrestricted grammar.
20. What are the languages the Chomsky Hierarchy describes?

(a) Regular language
(b) Context-free language
(c) Context-sensitive language
(d) Recursively enumerable language.

21. What are Unrestricted grammars?
The grammars in the Chomsky hierarchy allows productions of the

form

α β→

where α and β are arbitrary strings of grammar symbols, with α λ≠ .
These grammars are called ‘Unrestricted grammars”.

22. Mention the types of statements in the language of a random access
machine.

(a) if <test> then <statement> else <statement>;
(b) while <test> do <statement>;
(c) <variable>: = <variable> + 1; (increment)
(d) <variable>: = <variable> – 1; (decrement)

Chomsky Hierarchy 217

Chap ter 6

Computability

6.1 FORMAL SYSTEMS

The necessary properties of a satisfactory formal system are as follows:

(a) Completeness: It should be possible either to prove or disprove any
proposition that can be expressed in the system.

(b) Consistency: It should not be possible to both prove and disprove a
proposition in the system.

Consistency becomes crucial if it becomes possible to prove and disprove
some proposition in the system, which means the same can be done for every
proposition in the system.

In the late 1800’s there were a lot of mathematicians who were working on
a method of putting together all of mathematics, starting from the axions of set
theory.

In fact, sets can have other sets as members. In 1901 Bertrand Russel
discovered the Russel’s Paradox:

Rus sel’s Par a dox

“Consider the set of all sets that do not have themselves as a member. Is this set
a member of itself?”

This problem was tried to be resolved by the way of defining “type”. This
theory of types though not accepted fully have paved way for new
philosophies of mathematics.

Godel was able to express proofs as numbers like considering a computer
program to be a very large binary number. Godel proved the following result:

“If it is possible to prove, within a formal system, that the system is
consistent, then the formal system is not, in fact, consistent.”

Equivalently, we can say,

“If a formal system is consistent, then it is impossible to prove (within
the system) that it is consistent.”

This particular result shows that any attempt to prove mathematics
consistent is foredoomed to failure. It is still possible to prove a system
consistent by logical arguments outside that system, provided the outer system
is known to be consistent.

6.2 RECURSIVE FUNCTION THEORY

It is seen that a sufficiently powerful formal system cannot be both consistent
and complete as proved by Godel. Simple arithmetic on integers is an example
of a system that is “sufficiently powerful”. It is always preferred to give up
completeness rather than consistency, because in a consistent system any
proposition can be proven.

Ideally, we wanted to have an algorithmic theorem proving procedure to
distinguish between the provable propositions and unprovable ones. Alan
Turing invented Turing machines in an attempt to solve this problem. With the
halting problem, Alan Turing had shown that it is not possible to distinguish
between soluable and insolvable problems. Similar results were arrived at by
other scientists. Church invented “Recursive Function Theory”.

6.3 PRIMITIVE RECURSIVE FUNCTIONS

This section describes the basic ideas behind recursive function theory.
The Recursive functions are described over the natural numbers I = {0, 1,

2, 3,}. Recursive functions are looked at as “Pure Symbol Systems”.
Numbers are not used in the system, rather, we use the system to construct both
numbers and arithmetical functions on numbers. Its a different numbering
system, in the same way as Roman numerals are different. The correspondence
is as given below.

z x s z x s s z x() , (()) , ((())) ,= = =0 1 2

In order to translate to decimal, just count the number of s’s surrounding
the central z(x).

(a) Zero Function: z x z y() (),= for all x y I, .∈ This is our “zero”; it is written
as a function so we don’t have to introduce constants into the system.

(b) Successor Function s(x): This function informally means x + 1. Formally,
it does not return a value. It just lies there, the result of s(x) is s(x).

(c) Projector Function:

p x x
p x y x
p x y y

1

1

2

()
(,)
(,)

=
=
=

Computability 219

Elagrody
Highlight

Elagrody
Highlight

Elagrody
Highlight

Elagrody
Highlight

Elagrody
Highlight

Elagrody
Sticky Note

Elagrody
Sticky Note
هو هنا بيعرفك أساسيات ال Recursive Fuction اللى من النوع Preemptive

(a) الدالة الصفرية ودائماً بتساوي بالصفر

(b) الدالة الوارثة يعنى كل مرة تزود واحد

(c) دالة المسقط ودى بتشوفى فيها العدد اللى جمب ال p كام وتختارى الرمز اللى بيساوى الرقم ده داخل الاقواس

Elagrody
Sticky Note

Elagrody
Highlight

Elagrody
Highlight

Elagrody
Pencil

These pro jec tor func tions are a way of extract ing one of the param e ters and
dis card ing the rest. We define only P1 and P2 as only func tions of no more
than two argu ments are only discused.

Definition: A total function f over N is primitive recursive if (i) it is any one of
the three initial functions [zero function, successor function and Projector
Function] or (ii) it can be got by applying composition and recursion finite
number of times to the set of initial functions. This is dealt with in the
subsequent sections.

Ì Exam ple 6.3.1: How are the following functions defined.

(a) Zero function Z(x)
(b) Successor function S(x)
(c) Projection function P xi

n ().

Solu tion

(a) Zero function Z(x) = 0
(b) Successor function S(x) = x + 1
(c) Projection function P x x x xi

n
n i(, ,)1 2 KK =

Ì Exam ple 6.3.2: How are the following functions defined?

(a) nil (x)
(b) cons a(x)
(c) cons b(x)

Solu tion

(a) nil (x) = λ
(b) cons a(x) = ax
(c) cons b(x) = bx

Ì Exam ple 6.3.3: Find out the values of

(a) Z()80
(b) P2

4 2 3 7 6(, , ,)

(c) P3
4 2 3 6 7(, , ,)

(d) S ()78

With Z as the zero function, S as the successor function and U as the
projection function.

220 Theory of Automata, Formal Languages and Computation

Elagrody
Rectangle

Elagrody
Underline

Elagrody
Highlight

Elagrody
Highlight

Elagrody
Highlight

Elagrody
Sticky Note
امتى الدالة تكون Preemptive recursive؟؟

عندك شرطين :-

اول شرط:- تكون احد الدوال الثلاثة (zero, successor, projector)

ثانى شرط :- انك ممكن تحصلى عليها بتطبيق فكرة ال recusive على مجموعة من الدوالة الثلاثة اللى فاتت

Elagrody
Sticky Note

Elagrody
Sticky Note

Solu tion

(a) Z()80 0= since zero function Z x() .= 0
(b) We know that P x x x xi

n
n i(, , ,) .1 2 KK =

Therefore we have

P2
4 2 3 7 6 3(, , ,) =

(c) P3
4 2 3 6 7 6(, , ,) =

(d) S x x() = +1.
Therefore S(78) = 78 + 1 = 79.

Ì Exam ple 6.3.4: Obtain the values of

(a) nil (ababab)
(b) cons a(baba)
(c) cons b(ababab)

with the usual definitions of functions over Σ.

Solu tion

(a) nil (ababab) = λ
(b) cons a(baba) = ababa
(c) cons b(ababab) = bababab.

Ì Exam ple 6.3.5: Check whether the following functions are Total
functions or not. If a function is not total, specify the arguments for which
the function is defined.

(a) f x x N() = 4over
(b) f x x N() = −2 9 over
(c) f x x N() = + 4 over
(d) f x x N() = 2 over

(e) f x x x N() = + +5 2 63 2 over .

Solu tion

(a) f x x N() = 4over .
The function is defined for all natural numbers divisible by 4.

(b) f x x N() = −2 9 over .
The function is defined for all x ≥ 3.

(c) f x x N() = + 4 over .
The function is defined for all natural numbers.

Computability 221

(d) f x x N() = 2 over .
The function is defined for all natural numbers.

(e) f x x x() = + +5 2 63 2 .
The function is defined for all natural numbers.

6.4 COMPOSITION AND RECURSION

If g1, g2, g3 and h are previously defined functions, these functions can be
combined to form new functions. These functions can be combined only in
precisely defined ways.

(a) Composition: f x y h g x y g x y(,) ((,), (,))= 1 2 . This allows us to use
functions as arguments to functions.

(b) Primitive Recursion: This is a structured “recursive routine” with the
form:

f x g x
f x s y h g x y g f x y

(,) ()
(, ()) ((,), ((,)))

0 1

2 3

=
=

“A primitive recursive function is a function formed from the
functions z, s, p1 and p2 by using only composition and primitive
recursion”.

The recursion should be guaranteed to terminate. In order to ensure this,
the function should carry along an extra parameter that is “decremented” every
time the function is called [s(x) replaced by x], and halts the recursion when it
reaches “zero” (z(x)), i.e.,

f z x
f s x f x

(, ())
(, ()) (,),
KK KK
KK KK KK KK

=
=

The recursive function should appear only once in the definitions (RHS of
the definition). This in fact, avoids various forms of “fancy” recursion.

Examples: The following examples show how these can be used to define
more complicated functions.

(a) Addition of two numbers: According to the form, it is:

add
add add

(, ()) ()
(, ()) ((,), ((,)
x z x g x
x s y h g x y g x y

=
=

1

2 3))

By choosing g p g p g s h p1 1 2 1 3 2= = = =, , ,and we get

add
add add

(, ()) ()
(, ()) ((,), ((,)
x z x p x
x s y p p x y s x y

=
=

1

2 1))

222 Theory of Automata, Formal Languages and Computation

Elagrody
Highlight

Elagrody
Underline

Elagrody
Highlight

Elagrody
Highlight

which sim pli fies to

add
add add

(, ())
(, ()) ((,)).
x z x x
x s y s x y

=
=

As an example, add (3, 2) works as follows:

add
s(add

((((()))), ((())))
((((()))),

s s s z x s s z x
s s s z x s(())))

((((((()))), ()))))
((((((

z x
s s s s s z x z x
s s s s s z

add
x)))))).

(b) Multiplication of Two Numbers: The new feature is the use of a previously
defined function, add, in the definition of a new function. We skip the step of
playing around with the pi functions to pick out the right parts, and go to the
simplified form.

multiply
multiply add(mult

(, (()))
(, ()) ,
x s z x x
x s y x

=
= iply (,))x y

(c) Predecessor of a Number: The important catch here is that it will not be
able to drop below zero, so effectively 0 – 1 = 0. In order to show this, we write
a dot above the minus sign and call it “monus”. The function is easy to define:

pred
pred

(()) ()
(())
z x z x
s x x

=
=

(d) Subtraction:

subtract (, ())x z x x=
 sub tract (x, s(y)) = pred (sub tract (x, y)).

Ì Exam ple 6.4.1: Given

g x y x y
g x y xy
g x y x

1

2

3

3
12

= = +
= =
= =

(,) ,
(,)
(,)

and h x y z x y z(, ,) = + + are func tions over N. Obtain the com po si tion of h
with g1, g2, g3.

Solu tion

h f x y f x y f x y h x y xy x
x y xy

((,); (,); (,)) (, ,)1 2 3 3 12
3

= +
= + + +12x.

Therefore the composition of h with g1, g2 and g3 is given by a function

f x y x y xy x(,) .= + + +3 12

Computability 223

Ì Exam ple: Given f x x f f x x1 1
2

2
2

2 3 1 25= = =, ,λ all defined over Σ
with the pair (x1, y1) and g(x1, x2, x3) = 5x2x3; again defined over Σ. Obtain
the composition of g with f1, f2 and f3.

Solu tion

g f f f g x x x x
x x

x x

(, ,) (, ,)
()

.

1 2 3 1
2

2
2

1 2

1 2

1 2

5
5 5
25

=
=
=

λ
λ

Therefore the composition of g with f1, f2 and f3 is given by

h x x x x(,) .1 2 1 225=

Ì Exam ple 6.4.2: Prove that the function f x y x yadd (,) = + is primitive
recursive.

Solu tion

A function f of (n + 1) variables is defined by recursion if there exists a
function g of ‘n’ variables, and a function h of (n + 2) variables and f is defined
as follows:

f x x x g x x xn n(, , ,) (, ,)1 2 1 20KK KK= (1)

f x x x y g x x x y f x x x yn n n(, , ,) (, , , , (, , ,))1 2 1 2 1 21KK KK KK+ = (2)

f x yadd (,) is a function of two variables. In order that f x yadd (,) is defined by
recursion, we require a function ‘g’ of a single variable and a function ‘h’ of
three variables.

f x x xadd (,)0 0= + = (3)

Comparing f xadd (,)0 with the left hand side of (1), we have

g x x p x() ()= = ′1 (4)

(Note that p is the projector function).
Also we have

f x y x y x y f x yadd add(,) () () (,)+ = + + = + + = +1 1 1 1 (5)

Com paring this with L.H.S. of equa tion (2), we have

h x y f x y f x y
s f x y

s p x y f

(, , (,)) (,)
((,))

((, ,

= +
=
=

add

add

1

3
3

add (,)))x y

Let us assume h x y z s p x y z(, ,) ((, ,)).= 3
3

224 Theory of Automata, Formal Languages and Computation

From (4) we have

g p x= ′1 ().

Therefore we have h that is got from the initial functions p3
3 and s by

composition and f add is got by recusion using g and h.
Hence we see here that f add is got by applying composition and recursion

finite number of times to initial functions p p1
1

3
3, and s.

Therefore f x y x yadd (,) = + is “primitive recursive”.

Ì Exam ple 6.4.3: Show that the function f x x() = 2 is primitive
recursive.

Solu tion

Given f (x) = x2.

f x x x x
f x s s z x p x s z

() ()
() ((()))) () ((

+ = + = + +
= + ⋅ ′ +

1 1 2 12 2

1 x)).

Thus we have f (x) shown to be obtained by recursion and addition of primitive
recursive functions.

Ì Exam ple 6.4.4: Prove that the function given by the signum function

sgn()
,

,
x

x

x
=

=
>





0 0

1 0

is primitive recursive.

Solu tion

Given that the signum function

sgn()
,

,
x

x

x
=

=
>





0 0

1 0

Now,

sgn() ()
sgn() (((,sgn())))

0 0
1 2

2
=

+ =
z

x s z p x x

Therefore the given signum function is primitive recursive.

Ì Exam ple 6.4.5: Prove that the function

f x y x y(,) (,)= max

is primitive recursive.

Computability 225

Solu tion

Given

f x x y

y x y

() (,)

(—)

=

= +
•

Max

where —
•

 represents “Monus” given by

pred
pred

(()) ()
(())
z x z x
s x x

=
=



.

Therefore the given function f (x, y) is primitive recursive.

Ì Exam ple 6.4.6: Prove that the function R(x, y) = Remainder (x/y) is
primitive recursive.

Solu tion

When y = 0, R(x, y) = R(x, 0) = 0. When y is increased in its value by 1, the
remainder R(x, y) also increases by 1.

When y = x, we have R(x, y) = 0.

Therefore we have

R x y s R x y x s R x y(,) ((,)) * sgn (((,))).+ =
•

1 —

where s is the successor function,—
•

 represents the monus function (defined in
the usual way) and sgn (x) represents the signum function.

Therefore we have the remainder function defined by

R x

R x y s r x y x s R x y

(,)

(,) ((,)) * sgn (((,))).

0 0

1

=

+ =
•

—

Hence the function R x y(,) = Remainder (x / y) is primitive recursive, as it
obtained by applying composition and recursion to known primitive functions.

Ì Exam ple 6.4.7: Show that the characteristic function χ { } ()0 x defined by

χ{ } ()
,

,0

0 0

1 0
x

x

x
=

≠
=





is primitive recursive.

Solu tion

Given the characteristic function

226 Theory of Automata, Formal Languages and Computation

χ{ } ()
,

,0

0 0

1 0
x

x

x
=

≠
=





i.e. χ
χ χ

{ }

{ } { }

()
() sgn(())

0

0 0

0 1
1

=
+ =x p xR

where pre de ces sor func tion p xR () is given by

p x
x x

xR ()
,

,
=

− ≠
=





1 0

0 0

Since we are able to represent the function as a combination of the primitive
functions, it is proved to be primitive recursive.

Ì Exam ple 6.4.8: Show that the function pR(x), the predecessor function
given by

p x
x x

xR ()
,

,
=

− ≠
=





1 0

0 0

is primitive recursive.

Solu tion

Given the predecessor function

p x
x x

xR ()
,

,
=

− ≠
=





1 0

0 0

We have

p

p y p y p y
R

R R

()

() (, ())

0 0

1 1
2

=
+ =

(Note: pR represents predecessor function and p1
2 represents projector

function).
Thus the given predecessor function p xR () is defined by recursion using

an initial function (projector function).

Hence we have the function to be primitive recursive.

Ì Exam ple 6.4.9: Prove that the function

g x y x y(,) =

is primitive recursive.

Computability 227

Solu tion

Given g x y x y(,) .=
We have g x y g x xy(,) | (,) .= = = =0

00 1

and

g x y x g x y
p x y g x y p x y g x y

(,) (,)
(, , (,) * (, , (,))

+ = ⋅
=

1

1
3

3
3

Thus we have been able to represent the given function as a combination of
initial function. Therefore the given function is primitive recursive.

Ì Exam ple 6.4.10: Show that the function given by

Abs ()
,

,
x

x x

x x
=

≥
− <





0

0

is primitive recursive.

Solu tion

Given the absolute value function as

Abs ()
,

,
x

x x

x x
=

≥
− <





0

0

We are able to write

Abs () (—) (—)x y x y y x− = +
• •

Hence the function is primitive recursive as we have been able to represent the
Absolute function as a combination of initial function/or function (monus)
defined in terms of initial function.

Ì Exam ple 6.4.11: Prove that the characteristic function of a finite subset
of N is primitive recursive.

Solu tion

Let us initially prove that the characteristic function

χ{ } ()
,

,0

0 0

1 0
x

x

x
=

≠
=





is primitive recursive.

228 Theory of Automata, Formal Languages and Computation

i.e. χ
χ χ

{ }

{ } { }

()
() sgn(())

0

0 0

0 1
1

=
+ =x p xR

where pre de ces sor func tion p xR () is given by

p x
x x

xR ()
,

,
=

− ≠
=





1 0

0 0
.

Hence χ { } ()0 x is primitive recursive.
Now, we have

χ χ χ χα α α α α α{ , , } { } { } { } .
1 2 1 2K LL

n n
= + + +

Since we have proved that χ α{ }1
 is primitive recursive and also the fact that the

sum of primitive functions is also primitive recursive, it is proved that the
characteristic function of a finite subset of N is primitive recursive. Hence
proved.

6.5 ACKERMANN’S FUNCTION

Ackermann’s function is an example of a function that is mu-recursive but not
primitive recursive. Mu-recursive functions are said to have the power of a
Turing machine. It is defined as follows:

A y y
A x A x

A x y A x A x y

(,)
(,) (,)

(,) (, (,))

0 1
0 11

1 1

= +
= −
= − −

It is oth er wise defined as

A y y
A x A x

A x y A x A x y

(,)
(,) (,)

(,) (, (,))

0 1
10 1

1 1 1

= +
+ =

+ + = +

A(x, y) can be computed for every (x, y). Hence A (x,y) is a total function. But
Ackermann’s function is not primitive recursive but recursive.

Ì Exam ple 6.5.1: Calculate A(1, 1) and A(1, 2) where A(x, y) represents
Ackermann’s function.

Solu tion

We have Ackermann’s function given by

A y y(,)0 1= + (1)

A x A x(,) (,)+ =10 1 (2)

A x y A x A x y(,) (, (,))+ + = +1 1 1 (3)

Computability 229

Therefore, to calculate A(1, 1), we have

A A
A A
A A

(,) (,)
(, (,)) (
(, (,)

1 1 0 1 0 1
0 10
0 01

= + +
= using (3))
=) (

(,) (
(

using (2))
= using (1))

(1,1) = 3 using (1))
A 0 2

A

A A
A A

(,) (,)
(, (,) (

2 2 1 1 1 1
1 21

= + +
= using (3))

Now,

A A
A A
A A

(,) (,)
(, (,) (
(, (,))

21 1 1 0 1
1 2 0
1 11

= + +
= using (3))
= (

(, (,))
(,)
(,)
(, (,

using (2))
= A A

A
A
A A

1 11
1 3
0 1 2 1
0 1 2

=
= + +
=)) (using (3))
= A(0, 4)

A(2,1) = 5.

There fore, A A A
A

(,) (, (,))
(,)

2 2 1 2 1
1 5

=
=

Now,

A A
A A

A

(,) (,)
(, (,))

(,)

1 5 0 1 4 1
0 1 4

1 1 4

= + +
=

+
(Using (3))

= (Using (1))
= 1 0 1 3 1

1 0 1 3
1 1 1 3
1

+ + +
= +
= + +
=

A
A A

A

(,)
(, (,))

(,)
+ + +

= + + +
=

1 1 1 2
1 1 1 4

1 5 7

A

A

(,)

(,) .

Therefore A(2, 2) = 7.

GLOSSARY

Formal system: Should be complete and consistent.
Completeness: Should be possible either to prove or disprove any

proposition that can be expressed in the system.
Consistency: Should not be possible to both prove and disprove a proposition

in the system.
Russel’s Paradox: Consider the set of all sets that do not have themselves as

a member. Is this set a member of itself?

230 Theory of Automata, Formal Languages and Computation

Primitive Recursive function: Total function is primitive recursive if (a) it is
any one of three initial functions (zero function, successor function and
Projector function) or (b) it can be got by applying composition and
recursion finite number of times to the set of initial functions.

Initial functions: Zero function, successor function and projector function.
Composition of functions: Allows us to use functions as arguments to

functions.

f x y h g x y g x y(,) ((,), (,))= 1 2

Ackermann’s function:

A y y
A x A x

A x y A x A x y

(,)
(,) (,)

(,) (, (,))

0 1
0 11

1 1

= +
= −
= − −

REVIEW QUESTIONS

1. What are formal systems?
2. Define (a) Completeness (b) Consistency in Formal Systems.
3. State the Russel’s Paradox.
4. What are recursive functions?
5. Give examples for recursive functions.
6. What is a primitive recursive function?
7. Give examples for primitive recursive function.
8. Explain composition of functions.
9. What do you mean by primitive recursion?

10. What is Ackermann’s function?

EXERCISES

1. Obtain the values of
(a) Z(90)
(b) p2

5 2 3 7 8 6(, , , ,)

(c) p3
7 1 2 3 4 5 6 7(, , , , , ,)

(d) S(82).
2. Obtain the values of

(a) nil (abababab)
(b) cons a(ababab)
(c) cons b(abababa)

Computability 231

3. Determine whether the following functions are total functions or not. If
a function is not total, specify the arguments for which the function is
defined.

(a) f x
x

N() =
9

over

(b) f x x N() = −2 25 over

(c) f x x x N() = + +3 2 52 over

(d) f x x N() = + 8 over .
4. Given g x y x y g x y xy1 22 2(,) , (,)= + = and g x y x3 6(,) = and

h x y z x y z(, ,) = + +2 are functions over N. Obtain the composition of h
with g1, g2 and g3.

5. Given f x x f1 1
2

2
2

22= =, λ, f x x3 1 22= all defined over Σ. With the pair

(,)x y1 1 and g x x x x x(, ,)1 2 3 2 315= again defined over Σ. Obtain the
composition of g with f1, f2 and f3.

6. Show that the function f x y xymult (,) = is primitive recursive.
7. Show that the function f(x, y) = Min (x, y) is primitive recursive.
8. Show that the function Q x y(,) = Quotient (/)x y is primitive recursive.

9. Show that the function p x
x x

x
()

,

,
=

− ≠
=





2 1 0

0 0
 is primitive recursive.

10. Check whether the function g x y x y(,) =
2
 is primitive recursive or not.

11. Show that the function f x x() /= 2 is partial recursive function over N.
12. Prove that the function

f x
x x

x
() =

+




4

4 1

if is perfect square

otherwise

is primitive recursive.
13. Compute A(2, 4) and A(3, 3) when A(x, y) is Ackermann’s function.

SHORT QUESTIONS AND ANSWERS

1. What are the properties of a formal system?
(a) Completeness
(b) Consistency

2. Define the term ‘completeness’ of a formal system.
It could be either to prove or disprove any proposition that can be

expressed in the system.
3. Define the term ‘consistency’ of a formal system.

It should not be possible to both prove and disprove a proposition in
the system.

232 Theory of Automata, Formal Languages and Computation

4. What is Russel’s Paradox?
“Consider the set of all sets that do not have themselves as a

member. Is this set a member of itself?”
5. What is Godel’s proof of numbers about.

“If it is possible to prove within a formal system that the system is
consistent, then the formal system is not, in fact consistent.”

6. What are the different primitive recursive functions?
(a) Zero function
(b) Successor function
(c) Projector function

7. What is a zero function?

z x z y() (),= for all x y I, ∈

This is our “zero”, it is written as a function so we don’t have to
introduce constants into the system.

8. What is a successor function?
This function informally means x + 1. Formally, it does not return a

value.
9. What is a Projector function?

p x x
p x y x
p x y y

1

1

2

()
(,)
(,)

=
=
=

These functions are a way of extracting one of the parameters and
discarding the rest.

10. What is a primitive recursive function?
A Total function f over N is primitive recursive if (a) it is any one of

the three initial functions [zero function, successor function and
projector function] or (b) it can be got by applying composition and
recursion finite number of times so the set of initial functions.

11. What do you mean by composition of functions?
Use of function as arguments to functions represent composition of

functions.

f x y h g x y g x y(,) ((,), (,))= 1 2

12. What is primitive recursion?
This is a structured “recursive routine” with the form

f x g x
f x s y h g x y g f x y

(,) ()
(, ()) ((,), ((,)))

0 1

2 3

=
=

A primitive recursive function is formed from the functions z, s, p1
and p2 by using only composition and primitive recursion.

Computability 233

13. Give examples for primitive recursive functions
(a) f x y x yadd (,) = +
(b) f x x() = 2

(c) sgn()
,

,
x

x

x
=

=
>





0 0

1 0

14. Are the following functions primitive recursive?
(a) R x y(,) = Remainder (x/y).
(b) f x y x y(,) (,)= Max

(a) YES
(b) YES

15. Are the following functions primitive recursive?

(a) p x
x x

xR ()
,

,
=

− ≠
=





1 0

0 0

(b) χ{ } ()
,

,0

0 0

1 0
x

x

x
=

≠
=





(a) YES
(b) YES

16. Give an example of a function that is mu-recursive but not primitive
recursive.

Ackermann’s function.
17. Define the Ackermann’s function.

A y y
A x A x

A x y A x A x y

(,)
(,) (,)

(,) (, (,))

0 1
10 1

1 1 1

= +
+ =

+ + = +

18. Is Ackermann’s function recursive/primitive recursive?
It is recursive not primitive recursive.

19. What is a formal system?
A system which is complete and consistent is a formal system.

20. What are the initial functions?
(a) Zero function.
(b) Successor function.
(c) Projector function.

234 Theory of Automata, Formal Languages and Computation

Chap ter 7

Com plex ity The ory

7.1 INTRODUCTION

There are two kinds of measures with Complexity Theory: (a) time and
(b) space.

(i) Time Complexity: It is a measure of how long a computation takes to
execute. As far as Turing machine is concerned, this could be measured as the
number of moves which are required to perform a computation. In the case of a
digital computer, this could be measured as the number of machine cycles
which are required for the computation.

(ii) Space Complexity: It is a measure of how much storage is required for a
computation. In the case of a Turing machine, the obvious measure is the
number of tape squares used, for a digital computer, the number of bytes used.

It is to be noted that both these measures functions of a single input
parameter, viz., “size of the input”, which is defined in terms of squares or
bytes. For any given input size, different inputs require different amounts of
space and time. Thus it will be easier to discuss about the “average case” or for
the “worst case”. It is usually interesting to look at the worst-case complexity
because

(a) It may be difficult to define an “average case”
(b) Usually easier to compute worst-case complexity.

Order Sta tis tic

In Complexity theory, equations are subjected to extreme simplifications.
If an algorithm takes exactly 50 5 5 563 2n n n+ − + machine cycles, where

‘n’ is the size of the input, then we shall simplify this to O(n3). This is called the
“order statistic”.

It is customary to (a) drop all terms except the highest-ordered one
(b) drop the co-efficient of the highest-ordered term.

For very large values of n, the effect of the highest-order term completely
swamps the contribution of lower-ordered term. Tweaking the code can
improve the coefficients, but the order statisfic is a function of the algorithm
itself.

Ì Exam ple 7.1.1: Given P n a a n a n a nm
m() = + + + +0 1 2

2 L . Show

that

P n O nm() ().=

Solu tion

Let b a b a b am m0 0 1 1= = =| | , | | , | | .KK
Then for n ≥1,

P n b b n b n b n
b

n

b

n
b nm

m
m m m

m() ≤ + + + + = + + +




−0 1 2

2 0 1
1

LL LL

≤ + + + =()b b b n Mnm
m m

0 1 LL

where M a a am= + + +| | | | | | .0 1 LL

There fore P n O nm() ().=

Ì Exam ple 7.1.2: Find the order of the following polynomials:

(a) f n n n1
35 3 1() = + +

(b) f n n n2
5 2400() = −

Solu tion

(a) (()) ().f n O n1
3=

(b) f n O n2
5() ().=

7.2 POLYNOMIAL-TIME ALGORITHMS

A polynomial-time algorithm is an algorithm whose execution time is either
given by a polynomial on the size of the input, or can be bounded by such a
polynomial. Problems which can be solved by a polynomial-time algorithm
are called “tractable” problems. As an example, most algorithms on arrays can
use the array size, n, as the input size. In order to find the largest element in any
array requires a single pass through the array, so the algorithm which does this
is of O(n), or it is a “linear time” algorithm.

Sorting algorithms take O(n log n) or O(n2) time. Bubble sort takes linear
time in the least case, but O(n2) time in the average and worst cases. Heapsort
takes O(n log n) time in all cases. Quicksort takes O(n log n) time on average,
but O(n2) time in the worst case.

As far as O(n log n) is concerned, it must be noted that the base of the
logarithms is irrelevant, as the difference is a constant factor, which is ignored.

All programming tasks we know have polynomial solutions. It is not due
to the reason that all practical problems have polynomial-time solutions.

236 Theory of Automata, Formal Languages and Computation

Rather, it is because the day-to-day problems are one for which there is no
known practical solution.

7.3 NON-DETERMINISTIC POLYNOMIAL TIME ALGORITHMS

A nondeterministic computation is viewed as:

(i) when a choice point is reached, an infallible oracle can be
consulted to determine the right option.

(ii) When a choice point is reached, all choices are made and
computation can proceed simultaneously.

A Non-deterministic Polynomial Time Algorithm is one that can be
executed in polynomial time on a nondeterministic machine. The machine can
either consult an oracle in constant time, or it can spawn an arbitrarily large
number of parallel processes, which is obviously a nice machine to have.

Summary to common time complexities:

Com plex ity Ver bal Descrip tion Feasilality

O(1) con stant time fea si ble

O n(log) log time fea si ble

O n() lin ear time fea si ble

O n n(log) log lin ear time fea si ble

O n()2 qua dratic time some times fea si ble

O n()3 cubic time less often fea si ble

O n()2 expo nen tial time rarely fea si ble

7.4 INTEGER BIN PACKING

Assume we are given a set of n integers. Our task is to arrange these integers
into two piles or bins, so that the sum of the integers in one pile is equal to the
sum of the integers in the other pile.

For example, given the integers

{19, 23, 32, 42, 50, 62, 77, 88, 89, 105, 114, 123, 176}

These numbers sum to 1000. Can they be divided into two bins, bin A and
bin B, such that the sum of the integers in each bin is 500?

There is an obvious nondeterministic algorithm: For each number, put it in
the correct bin. This requires linear time.

There is also a fairly easy deterministic algorithm. There are 13 numbers
(n = 13), so form the 13-bit binary number 0000000000000.

Complexity Theory 237

For i ranging from 1 to 13: if bit i is zero, put integer i into bin A; if bit i is
one, put integer i into bin B. Test the resultant arrangement.

If we don’t have a solution yet, add 1 to the binary number and try again. If
we reach 1111111111111, we will stop and conclude that there is no solution.

This is fairly simply algorithm; the only problem is that it takes O(2n)
time, that is, “exponential time”. In the above example, we may need to try as
many as 213 arrangements. This is fine for all small values of n (such as 13), but
becomes unreasonable for large values of n.

We could find many shortcuts for problems such as this, but the best we
can do is improve the coefficients. The time complexity remains O(2n).
Problems that require exponential time are referred to as “Intractable”
problems.

There are many variants to this problem.

• We can have mul ti ple bins.
• We can have a sin gle bin, and the object is to pack as much as pos si ble

into it.
• We can pack objects with mul ti ple dimen sions (vol ume and weight, for

exam ple).

7.5 BOOLEAN SATISFIABILITY

Assume we have n Boolean variables, viz., A, B, C, and an expression in the
propositional Calculus i.e., we can use and, or and not to form the expression.
Is there an assignment of truth values to the variables, (for example, A = true,
B = true, C = false), that will make the expression true?

Here is a nondeterministic algorithm to solve the problem: For each
Boolean variable, assign if the proper truth value. This is a linear algorithm.
We can find a deterministic algorithm for this problem in much the same way
as we did for the integer bin problem. Effectively, the idea is to set up a
systematic procedure to try every possible assignment of truth values to
variables. The algorithm terminates when a satisfactory solution is found, or
when all 2n possible assignments have been tried. Again, the deterministic
solution requires exponential time.

Ì Exam ple 7.5.1: Check whether the boolean formula

∅ = ∧ ∨ ∧() ()x y x z

is satisfiable or not.

Solu tion

A Boolean formula is satisfiable if some assignment of 0s and 1s to the
variables makes the formula evaluate to 1.

When x = 0, y = 1 and z = 0, we have

238 Theory of Automata, Formal Languages and Computation

∅ = ∧ ∨ ∧
= ∨

∅ =

() ()1 1 0 1
1 1
1

Therefore the Boolean formula is satisfiable.

Ì Exam ple 7.5.2: Check whether the formula

() () () ()x y x y x y x y∨ ∧ ∨ ∧ ∨ ∧ ∨

is satisfiable or not?

Solu tion

(Hint: Proceed in the same way as the previous problem).

7.6 ADDITIONAL NP PROBLEMS

The following problems have a polynomial-time solution, but an
exponential-time solution on a deterministic machine. There are literally
hundreds of additional examples.

(a) The Travelling Salesman Problem (TSP): A salesman starting in Texas,
wants to visit every capital city in the United States, returning to Texas as his
last stop. In what order should he visit the capital cities so as to minimize the
total distance travelled?

(b) The Hamiltonian Circuit Problem: Every capital city has direct air flights
to at least some capital cities. Our intrepid salesman wants to visit all the
capitals, and return to his starting point, taking only direct air flights. Can he
find a path that lets him do this?

(c) Linear Programming: We have on hand X amount of butter, Y amount of
flour, Z eggs etc. We have cookie recipies that use varying amounts of these
ingredients. Different kinds of cookies bring different prices. What mix of
cookies should we make in order to maximize profits?

7.7 NP-COMPLETE PROBLEMS

All the known NP problems have a remarkable characteristic: They are all
reducible to one another. What this means is that, given any two NP problems
X and Y,

(a) There exists a polynomial-time algorith to restate a problem of
type X as a problem of type Y, and

(b) There exists a polynomial-time algorithm to translate a solution to
a type Y problem back into a solution for the type X problem.

Complexity Theory 239

This is what the “complete” refers to when we talk about NP-complete
problems. What this means is that, if anyone ever discovers a polynomial-time
algorithm for any of these problems, then there is an easily-derived
polynomial-time algorithm for all of them. This leads to the question.

Does P = NP?

No one has ever found a deterministic polynomial-time algorithm for any
of these problems (or the hundreds of others like them). However, no one has
ever succeeded in proving that no deterministic polynomial time algorithm
exists, either. The status for some years now is this: most computer scientists
don’t think a polynomial-time algorithm can exist, but no one knows for sure.

GLOSSARY

Measures of complexity: Time and space
Time complexity: Measure of how long a computation takes to execute.
Space complexity: Measure of how much storage is required for a

computation.
Kinds of complexity analysis: (a) average case (b) worst case (c) best case
Polynomial time algorithm: An algorithm whose execution time is either

given by a polynomial on the size of the input, or can be bounded by
such a polynomial.

Heapsort complexity: O(n nlog) at all times.
Quicksort complexity: O(n nlog) time an average, O n()2 time in the worst

case.
Nondeterministic Polynomial time algorithm: One that can be executed in

polynomial time on a non-deterministic machine.
NP problem: How a polynomial-time solution, but an exponential time

solution on a deterministic machine.
TSP: Travelling salesman problem.

REVIEW QUESTIONS

1. What is meant by complexity theory?
2. What do you mean by Time complexity?
3. What do you mean by space complexity?
4. Define order-statistic in complexity theory?
5. Define O-notation (Big O).
6. What do you mean by Polynomial Time algorithms?
7. What do you mean by non-polynomial time algorithms?

240 Theory of Automata, Formal Languages and Computation

8. State some of the common time complexities.
9. Discuss the feasibility of the following complexicities

(a) O(1) (b) O(log n) (c) O(n) (d) O(n log n)

(e) O(n2) (f) O(n3) (g) O(2n) (h) O n()2
2

10. What are heuristic algorithms?
11. Explain the following intractable problems

(a) Integer Bin packing
(b) TSP

12. What do you mean by Boolean satisfiablity?
13. What are P-class problems?
14. What are NP-class problems?
15. When are problems said to be NP-complete?
16. Give examples for

(a) class-P
(b) class-NP Problems.

EXERCISES

1. Prove the following
(a) n n2 100+ log is O n()2

(b) n! is O nn()

(c) 3n is O n(!)

2. Given f n n n() = +5 2 and g n O n() ()= 2 . Is the statement
f n g n O n() () ()− = valid?

3. Determine the order of the following polynomials
(a) f n n na () = + −100 3 12

(b) f n n n nb () .= − −5 4 2005 4 2

4. Discuss the feasibility of algorithms with following time complexities.
(a) O n(log) (b) O n n(log) (c) O n()2

5. Discuss the feasibility of algorithms with following time complexities.
(a) O(n3) (b) O n()2 (c) O n(!)

6. Explain Boolean satisfiability with an example.
7. Verify whether the following formula

() ()x y x y∧ ∨ ∧

is Boolean satisfiable or not.

Complexity Theory 241

SHORT QUESTIONS AND ANSWERS

1. What are the measures of Complexity Theory?
(a) Time (b) Space

2. What is meant by time complexity?
It is a measure of how long a computation takes to execute.

3. What is meant by space complexity?
It is a measure of how much storage is required for a computation.

4. How do you measure space complexity in a Turing machine?
It is the number of tape squares used.

5. How do you measure space complexity in a digital computer?
It is the number of bytes used in a digital computer which is a

measure of space complexity.
6. What are the different cases of complexities?

(a) averge case
(b) best case
(c) worst case.

7. What is order statistic?
In complexity theory, equations are subjected to extreme

simplifications.

If an algorithm takes exactly 50 5 5 563 2n n n+ − + machine cycles,
where ‘n’ is the size of the input, then we shall simplify this to O n().3

This is called “order statistic”.
8. Determine the order of the polynomials

(a) f n n n1
310 6 1() = + +

(b) f n n n2
5 22() = −

(a) f n O n1
3() ()=

(b) f n O n2
5() ()=

9. What is a Polynomial time algorithm?
An algorithm whose execution time is either given by a polynomial

on the size of the input or can be by bounded by such polynomial is a
polynomial time algorithm.

10. What are tractable problems?
Problems which can be solved by a polynomial time algorithm are

called tractable problems.
11. What do you mean by saying that an algorithm is an O(n) algorithm?

It means it is a linear time algorithm.
12. What are the time complexities of sorting algorithms?

O n n O n(log) ().or 2

242 Theory of Automata, Formal Languages and Computation

13. Mention the time complexities of a bubble sort in (a) best case
(b) average case and (c) worst case?

(a) Best case: O(n)

(b) Average case: O n()2

(c) Worst case: O(n2).
14. Mention the time complexities of Quicksort algorithm in (a) best case

(b) average case and (c) worst case.
(a) Best case: O n n(log)
(b) Average case: O n n(log)

(c) Worst case: O n()2

15. Discuss the feasibility of the following complexities:
(a) O n()2 (b) O n()3 (c) O n()2 .

(a) O n()2 → rarely feasible

(b) O n()3 → less often feasible

(c) O n()2 → sometimes feasible

16. Discuss the feasibility of the following complexities.
(a) O n n(log) (b) O n() (c) O()1

(a) O n n(log) → feasible
(b) O n() → feasible
(c) O()1 → feasible

17. What is a non-deterministic Polynomial Time algorithm?
It is the one that can be executed in polynomial time on a

non-deterministic machine.
18. What are the view points of a non-deterministic computation?

(a) When a choice point is reached, an infallible oracle can be
consulted to determine the right option.

(b) When a choice point is reached, all choices are made and
computation can proceed simultaneously.

19. Name some of the intractable problems.
(a) Integer Bin packing
(b) Knapsack problem
(c) Travelling Salesman Problem

20. What is ‘integer bin packing’ problem?
Assume we are given a set of n integers. Our task is to arrange these

integers into two piles or bins, so that the sum of the integers in one pile
is equal to the sum of the integers in the other pile.

21. What is Boolean satisfiability?
A Boolean formula is satisfiable if some assignment of 0s and 1s to

the variables makes the formula evaluate to 1.

Complexity Theory 243

22. Name some of the NP problems.
(a) Travelling salesman problem
(b) Hamiltonian Circuit problem.

23. What is the TSP problem?
“A salesman starting in a certain city, wants the visit every capital

city in a country, returning to the city where he started. In what order
should be visit the capital cities so as to minimize the total distance
travelled?” This is the TSP.

24. Mention a remarkable characteristic of all NP Problems.
All NP problems are reducible to one another.

25. Is P = NP?
No one has proved or disproved that P = NP.

244 Theory of Automata, Formal Languages and Computation

Chap ter 8

Prop o si tions and Pred i cates

8.1 PROPOSITIONS

Mathematics is the study of the properties of mathematical structures. A
mathematical structure is defined by a set of “axioms”. An “axiom” is a true
statement about the properties of the structure.

“Logic” is the discipline that deals with the methods of reasoning. It gives
a set of rules and techniques to determine whether a given argument is valid or
not. True assertions which can be inferred from the truth of axioms are called
“theorems”. A “proof” of a theorem is an argument that establishes that the
theorem is true for a specified mathematical structure.

A “proposition” or “statement” is any declarative sentence which is true
(T) or false (F). We refer to T or F as the truth value of the statement.
Propositional calculus is the calculus of propositions.

Some illustrations below explain the concept well.

(a) The sentence “3 + 3 = 6” is a statement, since it can be either true
or false. Since it happens to be a true statement, its truth value is T.

(b) The sentence “2 = 0” is also a statement, but its truth value is F.
(c) “It will rain tomorrow” is a proposition. For its truth value, we

shall have wait for tomorrow.
(d) “Solve the following equation for y” is not a statement, since it

cannot be assigned any truth value whatsoever. It is an imperative,
or command, rather than a declarative statement.

(e) The Liar’s Paradox: “This statement is false” gets us into a bind:
If it were true, then since it is declaring itself to be false, it must be
false. On the other hand, if it were false, then its declaring itself
false is a lie, so it is true! In other words, if it is true, then it is false,
and if it is false, then it is true, and we go around in circles. We get
out of this bind by refusing to accord it the privileges of
statementhood. In other words it is not a statement. An equivalent
pseudo statement is “I am lying”, so we call this liar’s paradox.

Such sentences are called “self-referential” sentences, since they refer to
themselves.

We use the letters p, q, r, s, for propositions. Thus for example, we
might decide that P should stand for the proposition “The earth is round”. Then
we shall write

p: “the earth is round”

to express this. We read this

p is the state ment “the earth is round”.

8.1.1 Con nec tives

In order to make use of some keywords like and, ‘or’, ‘not’, etc. which are
called “sentential connectives”, it is required to have some ground rules before
making use of them. Let us now discuss about the different forms of
connectives.

(a) Negation (NOT): The negation of p is the statement ~p, which is read as
“not P”. Its truth value is defined by the following truth table.

p ~p

T F

F T

where p is the statement, T and F represent ‘True’ and ‘False’ respectively.

Illus tra tion

(i) Given p = + =" ",3 3 6 we have

~ " ".p = + ≠3 3 6

Note that ~p is false in this case, since p is true.
(ii) If p = “2 = 0”, then we have

~ :" ".p 1 0≠
~ p is true in this case, since p is false.

(iii) If p = “I loved either Nirmala or Padmaja”.
then we have

~ p : “I loved nei ther Nirmala nor Padmaja”.

Here p is a hypothetical statement (but which was true!)
(iv) If p = “All the doctors in this town are crooks”, then we have

~ p = “Not all the doc tors in this town are crooks”
or

~ p = “At least one of the doc tors in this town is not a crook”.

246 Theory of Automata, Formal Languages and Computation

It is very important to be careful while negating a statement involving the
words “All” or “Some”. The use of these “quantifiers” is the subject of
“Predicate calculus”. ~p is also written as ¬ p.

(b) Conjunction (AND): The conjunction of p and q is the statement p q∧ ,
which is read as “p and q”, whose truth value is defined by the following truth
table.

p q p q∧

T T T

T F F

F T F

F F F

If p and q columns are listed, all four possibile combinations of truth
values for p and q, and in the p q∧ column we find the associated truth value
for p q∧ .

Illus tra tion

(i) If p = “I am clever”
and q = “You are strong”.
Therefore we have

p q∧ = “I am clever and you are strong”.

(ii) If p = “The galaxy will at last wind up in a black hole”
and q = “3 + 3 = 6”, then we have

p q∧ : “This gal axy will at last wind up in
a black hole and 3 + 3 = 6”.

and p q∧ (~) : “This gal axy will at last windup in
 a black hole and 3 + 3 ≠ 6.”

(iii) If p = “This chapter is boring”.
and q = “Logic is a boring subject”.

Let us see how the statement “This chapter is definitely not boring even
though logic is a boring subject” is expressed in logical form.

The first clause is the negation of p, so is ~p. The second clause is simply
stating the (false) claim that logic is a boring subject, and thus amounts to q.

The phrase “even though” is a colourful way of saying that both clauses
are ture, and so the whole statement is just (~) .p q∧

Prop o si tions and Pred i cates 247

(c) Disjunction (OR): The disjunction of p and q is the statement p q∨ , which
is read as “p or q”, whose truth value is defined by the following truth table.

p q p q∨

T T T

T F T

F T T

F F F

Note that the only way for the whole statement to be false is for both p and
q to be false. Hence we say that p q∨ means “p and q are not both false”.

Illus tra tion

(i) If p : I am clever
and q : You are strong

then p q∨ = I am clever or you are strong.

Mathematicians have settled on “Inclusive or”: p q∨ means p is
true or q is true or both are ture.

(ii) If p : The butler did it.
and q : The cook did it.
then we have

p q∨ : either the but ler or the cook did it.

(iii) If p : The butler did it
 q : The cook did it
 r : The lawyer did it, then we have

() (~)p q r∨ ∧ : Either the but ler or the cook did it,
but not the law yer.

(d) Implication (Conditional/ if then): The conditional p q⇒ , read as “if
p, then q” or “p implies q”, is defined by the following truth table.

p q p q⇒

T T T

T F F

F T T

F F T

248 Theory of Automata, Formal Languages and Computation

The arrow ⇒ is the “conditional” operator, and in p q⇒ the statement p is
called the “antecedent” or “hypothesis”, and q is called the “consequent”, or
“conclusion”.

Illus tra tion

(i) If p and q are both true, then p q⇒ is true. For example, “if 2 + 2 = 4, then
the sun rises in the East”

Here: p : “2 + 2 = 4” and q : “the sun rises in the east”.

(ii) If p is true and q is false, then p q⇒ is false. For example:

“When it rains, I carry an umbrella”. Here p : It is raining; q : I carry an
umbrella.

If it is raining then I carry an umbrella. Now there are lot of days when it
rains (p is true) and I forget to bring my umbrella (q is false). On any of those
days the statement p q⇒ is clearly false.

(e) Biconditional (If and only if........): The Biconditional p q⇔ , which is
read as “p if and only if p” or “p is equivalent to q” is defined by the following
truth table.

p q p q⇔

T T T

T F F

F T F

F F T

From the truth table, we see that for p q⇔ to be true, both p and q must
have the same truth values; otherwise it is false.

The statement p q⇔ is defined to be the statement () ().p q q p⇒ ∧ ⇒
For this reason, the double headed arrow ⇔ is called the “biconditional”.

Each of the following is equivalent to the biconditional p q⇔
(i) p if and only if q

(ii) p is necessary and sufficient for q.
(iii) p is equivalent to q.

Illus tra tion

(i) The statement “2 + 2 = 6 if and only if Gregory is Alexander the Great”, is
true since the given statement has the form p q⇔ , where

p
q

: " "
: "

2 2 6+ = and
Gregory is Alexander the Great"

Prop o si tions and Pred i cates 249

Since both statements are false, the biconditional p q⇔ is true.

(ii) Consider the statement:

“I teach mathematics if and only if I am paid a large amount of
money”.

Some of the equivalent ways of phrasing this sentence are:

“My teaching Mathematics is necessary and sufficient for me to be
paid a large amount of money”.

“For me to teach Mathematics it is necessary and sufficient that I be
paid a large sum of money”.

Ì Exam ple 8.1.1: Express the following statements in symbolic form,
with

p : Jalaney is good.
 q : Padmaja is good.

(a) Jalaney is good and Padmaja is not good.
(b) Jalaney and Padmaja are both good.
(c) Neither Jalaney nor Padmaja are good.
(d) It is not true that Jalaney and Padmaja are both good.

Solu tion

(a) p q∧ ¬
(b) p q∧
(c) ¬ ∧ ¬p q
(d) ¬ ∧()p q

Ì Exam ple 8.1.2: Express the following statements in symbolic form.

(a) Jack and Jill went behind the hill
(b) If either Naveena takes Maths or Nirmala takes Physics, then Anju

will take English.
(c) If there is a ticket available, I will travel by this train
(d) There is either a fault with Raju or Mohan.

Solu tion

(a) p : Jack went behind the hill
q : Jill went behind the hill.
Then we have the given statement in symbolic form as

p q∧

250 Theory of Automata, Formal Languages and Computation

(b) p : Naveena takes Maths
q : Nirmala takes physics
r : Anju takes English
Then the given statement is written as

()p q r∧ ⇒

(c) p : Ticket is available
q : I will travel by this train.

p q⇒

is the given statement in symbolic form.
(d) p : There is a fault with Raju.

q : There is a fault with Mohan.

p q∨

is the given statement is symbolic form.

Ì Exam ple 8.1.3: Given
p : Triangle PQR is isosceles
q : Triangle PQR is equilateral
r : Triangle PQR is equiangular.

Translate each of the following into a statement in English.

(a) q p⇔
(b) ¬ ⇔ ¬p q
(c) q r⇔
(d) p q∧ 7
(e) r p⇒ .

Solu tion

(a) q p⇔
Triangle PQR is equilateral if and only if it is isoscles

(b) ¬ ⇔ ¬p q
Triangle PQR is not isosciles if and only if it is not equilateral.

(c) q r⇔
Triangle PQR is equilateral if and only if it is equiangular

(d) p q∧ ¬
Triangle PQR is isosceles and it is not equilateral.

(e) r p⇒
If Triangle PQR is equiangular then it is isosceles.

Prop o si tions and Pred i cates 251

Ì Exam ple 8.1.4: Given

p : It is cold;
q : 12 + 5 = 200

and r : It rains.

Express the following in symbolic form.

(a) It is cold only if 12 + 5 = 200.
(b) A necessary condition for it to be cold is that 12 + 5 = 200.
(c) A sufficient condition for it to be cold is that 12 + 5 = 200.
(d) It rains and 12 + 5 is not 200.
(e) It never rains when 12 + 5 = 200.

Solu tion

(a) p q⇔
(b) p q⇔
(c) q p⇔
(d) r p∧ ¬
(e) q r⇒ ¬

Ì Exam ple 8.1.5: Let

p : prices are high,
q : wages are increasing.

Express the following in verbal form.
(a) p q∧ (b) ¬ ∧ ¬p q (c) ¬ ∧()p q
(d) p q∨ ¬ (e) ¬ ¬ ∨ ¬()p q .

Solu tion

(a) p q∧ : Prices are high and wages are increasing
(b) ¬ ∧ ¬p q: Prices are not high and wages are not increasing
(c) ¬ ∧()p q : It is not that prices are high and wages are increasing
(d) p q∨ ¬ : Prices are high or the wages are not increasing
(e) ¬ ¬ ∨ ¬()p q : It is not that prices are not high or wages are not

increasing.

Ì Exam ple 8.1.6: Determine the truth of the following:

(a) 5 < 6 and 6 is a positive integer.
(b) 5 > 6 or 6 is a positive integer
(c) If 5 > 6, then 100 is a prime number
(d) If 10 > 6, then 100 is a prime number.

252 Theory of Automata, Formal Languages and Computation

Solu tion

(a) T ; (b) T; (c) T; (d) F.

Ì Exam ple 8.1.7: If p, q, r are three statements, with truth values ‘True’,
‘True’, ‘False’ respectively, find the truth values of the following:

(a) p q∨ (b) p r∧ (c) ()p q r∨ ∧ (d) p r∧ ¬()
(e) (p q r∧ ¬ ∧ ¬) () (f) p r⇒ (g) p q r s⇒ ⇔ ⇒(()).

Solu tion

Given p : T; q : T; r : F

(a) p q∨

p q p q∨
True

T T T

(b) p r∧

p r p r∧
False

T T T

(c) ()p q r∨ ∧

p q r p q∨ ()p q r∨ ∧
False

T T F T F

(d) p r∧ ¬()

p r ¬ r p r∧ ¬()
True

T F T T

(e) () ()p q r∧ ¬ ∧ ¬

p ¬ q p q∧ ¬ ¬ r () ()p q r∧ ¬ ∧ ¬
False

T F F T F

(f) p r⇒

p r p r⇒
False

T F F

Prop o si tions and Pred i cates 253

(g) p q r s⇒ ⇔ ⇒(())

p q r s r s⇒ q r s⇔ ⇔(()) p q r s⇒ ⇒ ⇒(())
True

T T F F T T T

Ì Exam ple 8.1.8: Construct the truth table for

() ().¬ ∨ ∧ ¬ ∨p q q p

Solu tion

p q ¬ p ¬ q ¬ ∨p q ¬ ∨q p [() ()¬ ∨ ∧ ¬ ∨p q q p

T T F F T T T

T F F T F T F

F T T F T F F

F F T T T T T

Ì Exam ple 8.1.9: Determine the Truth Table for ¬ ¬ ∧ ¬()p q .

p q ¬ p ¬ q ¬ ∧ ¬p q ¬ ¬ ∧ ¬()p q

T T F F F T

T F F T F T

F T T F F T

F F T T T F

Ì Exam ple 8.1.9: Using truth tables, show that if P Q⇔ is true, then
P Q⇒ and Q P⇒ are both true. Conversely, show that if P Q⇒ and
Q P⇒ are both true, then P Q⇔ is true.

Solu tion

P Q P Q⇔ P Q⇒ Q P⇒

T T T T T —¬

T F F F T

F T F T F

F F T T T —­

254 Theory of Automata, Formal Languages and Computation

From ¬ and ­, it is obvious that if P Q⇔ is true, then P Q⇒ and Q P⇒
is true.

From the above truth table, from ¬ & ­, it is seen that if P Q⇒ and
Q P⇒ are true also P Q⇔ is true.

8.1.2 Tau tol ogy, Con tra dic tion and Con tin gency

(a) Tautology: A Tautology is a propositional form whose truth value is true
for all possible values of its propositional variables.

Example: p p∨ ¬ .

(b) Contradiction: A contradiction or absurdity is a propositional form which
is always false.

Example: p p∧ ¬ .

(c) Contingency: A propositional form which is neither a tautology nor a
contradiction is called a contingency.

Ì Exam ple 8.1.10: Show that P Q⇒ has the same truth value as ¬ ∨P Q
for all truth values of P and Q, i.e., show that () ()P Q P Q⇒ ⇔ ¬ ∨ is a
tautology.

Solu tion

P Q ¬ P P Q⇒ ¬ ∨P Q () ()P Q P Q⇒ ⇔ ¬ ∨

T T F F T T

T F F F F T

F T T T T T

F F T T T T

From the truth table it is clear that P Q⇒ has the same truth value as ¬ ∨P Q.
Also it is seen that () ()P Q P Q⇒ ⇔ ¬ ∨ has all truth values to be

“True”. Therefore it is a “Tautology”.

Ì Exam ple 8.1.11: Establish whether the following propositions are
tautologies, contingencies or contradictions.

(a) P P∨ ¬
(b) P P∧ ¬
(c) P P⇒ ¬ ¬()
(d) ¬ ∧ ⇔ ¬ ∨ ¬() ()P Q P Q

Prop o si tions and Pred i cates 255

Solu tion

(a) P P∨ ¬ .

P ¬ P P P∨ ¬
T F T

F T T

All truth values are True.
Therefore, it is a “Tautology”.

(b) P P∧ ¬

P ¬ P P P∧ ¬
T F F

F T F

All truth values are False.
Therefore, it is a “contradiction”.

(c) P P⇒ ¬ ¬()

P ¬ P ¬ ¬()P P P⇒ ¬ ¬()

T F T T

F T F T

All truth values are “True”.
Therefore, it is a “Tautology”.

(d) ¬ ∧ ⇔ ¬ ∨ ¬() ()P Q P Q

P Q P Q∧ ¬ ∧()P Q ¬ P ¬ Q ¬ ∨ ¬P Q ¬ ∧ ⇔
¬ ∨ ¬

()
()

P Q
P Q

T T T F F F F T

T F F T F T T T

F T F T T F T T

F F F T T T T T

All truth values are “True”.
Therefore, it is a “Tautology”.

Ì Exam ple 8.1.12: Establish whether the following propositions are
tautologies, contingencies or contradictions.

256 Theory of Automata, Formal Languages and Computation

(a) ¬ ∨ ⇔ ¬ ∧ ¬() ()P Q P Q
(b) () ()P Q Q P⇒ ⇔ ¬ ⇒ ¬
(c) () ()P Q Q P⇒ ⇔ ¬ ⇒ ¬
(d) [()] [() ()]P Q R P Q P R∧ ∨ ⇒ ∧ ∨ ∧ .

Solu tion

(a) ¬ ∨ ⇔ ¬ ∧ ¬() ()P Q P Q
Tautology

(b) () ()P Q Q P⇒ ⇔ ¬ ⇒ ¬
Tautology

(c) () ()P Q Q P⇒ ∧ ⇒

P Q P Q⇒ Q P⇒ () ()P Q Q P⇒ ∧ ⇒

T T T T T

T F F T F

F T T F F

F F T T T

Some values are True, some are False.
Therefore, it is a “Contingency”.

(d) [()] [() ()]P Q R P Q P R∧ ∨ ⇒ ∧ ∨ ∧ .
It can be shown to be a “tautology”.

Ì Exam ple 8.1.13: Let P be the proposition “It is snowing”.
Let Q be the proposition “I will go to town”.
Let R be the proposition “I have time”.

(a) Using logical connectives, write a proposition which symbolizes
each of the following:

(i) If it is not snow ing and I have time, then I will go to town.
(ii) I will go to town only if I have time.

(iii) It isn’t snowing.
(iv) It is snowing, and I will not go to town.

(b) Write a sentence in English corresponding to each of the
following propositions:

(i) Q R P⇔ ∧ ¬()
(ii) R Q∧

(iii) () ()Q R R Q⇒ ∧ ⇒
(iv) ¬ ∧().R Q

Prop o si tions and Pred i cates 257

Solu tion

(a) (i) ()¬ ∧ ⇒P R Q
(ii) R Q⇒

(iii) ¬ P
(iv) P Q∧ ¬

(b) (i) Q R P⇔ ∧ ¬().
 I will go to town, if and only if I have time and it is not
snowing.
(ii) R Q∧ .

I have time and I will go to town.
(iii) () ()Q R R Q⇒ ∧ ⇒ .

I will go to town if I have time and if I have time, I will go to
town.

(iv) ¬ ∨()R Q .
It is not that I have time or I will go to town.

Ì Exam ple 8.1.14: How many rows are needed for the truth table of the
formula () (())p q r s t∧ ¬ ⇔ ¬ ∧ ⇒ ?

Solu tion

Given p, q, r, s, t as propositions.
∴ Number of rows needed in Truth Table = 25 = 32.

Ì Exam ple 8.1.15: If p p pn1 2, ,KK are primitive propositions and
∅(, ,)p p pn1 2 KK is a formula which contains at least one occurrence of
each p i ni (),1 ≤ ≤ how many rows are needed to construct the truth table
for ∅?

Solu tion

Given p p pn1 2, ,KK as propositions. Therefore number of rows needed in
Truth Table = 2n (for n elements).

8.1.3 Log i cal Iden tities

If two propositional forms are logically equivalent one can be substituted for
the other in any proposition in which they occur. Table below shows a list of
important equivalences, which are called “identities.” The symbols P, Q , and
R represent arbitrary propositional forms. The symbol “1” is used to represent
either a “tautology” or a true proposition. Similarly, “0” represents a false
proposition or a contradiction.

258 Theory of Automata, Formal Languages and Computation

Table. Log i cal Iden tities

 1. P P P⇔ ∨() Idempotence of ∨
 2. P P P⇔ ∧() Idempotence of ∧
 3. () ()P Q Q P∨ ⇔ ∨ Commutativity of ∨
 4. () ()P Q Q P∧ ⇔ ∧ Commutativity of ∧
 5. [()] [()]P Q R P Q R∨ ∨ ⇔ ∨ ∨ Asso cia tiv ity of ∨
 6. [()] [()]P Q R P Q R∧ ∧ ⇔ ∧ ∧ Asso cia tiv ity of ∧
 7. ¬ ∨ ⇔ ¬ ∧ ¬

¬ ∧ ⇔ ¬ ∨ ¬




() ()

() ()

P Q P Q

P Q P Q

DeMorgan’s Laws
 8.

 9. [()] [() ()]P Q R P Q P R∧ ∧ ⇔ ∧ ∨ ∧ Distributivity of ∧ over ∨
10. [()] [() ()]P Q R P Q P R∨ ∧ ⇔ ∨ ∧ ∨ Distributivity of ∨ over ∧
11. ()P ∨ ⇔1 1
12. ()P P∧ ⇔1
13. ()P P∨ ⇔0
14. ()P ∧ ⇔0 0
15. ()P P∨ ¬ ⇔1
16. ()P P∧ ¬ ⇔ 0
17. P P⇔ ¬ ¬() Dou ble Nega tion
18. () ()P Q P Q⇒ ⇔ ¬ ∨ Impli ca tion
19. () [() ()]P Q P Q Q P⇔ ⇔ ⇒ ∧ ⇒ Equiv a lence
20. [()] [()]P Q R P Q R∧ ⇒ ⇔ ⇒ ⇒ Expor ta tion
21. [() ()]P Q P Q P⇒ ∧ ⇒ ¬ ⇔ ¬ Absur dity
22. () ()P Q Q P⇒ ⇔ ¬ ⇒ ¬ Contrapositive

All the above identities can be proved by constructing truth tables.
The following table gives a list of tautologies which are implications.

Table. Log i cal Impli ca tions

1. P P Q⇒ ∨() Addi tion
2. ()P Q P∧ ⇒ Sim pli fi ca tion
3. (()]P P Q Q∧ ⇒ ⇒ Modus Ponens
4. [()]P Q Q P⇒ ∧ ¬ ⇒ ¬ Modus Tollens
5. [()]¬ ∧ ∨ ⇒P P Q Q Dis junc tive Syl lo gism
6. [() ()] ()P Q Q R P R⇒ ∧ ⇒ ⇒ ⇒ Hypo thet i cal Syl lo gism
7. () [() ()]P Q Q R P R⇒ ⇒ ⇒ ⇒ ⇒
8. [() () [() ()]P Q R S P R Q S⇒ ∧ ⇒ ⇒ ∧ ⇒ ∧
9. [() ()] ()P Q Q R P R⇔ ∧ ⇔ ⇒ ⇔

Prop o si tions and Pred i cates 259

Ì Exam ple 8.1.15: State the converse and contrapositive of the following
statements:

(a) If it rains, I am not going.
(b) I will stay only if you go.
(c) If you get 8 pounds, you can bake the cake.
(d) I can’t complete the task if I don’t get more help.

Solu tion

(a) Converse: If I don’t go, then it rains.
Contrapositive: If I go, then it does not rain.

(b) Converse: If you go then I will stay
Contrapositive: If you go I will not stay

(c) Converse: If you can bake the cake you get 8 pounds.
Contrapositive: If you cannot bake the cake you don’t get 8
pounds.

(d) Converse: I don’t get more help if I can’t complete the task.
Contrapositive: I can complete the the task if I get more help.

Ì Exam ple 8.1.16: For each of the following expressions, use identities
to find equivalent expressions which use only ∧ and ¬ and are as simple as
possible.

(a) P Q R∨ ∨ ¬
(b) P Q R P∨ ¬ ∧ ⇒[()]
(c) P Q P⇒ ⇒()

Solu tion

(a) P Q R P Q R
P Q R

P Q R

∨ ∨ ¬ ⇔ ¬ ¬ ∧ ¬ ∨ ¬
⇔ ¬ ¬ ∧ ¬ ∧
⇔ ¬ ¬ ∧ ¬ ∧

()
(())
()

(b) P Q R P Q R P
P Q R P

∨ ¬ ∧ ⇒ ⇔ ¬ ¬ ∧ ¬ ¬ ∧ ⇒
⇔ ¬ ¬ ∧ ¬ ¬ ¬ ∧ ∨
⇔ ¬

[()] ([()])
((())]
((())]¬ ∧ ¬ ∧ ∧ ¬P Q R P

(c) P Q P P Q P
P Q P
P P Q

Q

⇒ ⇒ ⇔ ⇒ ¬ ∨
⇔ ¬ ∨ ¬ ∨
⇔ ¬ ∨ ∨ ¬
⇔ ∨ ¬
⇔

() ()
()

()
1
1

Ì Exam ple 8.1.17: For each of the following expressions, use identities
to find equivalent expressions which use only ∨ and ¬ and are as simple as
possible.

260 Theory of Automata, Formal Languages and Computation

(a) ()P Q P∧ ∧ ¬
(b) [()]P Q R P Q⇒ ∨ ¬ ∧ ¬ ∧ .

Solu tion

(a) () [()]
[]

P Q P P Q P
P Q P

∧ ∧ ¬ ⇔ ¬ ¬ ∧ ∨
⇔ ¬ ¬ ∨ ¬ ∨

(b) [()]
[()] ()

()

P Q R P Q
P Q R P Q

P Q R P

⇒ ∨ ¬ ∧ ¬ ∧
⇔ ¬ ∨ ∨ ¬ ∧ ¬ ∧
⇔ ¬ ∨ ∨ ¬ ∧ ¬ ∧
⇔ ¬ ∧ ¬ ∧ ∨ ∧ ¬ ∧ ∨ ¬ ∧ ¬ ∧
⇔ ¬ ∧ ∨ ∧ ¬ ∨

Q
P P Q Q P Q R P Q
P Q Q P

() (()) (())
() () ()

[()()]
().

¬ ∧ ∧ ¬ ∨
∧ ¬ ∧ ¬

⇔ ¬ ∨ ¬

P Q R
Q P R

P Q
1

Ì Exam ple 8.1.18: Establish the following tautologies by simplifying the
left side to the form of the right side:

(a) [())]P Q P∧ ⇒ ⇔1
(b) ¬ ¬ ∨ ⇒ ¬ ⇔(())P Q P 0
(c) [() ()]P P P P⇒ ¬ ∧ ¬ ⇒ ⇔ 0

Solu tion

(a) [()] ()

()

P Q P P Q P
P Q P

P P Q
Q

∧ ⇒ ⇔ ¬ ∧ ∨
⇔ ¬ ∨ ¬ ∨
⇔ ∨ ¬ ∨ ¬
⇔ ∨ ¬
⇔

1
1

(b) ¬ ¬ ∨ ⇒ ¬
⇔ ¬ ∨ ∨ ¬
⇔ ¬ ∨ ¬ ∨
⇔ ¬ ∨
⇔ ¬
⇔

(()
[()]
[)]
[]
[]

P Q P
P Q P

P P Q
Q1

1
0

(c) [() ()]
[() ()]

P P P P
P P P P

P P

⇒ ¬ ∧ ¬ ⇒
⇔ ¬ ∨ ¬ ∧ ∨
⇔ ¬ ∧
⇔ 0

Ì Exam ple 8.1.19: Using the truth table of ⇒, relate the following
assertion to the logical operator ⇒: “If you start with a false assumption,
you can prove anything you like”.

Prop o si tions and Pred i cates 261

Solu tion

P Q P Q⇒

T T T

T F F

F T T

F F T

Suppose P is false.
Then P Q⇒ is true for any proposition Q. If we know P Q⇒ as true, and

accept P as true, then we can infer the truth of Q.
Q may or may not be true (as seen in truth table).

Ì Exam ple 8.1.20: The Sheffer stroke, or nand operator, is defined by the
following truth table:

P Q P Q|

0 0 1

0 1 1

1 0 1

1 1 0

Nand is an acronym for not and, P Q| is logically equivalent to ¬ ∧().P Q

Show that (a) P P P| ⇔ ¬
(b) (|) | (|)P P Q Q P Q⇔ ∨
(c) (|) | (|) .P Q P Q P Q⇔ ∧

Solu tion

P Q P Q∧ ¬ ∧()P Q

T T T F

T F F T

F T F T

F F F T

P Q P Q| ().⇔ ¬ ∧ (NAND).

262 Theory of Automata, Formal Languages and Computation

(a) P P P| ⇔ ¬ (To prove)
We know

P Q P Q
P P P P

P

| ()
| ()

.

⇔ ¬ ∧
⇔ ¬ ∧
⇔ ¬

Hence proved.

(b) (|) | (|)P P Q Q P Q⇔ ∨ (To prove)
We have from (a),

P P P
Q Q Q

P P Q Q
P Q

P Q
P Q

|
|

(|) | (|)
|

()
.

⇔ ¬
⇔ ¬

⇔ ¬ ¬
⇔ ¬ ¬ ∧ ¬
⇔ ∨

Hence proved.

(c) (|) | (|)P Q P Q P Q⇔ ∧ (To prove)
P Q P Q| ()= ¬ ∧

(|) | (|)
[()]|[()]

[[() [())]

P Q P Q
P Q P Q

P Q P Q
⇔ ¬ ∧ ¬ ∧
⇔ ¬ ¬ ∧ ∧ ¬ ∧
⇔ ¬ ∨ ∧ ∨
⇔ ¬ ∨
⇔ ∧

[() ()
()

.

P Q P Q
P Q

P Q

Hence proved.

Ì Exam ple 8.1.21: Establish the following implications:

(a) ¬ ⇒ ⇒P P Q()
(b) ¬ ⇒ ⇒()P Q P
(c) ¬ ∧ ⇒ ⇒ ¬Q P Q P()

Solu tion

(a) ¬ ⇒ ⇒P P Q()

P Q ¬ P P Q⇒ ¬ ⇒ ⇒P P Q()

T T F T T

T F F F T

F T T T T

F F T T T

∴ It is a Tautology.
Hence proved.

Prop o si tions and Pred i cates 263

(b) ¬ ⇒ ⇒()P Q P

P Q P Q⇒ ¬ ⇒()P Q ¬ ⇒ ⇒()P Q P

T T T F T

T F F T T

F T T F T

F F T F T

∴ It is a tautology.
Hence proved.

(c) ¬ ∧ ⇒ ⇒ ¬Q P Q P()

P Q ¬ Q P Q⇒ ¬ P ¬ ∧ ⇒Q P Q() ¬ ∧ ⇒ ⇒ ¬Q P Q P()

T T F T F F T

T F T F F F T

F T F T T F T

F F T T T T T

∴ It is a tautology.
Hence proved.

Ì Exam ple 8.1.22: Show that

 (() (())) () ()P Q P Q R P Q P R∨ ∧ ¬ ¬ ∧ ¬ ∨ ¬ ∨ ¬ ∧ ¬ ∨ ¬ ∧ ¬

is a tautology.

Solu tion

(() (())) () ()
(() (
P Q P Q R P Q P R
P Q P

∨ ∧ ¬ ∧ ¬ ∨ ¬ ∨ ¬ ∧ ¬ ∨ ¬ ∧ ¬
⇔ ∨ ∧ ¬ ¬ ∧ ¬ ()) () (())

(() (()) () (
Q R P Q P R

P Q P Q R P Q P
∧ ∨ ¬ ∨ ∨ ¬ ∨

⇔ ∨ ∧ ∨ ∧ ∨ ¬ ∨ ∨ ¬ ∨
⇔ ∨ ∧ ∨ ∨ ¬ ∨ ∧ ∨
⇔ ∨ ∧ ∨ ∨ ¬

R
P Q P Q P Q P R
P Q P R P

)
[() (() [() ()]
[() ()] (∨ ∧

⇔ ∨ ∧ ∨ ¬ ∨ ∧
⇔

())
[()] [()]

Q R
P Q R P Q R

T

Hence the given formula is a tautology.

Ì Exam ple 8.1.23: Show that () ()P Q R Q→ ∧ → and ()P R Q∨ → are
equivalent formulae.

264 Theory of Automata, Formal Languages and Computation

Solu tion

() () () ()
()

()
()

P Q R Q P Q R Q
P R Q
P R Q

P R

→ ∧ → ⇔ ¬ ∨ ∧ ¬ ∨
⇔ ¬ ∧ ¬ ∨
⇔ ¬ ∨ ∨
⇔ ∨ → Q

Hence proved.

Ì Exam ple 8.1.24: Prove that

¬ ∧ → ¬ ∨ ¬ ∨ ⇒ ¬ ∨() (()) ().P Q P P Q P Q

¬ ∨ → ¬ ∨ ¬ ∨
⇒ ∧ ∨ ¬ ∨ ¬ ∨
⇒ ∧ ∨ ¬ ∨
⇒

() (())
() [()]
() ()

P Q P P Q
P Q P P Q
P Q P Q

()
(())
(() ()
(()

P Q P Q
P Q P Q
P P Q P Q

T Q P

∧ ∨ ¬ ∨
⇒ ∧ ∨ ¬ ∨
⇒ ∨ ¬ ∧ ∨ ¬ ∨
⇒ ∧ ∨ ¬)

()
∨

⇒ ∨ ¬ ∨
⇒ ∨ ¬
⇒ ¬ ∨

Q
Q P Q

Q P
P Q

Hence proved.

Ì Exam ple 8.1.25: Show that S R∨ is tautologically implied by
() () ().P Q P R Q S∨ ∧ → ∧ →

Solu tion

Assume that () () ()P Q P R Q S∨ ∧ → ∧ → has the truth value T.
(), ()P Q P R∨ → and ()Q S→ all have truth value T. As the truth value of

P Q∨ is T, either P has Truth value T or Q have truth value T.
Suppose P has the value T. As P R→ has truth value T, R should have

truth value T. On the other hand suppose Q has the truth value T. As Q S→ has
truth value T, S should have truth value T. Thus either R has truth value T or S
has truth value T, i.e., R ∨ S has truth value T.

Therefore () () ()P Q P R Q S∨ ∧ → ∧ → is tautologically implied by
S R∨ .

8.2 LOGICAL INFERENCE

Rule P : A premise may be introduced at any point in the derivation.
Rule T : A formula S may be introduced in a derivation if S is tautologically

implied by any one or more of the preceding formula in the
derivation.

Prop o si tions and Pred i cates 265

Rule CP : If we can derive S from R and a set of premises, then we an derive
R S→ from the set of premises alone. (Deduction Theorem).

Rules of Infer ence

Implications:

I1 P Q P
P Q Q

∧ ⇒
∧ ⇒





(Simplification)
I2

I3 P P Q
Q P Q

⇒ ∨
⇒ ∨





(addition)
I4

I5 ¬ ⇒ →P P Q

I6 Q P Q⇒ →
I7 ¬ → ⇒()P Q P

I8 ¬ → = ¬()P Q Q

I9 P Q P Q, ⇒ ∧
I10 ¬ ∨ ⇒P P Q Q, (disjunctive syllogism)

I11 P P Q Q, → ⇒ (Modus Ponens)

I12 ¬ → ⇒ ¬Q P Q P, (Modus Tollens)

I13 P Q Q R P R→ → ⇒ →, (Hypothetical Syllogism)

I14 P Q P R Q R R∨ → → ⇒, , (dilemma)

Equivalences

E1 ¬ ¬ ⇔P P (double Negation)

E2 P Q Q P
P Q Q P

∧ ⇔ ∧
∨ ⇔ ∨





(Commutative laws)
E3

E4 () ()
() ()
P Q R P Q R
P Q R P Q R

∧ ∧ ⇔ ∧ ∧
∨ ∨ ⇔ ∨ ∨





(Associative laws)
E5

E6 P Q R P Q P R
P Q R P Q P R

∨ ∧ ⇔ ∨ ∧ ∨
∧ ∧ ⇔ ∧ ∨ ∧





() () ()
() () ()

(Distributive law)
E7

E8 ¬ ∧ ⇔ ¬ ∨ ¬
¬ ∨ ⇔ ¬ ∧ ¬





()
()
P Q P Q
P Q P Q

(De Morgan's laws)
E9

E10 P P P∨ ⇔
E11 P P P∧ ⇔
E12 R P P R∨ ∧ ¬ ⇔()

E13 R P P R∧ ∨ ¬ ⇔()

E14 R P P T∨ ∨ ¬ ⇔()

266 Theory of Automata, Formal Languages and Computation

E15 R P P F∧ ∧ ¬ ⇔()

E16 P Q P Q→ ⇔ ¬ ∨
E17 ¬ → ⇔ ∧ ¬()P Q P Q

E18 P Q Q P→ ⇔ ¬ → ¬
E19 P Q R P Q R→ → ⇔ ∧ →() ()

E20 ¬ ⇔ ⇔ ⇔ ¬()P Q P Q

E21 P Q P Q Q P⇔ ⇔ → ∧ →() ()

E22 () () ()P Q P Q P Q⇔ ⇔ ∧ ∨ ¬ ∧ ¬

Ì Exam ple 8.2.1: Show that R ∨ S follows logically from the premises
C D C D H∨ ∨ → ¬, () , ¬ → ∧ ¬H A B() and () ()A B R S∧ ¬ → ∨ .

Solu tion

1. C D H∨ → ¬ P

2. ¬ → ∧ ¬H A B() P

3. C D A B∨ → ∧ ¬() Using Hyp. Syll in (1), (2)

4. () ()A B R S∧ ¬ → ∨ P

5. () ()C D R S∨ → ∨ Using Hyp. Syll. in (3), (4)

6. C D∨ P

7. R S∨ Modus Ponens

Ì Exam ple 8.2.2: Show that S R∨ is tautologically implied by

() () ().P Q P R Q S∨ ∧ → ∧ →

Solu tion

1. P Q∨ P
2. ¬ →P Q (())Q P P P Q→ ⇔ ¬ ∨
3. Q S→ P
4. ¬ →P S (2), (3), Hyp. Syll.
5. ¬ →S P (From (4), using ()P Q Q P→ ⇔ ¬ → ¬)
6. P R→ P
7. ¬ →S R (5), (6) & Hyp. Syll.
8. S R∨

Ì Exam ple 8.2.3: Show that R P Q∧ ∨() is a valid conclusion from the
premises P Q Q R P M∨ → →, , and ¬ M .

Prop o si tions and Pred i cates 267

Solu tion

1. P M→ P

2. ¬ M P

3. ¬ P (1), (2), Modus Tollens

4. P Q∨ P

5. Q Sim pli fi ca tion of (4)

6. Q R→ P

7. R Modus Ponens

8. R P Q∧ ∨() (,)QP Q P Q⇒ ∧

Hence proved.

Ì Exam ple 8.2.4: Demonstrate that S is a valid inference from the
premises P Q Q R S P→ ¬ ∨ ¬ →, , and ¬ R.

Solu tion:

1. Q R∨ P

2. ¬ R P

3. Q (1), (2), Disj. Syll.

4. P Q→ ¬ P

5. ¬ P (3), (4), Contrapositive, Modus Tollens

6. ¬ →S P P

7. S (5), (6), Modus Tollens

Ì Exam ple 8.2.5: Show that ¬ → ⇒ ¬Q P Q P, .

Solu tion

1. P Q→ P

2. ¬ → ¬Q P T, (1) and con tra pos i tive []P Q Q P→ ⇔ ¬ → ¬
3. ¬ Q P

4. ¬ P T, (2), (3) and Modus Ponens. [,]P Q P Q→ ⇒

Ì Exam ple 8.2.5: Show that R S∨ is a valid conclusion from the premises
C D C D H∨ ∨ → ¬, , ¬ → ∧ ¬H A B() and () ().A B R S∧ ¬ → ∨

268 Theory of Automata, Formal Languages and Computation

Solu tion

1. C D∨ P

2. C D H∨ → ¬ P

3. ¬ H (1), (2), Modus Ponens

4. ¬ → ∧ ¬H A B() P
5. A B∧ ¬ (3), (4), Modus Ponens

6. () ()A B R S∧ ¬ → ∨ P

7. R S∨ (5), (6), Modus Ponens

Ì Exam ple 8.2.6: State whether the following argument is valid or not. If
valid, give proof. If not valid, give counter example.

If a baby is hungry the baby cries.
If the baby is not mad, then he does not cry.
If a baby is mad, then he has a red face.
Therefore, if a baby is hungry, then he has a red face.

Solu tion

H : Baby is hungry
C : Baby cries
M : Baby is mad
R : Baby has a red face.

Given: H C→
¬ → ¬M C
 M R→
∴ →H R

Verification:

1. H C→ Prem ise

2. ¬ → ¬M C Prem ise

3. C M→ (2), Contrapositive

4. H M→ (1), (3), Hyp. Syll.
5. M R→ Prem ise

6. H R→ (4), (5), Hyp. Syll.

Ì Exam ple 8.2.7: State whether the following argument is valied or not.

“If Nixon is not re-elected, then Tulsa will lose its air base. Nixon will
be re-elected if and only if Tulsa votes for him. If Tulsa keeps its air base,
Nixon will be re-elected. Therefore, Nixon will be re-elected”.

Prop o si tions and Pred i cates 269

Solu tion

R : Nixon is re-elected
L : Tulsa will lost its air base
V : Tulsa votes for Nixon

Given:

()

()

()

1

2

3

¬ →
↔

¬ →







∴

R L

R V

L R

Premises

R

(1) and (3) are equivalent.

() ()¬ → ∧ ↔ ⇒L R R V R

L R V ()¬ →L R ()R V↔ ()¬ → ∧L R
()R V↔

()¬ → ∧L R
()R V R↔ ⇒

T T T T T T T

T T F T F F T

T F T F F F T

T F F F F F T

F T T T T T T

F T F T F F T

F F T T F F T

F F F T F T F

Therefore the given implication is “not a Tautology.” Therefore the argument
is not valid.

Ì Exam ple 8.2.8: For each of the following sets of premises, list the
relevant conclusions which can be drawn and the rules of inference used in
each case.

(a) I am either fat or thin, I’m certanly not thin.
(b) If I run I got out of breath. I’m not out of breath.
(c) If the butler did it, then his hands are dirty. The butler’s hands are

dirty.
(d) Blue skies make me happy and gray skies make me sad. The sky is

either blue or gray.

270 Theory of Automata, Formal Languages and Computation

Solu tion

(a) F

F T
T
F

F T
T

F

P
P

:
()
()
() (), (

I am fat
T :I am thin

∨
¬
∴

∨
¬

1
2
3 1 2

7
),

(,)
Dis. syll.

Q P Q P∨ ⇒

Con clu sion: I am Fat

(b) R
B

R B
B

R

R B
B

:
: ()

()
()

I run
I get out of breath

→
¬

∴¬

→
¬

1
2
3 ¬

¬ → ⇒ ¬
R

P
P

Q P Q P
(), (),
(,)
1 2 Mol - Tolens

Con clu sion: I did n’t run

(c) B : Butler did it
H: Hands are dirty.

B H
H
→

Conclusion: Hypothesis

(d) B : Blue skies
H : Make me happy
G : Gray skies
S : Makes me sad

1. B H→ P

2. B G∨ P

3. B (2), Sim pli fi ca tion

4. H (1), (3), Modus Ponens

5. G S→ P

6. B G∨ P

7. G (6), Sim pli fi ca tion

Con clu sion: I am either happy or sad.

Ì Exam ple 8.2.9: For each of the following set of premises, list the
relevant conclusions which can be drawn and the rules of inference used in
each case.

Prop o si tions and Pred i cates 271

(a) If my program runs, then I am happy. If I am happy, the sun
shines. It’s 11.00 p.m. and very dark.

(b) All trignometric functions are periodic functions and all periodic
functions are continuous functions.

Solu tion

P
H
S

: My program runs
: I am happy
: Sun shines
: It' sτ 11 pm.
: It is very dark

Hypothese

¬

→
→
∧ ¬






S

P H
H S
C S

s

1. P H→ P

2. H S→ P

3. P S→ (1), (2)

4. τ ∧ ¬ S P

5. ¬ ∧S C

6. ¬ S Sim pli fi ca tion

7. ¬ P (3), (6), Modus Tollens

8. ¬ H (1), (7), Modus Tollens

9. ¬ ∧ ¬P H Con junc tion

Conclusion: I am not happy and my program does not run.

(b) T : Trignometric functions
P : Periodic functions
C : Continuous functions

T P
P C
T C

→
→

∴ →

Conclusion: All Trignometric functions are continuous functions.

Ì Exam ple 8.2.10: Construct a proof for each of the following
arguments, giving all necessary additional assertions. Specify the rules of
inference used at each step. (The word “or” denotes the “logical or” rather
than the “exclusive or”.

(a) It is not the case that IBM or Xerox will take over the copier
market. If RCA returns to the computer market, then IBM will
take over the copier market. Hence, RCA will not return to the
computer market.

272 Theory of Automata, Formal Languages and Computation

(b) (My program runs successfully) or (the system bombs and I blow
my stack). Furthermore, (the system does not bomb) or (I don’t
blow my stack and my program runs successfully). Therefore, my
program runs successfully.

Solu tion

(a) IBM: IBM will take over the copier market
Xerox: Xerox will take over the copier market
RCA: RCA returns to the computer market

() (
()
1
2

¬ ∨
→

∴ ¬

IBM Xerox)
RCA IBM

RCA

Proof:

1. ¬ ∨(IBM xerox) P
2. RCA IBM→ P
3. ¬ ∧ ¬IBM xerox (1), De Mor gan’s Law
4. ¬ IBM (3), Sim pli fi ca tion
5. ¬ RCA (2), (4), Modus Tollens

(b) S: My program runs successfully
B: System bombs
BS: I blow my stack

¬ ∨ ¬ ∧
∨ ∧

∴

B BS S
S B BS

S

()
()

(To prove)

Proof:

1. S B BS∨ ∧() P
2. ¬ ∨ ¬ ∧B BS S() P
3. () ()S B S BS∨ ∧ ∨ Distributivity of (1)
4. () ()¬ ∨ ¬ ∧ ¬ ∨B BS B S Distributivity of (2)
5. S B∨ (3), Sim pli fi ca tion
6. ¬ ∨B S (4), Sim pli fi ca tion
7. S B∨ ¬ (6)
8. () ()S B S B∨ ∧ ∨ ¬ (5), (7), Conj.
9. S B B∨ ∧ ¬()
10. S ∨ 0
11. S

Hence proved.

Prop o si tions and Pred i cates 273

Ì Exam ple 8.2.11: Determine which of the following arguments are
valid-contruct proofs for the valid arguments.

(a) A B
A C

C B

∧
⇒

∴ ∧

(b)

A B
A C

C B

∨
⇒

∴ ∨

(c) A B
A C

C B

⇒
⇒

∴ ⇒

(d)

A B C
D C
B A
A
D

B B

⇒ ∨
⇒ ¬
⇒ ¬

∴ ∧ ¬

()

Solu tion

(a) Given

A B
A C

C B

∧
⇒

∴ ∧

1. A B∧ P
2. A C→
3. A (1), Sim pli fi ca tion
4. C (2), (3), Modus Ponens

Therefore the given argument is INVALID.
(b) Given

A B
A C

C B

∨
⇒

∴ ∨

1. A B∨ P
2. A C⇒ P
3. ¬ →B A (2), Impli ca tion
4. ¬ →B C (2), (3), Hyp. Syll.
5. B C∨ (4), Impli ca tion

Hence the argument is VALID.
(c) Given

A B
A C

C B

⇒
⇒

∴ ⇒

274 Theory of Automata, Formal Languages and Computation

A B C A B→ A C→ ()A B→ ∧
()A C→

C B→ ()
()
A B
A C

C B

→ ∧
→

⇒ →

T T T T T T T T

T T F T F F T T

T F T F T F T T

T F F F F F T T

F T T T T T F F

F T F T T T T T

F F T T T T F F

F F F T T T T T

⇒ Not a Tau tol ogy
⇒ Argu ment is INVALID.

(d) Given:

A B C
D C
B A
A
D

B B

→ ∨
→ ¬
→ ¬

∴ ∧ ¬

()

1. A B C→ ∨() P

2. A P

3. B C∨ (1), (2), Modus Ponens

4. D C→ ¬ P

5. D P

6. ¬ C (4), (5), Modus Ponens

7. B A→ ¬
8. ¬ ¬ → ¬()A B (7), Impli ca tion

9. A B→ ¬ (8), Sim pli fi ca tion

10. ¬ B (2), (9), Modus Ponens

11. B (3), Sim pli fi ca tion

12. B B∧ ¬ (10), (11), Con junc tion

⇒ Argument is VALID.

Prop o si tions and Pred i cates 275

Ì Exam ple 8.2.12: Determine whether the following argument is valid or
not. Give the proof if it is valid.

“If today is Tuesday, then I have a test in Computer Science or a test in
Economics. If my Economics Professor is sick, then I will not have a test
in Economics. Today is Tuesday and my Economic Professor is sick.
Therefore, I have a test in Computer Science”.

Solu tion

T: Today is Tuesday
CS: I have a test in Computer Science
E: I have a test in Economics
EP: Economics Professor is sick.

() ()

()

()

1

2

3

T CS E

EP E

T E

CS

→ ∨
→ ¬
∧

∴

1. T CS E→ ∨() P

2. EP E→ ¬ P

3. T E∧ P

4. T (3), Sim pli fi ca tion

5. CS E∨ (1), (4), Modus Ponens

6. E (3), Sim pli fi ca tion

7. ¬ E (2), (6)

8. CS (5), (7), Disj. Syll.

∴ The Argument is VALID.

8.3 PREDICATES AND QUANTIFIERS

Assertions which are formed using variables in a “template” that expresses the
property of an object or a relationship between objects are called “Predicates”.

Example:

(i) “He is dark and ugly” is written as
“x is dark and ugly”.

(ii) “Naveena lives in Maryland and
Menon Lakshmi lives in Texas” is written as
“x lives in Maryland and
y lives in Texas”.

276 Theory of Automata, Formal Languages and Computation

Predicates are used in Control Statements in high level languages.
Predicates may be either “constants” or “variables”. Values of the

individual variables are drawn from a set of values called “Universe of
discourse”.

In order to change a predicate into a proposition, each individual variable
of the predicate should be “bound”. There are two ways of doing it.

(i) The first way to bind an individual variable is by assigning a value to it.

Example: P = “a + b = 6”.
which is denoted by P(x, y).
If a = 2, and b = 3, then
P(2, 3) is false.

(ii) The second way to bind an individual variable is by “quantification” of the
variable.

It can be done either by “universal” or “extential”.

“For all values of x, the assertion P(x) is true.”

“For all x, P(x)” is written as “∨ x P x()”, where ∨ is a “Universal
Quantifier”.

“There exists a value of x for which the assertion P(x) is true”. This
statement is written as “ℑx P x()” where ℑ is called “External Quantifier”.

The proposition ∨ x P x() is equivalent to the conjunction

P P P P() () () ()1 2 3 4∧ ∧ ∧

for the universal consisting of integers 1, 2, 3, and 4.
The proposition ℑx P x() is equivalent to the disjunction

P P P P() () () ()1 2 3 4∨ ∨ ∨

The proposition ℑ! ()xP x is equivalent to the proposition

[() () ()] [() () ()]
[() ()

P P P P P P
P P

1 2 3 2 1 3
3 1

∧ ¬ ∧ ¬ ∨ ∧ ¬ ∧ ¬
∨ ∧ ¬ ∧ ¬ P ()]2

Note that the sequence ∨ ∨x y can always be replaced by ∨ ∨y x , and the
sequence ℑ ℑx y can always be replaced by ℑ ℑy x , though the order in which
individual variables are bound cannot always be changed without affecting the
meaning of an assertion.

Ì Exam ple 8.3.1: Let S(x, y, z) denote the predicate “x + y = z”. P(x, y, z)
denote “x y z⋅ = ” and L(x, y) denote “x < y”. Let the universe of discourse
be the natural numbers N. Using the above predicates, express the
following assertions. The phrase “there is an x” does not imply that x has a
unique value.

Prop o si tions and Pred i cates 277

(a) For every x and y, there is a z such that x + y = z.
(b) No x is less than 0.
(c) For all x, x + 0 = x.
(d) For all x, x – y = y for all y.
(e) There is an x such that x y y⋅ = for all y.

Solu tion:

S x y z x y z
P x y z x y z

L x y x y

(, ,) :
(, ,) :

(,) :

+ =
− =
<

Universe of Discourse : N.

(a) ∨ ∨ ℑ + =x y z x y z() i.e. ∨ ∨ ℑ ≤x y z x y z(, ,)
(b) ∨ ¬ ¬ ℑx xL x L x((,)) [(,)]0 0or
(c) ∨ x S x x(, ,)0
(d) ∨ ∨x y P x y x(, ,)
(e) ℑ ∨x y P x y y(, ,)

Ì Exam ple 8.3.2: Show that ℑ ℑx y P x y(,) and ℑ ℑy x P x y(,) are
equivalent by expanding the expressions into infinite disjunctions.

Proof: To prove: ℑ ℑ = ℑ ℑx y y xP x y P x y(,) (,).

ℑ ℑ = ℑ ∨ ℑ ∨ ℑ
=

x y y y yP x y P y P y P y
P

(,) [(,)] [(,)] [(,)]
[(

0 1 2
0

KK

,) (,) (,)]
[(,) (,) (,)]
[(

0 0 1 0 2
10 1 1 12
2

∨ ∨
∨ ∨ ∨
∨

P P
P P P
P

KK
KK

,) (,) (,)]

[(,) (,) (,)]

0 2 1 2 2

0 0 1 0 2 0

∨ ∨
∨

= ∨ ∨ ∨
∨

P P

P P P

KK
KK

KK
[(,) (,) (,)]
[(,) (,) (,)
P P P
P P P

0 1 1 1 2 1
0 2 1 2 2 2

∨ ∨ ∨
∨ ∨ ∨ ∨

KK
KK]

[(,)] [(,)] [(,)]
(,

∨
= ℑ ∨ ℑ ∨ ℑ ∨
= ℑ ℑ

KK
KKx x x

y x

P x P x P x
P x y

0 1 2
).

Hence Proved. ¨

Ì Exam ple 8.3.3: Determine which of the following propositions are true
if the universe is the set of integers I and ⋅ denotes the operation of
multiplication.

(a) ∨ ℑ ⋅ =x y x y[]0
(b) ∨ ℑ ⋅ =x y x y! []1

278 Theory of Automata, Formal Languages and Computation

(c) ℑ ∨ ⋅ =y x x y[]1
(d) ℑ ∨ ⋅ =y x x y x[]

Solu tion

(a) ∨ ℑ ⋅ =y y x y[]0
y = 0 makes it TRUE.

(b) ∨ ℑ ⋅ =x y x y! []1 False

(c) ℑ ∨ ⋅ =
⋅ =
⋅ =

y x x y
y
y

[]1
1 1
2 1

y I= ∉
1
2

.

False.

(d) ℑ ∨ ⋅ =
⋅ =
⋅ =

=

y x x y x

y

[]

.

1 1 1
2 1 2

1 makes it true

Ì Exam ple 8.3.4: Let the universe be the integers. For each of the
following assertions, find a predicate P which makes the implication false.

(a) ∨ ℑ ⇒ ℑ ∨x xy P x y y P x y! (,) ! (,)
(b) ℑ ∨ ⇒ ∨ ℑ! (,) ! (,)y P x y y P x yx x

Solu tion

(a) ∨ ℑ ⇒ ℑ ∨x xy P x y y P x y! (,) ! (,)

x + y = 0

LHS: x
x

x
x

+ − =
=

+ − =
=

()

()

1 0
1

2 0
2

RHS: ℑ =
+ =

= −

! , ,y x
y
y

1
1 0

1

ℑ = + =
= −

! , ,y x y
y

2 2 0
2

P x y x y(,) () .is + = 0

Prop o si tions and Pred i cates 279

(b) ℑ ∨ ⇒ ∨ ℑ! (,) ! (,)y P x y yP x yx x

xy = 0

LHS: (i) y
y

=
=

0
0
 RHS: ()

, , ,
x
x

0 0
1 2 3
=

= K

(ii) y
y

=
=

0
0

P x y xy(,) is = 0.

Ì Exam ple 8.3.5: Specify the universe of discourse for which the
following propositions are true. Try to choose the universe to be as large a
subset of integers as possible.

(a) ∨ >x x[]10
(b) ∨ =[]x 3
(c) ∨ ℑ + =x y x y[]436
(d) ℑ ∨ + <y x x y[].0

Solu tion

(a) Universe of discourse: “All Integers greater than 10”.
(b) Universe of discourse: “The Universe has 3 only”.
(c) Universe of discourse: I
(d) Universe of discourse: I

Ì Exam ple 8.3.6: Let the universe of discourse consists of the integers 0
and 1. Find finite disjunctions and conjunctions of propositions which do
not use quantifiers and which are equivalent to the following:

(a) ∨ x P x(,)0
(b) ∨ ∨x y P x y(,)
(c) ∨ ℑx y P x y(,)
(d) ℑ ∨x y P x y(,)
(e) ℑ ℑy x P x y(,)

Solu tion

U = 0 1, .

(a) ∨ = ∧x P x P(,) (,) (,).0 0 0 01
(b) ∨ ∨ = ∧ ∧ ∧x y P x y P P P P(,) (,) (,) (,) (,)0 0 0 1 1 0 1 1
(c) ∨ ℑ = ∨ ∧ ∨x y P x y P P P P(,) [(,) (,)] [(,) (,)]0 0 0 1 1 0 1 1
(d) ℑ ∨ = ∧ ∨ ∧x y P x y P P P P(,) [(,) (,)] [(,) (,)]0 0 1 0 0 1 1 1
(e) ℑ ℑ = ∨ ∨ ∨y x P x y P P P P(,) (,) (,) (,) (,).0 0 0 1 1 0 1 1

280 Theory of Automata, Formal Languages and Computation

Ì Exam ple 8.3.7: Consider the universe of integers I.

(a) Find a predictate P(x) which is false regardless of whether the
variable x is bound by ∨ ℑor .

(b) Find a predicate P(x) which is true regardless of whether the
variable x is bound by ∨ ℑor .

(c) Is it possible for a predicate P(x) to be true regardless of whether
the variable is bound by ∨ ℑ ℑ, , !?or

Solu tion

(a) P x x x(): = +1
(b) P x x x() = ≠ +1
(c) Yes.

P x x x(): ≠ +1 is true regardless of whether the variable is bound
by ∨ ℑ ℑ, , !or

Ì Exam ple 8.3.8: Consider the universe of integers and let P (x, y, z)
denote x – y = z. Transcribe the following assertions into logical notation.

(a) For every x and y, there is some z such that x y z− =
(b) For every x and y, there is some z such that x z y− =
(c) There is an x such that for all y, y x y− = .
(d) When 0 is subtracted from any integer, the result is the original

integer.
(e) 3 subtracted from 5 gives 2.

Solu tion

P x y z x y z(, ,): .− =

(a) ∨ ∨ ℑx y z P x y z(, ,)
(b) ∨ ∨ ℑx y z P x y z(, ,)
(c) ℑ ∨x y P y x y(, ,)
(d) P x x(, ,)0
(e) P (, ,)5 3 2

8.4 QUANTIFIERS AND LOGICAL OPERATORS

The transcription of mathematical statements involves predicates, quantifiers
and logical operators.

Assume that “Universe of discourse” is I and let
E (x), x –even
O (x), x–odd
P (x), x–prime
N (x), x non-negative.

Prop o si tions and Pred i cates 281

(i) Every integer is even or odd.

∨ ∨x E x O x[() ()]

(ii) The only even prime is two

∨ ∧ ⇒ =x E x P x x[() ()]2

(iii) Not all primes are odd.

¬ ∨ ⇒ ℑ ∧ ¬x xP x O x P x O x[() ()], [() ()].

(iv) If an integer is not odd, then its even.

∨ ¬ ⇒x O x E x[() ()]

The quantifiers may go anywhere in the transcription of mathematical
statements.

Let P x y z(, ,) denote “xy z= ” for the universe of integers. Informal
statements of propositions frequently omit the universal quantification of
individual variables.

(i) “If x = 0, then xy = x for all vlaues of y”

∨ = ⇒ ∨x yx P x y x[(, ,)]0

(ii) “If xy = x for every y, then x = 0”.

∨ ∨ ⇒ =x y P x y x x[(, ,)]0

Propagation of negations through quantifier sequences is useful in
constructing proofs and counterexamples.

As an example, consider there exists a z such that x + z = y, for every pair of
integers x and y. This is stated as:

∨ ∨ ℑ + =x y z x z y[]

This is true for universe of integers I, but not true for the natural numbers
N. We establish the falsity for the universe N by showing that its negation is
true.

The negation has the form

¬ ∨ ∨ ℑ + =x y z x z y[]

which is difficult to interpret.
The equivalent form

ℑ ℑ ∨ ¬ + = ℑ ℑ ∨ + ≠x y y x y zx z y x z y[], []or

is more tractable and can easily be shown to be true for the nonnegative
integers by choosing x > y.

282 Theory of Automata, Formal Languages and Computation

Log i cal Rela tions

1. ∨ ⇒x P x P c() (), where c is an arbitrary element of universe.
2. P c P xx() (),⇒ ℑ where c is an arbitrary element of universe.
3. ∨ ¬ ⇔ ¬ ℑx xP x P x() ()
4. ∨ ⇔ ¬x P x P x() ()
5. ℑ ¬ ⇔ ¬ ∨x xP x P x() ()
6. [()] [()]∨ ∧ ⇔ ∨ ∧x xP x Q P x Q
7. [()] [()]∨ ∨ ⇔ ∨ ∨x xP x Q P x Q
8. [() ()] [() ()]∨ ∧ ∨ ⇔ ∨ ∧x x xP x Q x P x Q x
9. [() ()] [() ()]∨ ∨ ∨ ⇔ ∨ ∨x x xP x Q x P x Q x

10. [()] [()]ℑ ∧ ⇔ ℑ ∧x xP x Q P x Q
11. [()] [()]ℑ ∨ ⇔ ℑ ∨x xP x Q P x Q
12. ℑ ∧ ⇔ ℑ ∧ ℑx x xP x Q x P x Q x[() ()] [() ()]
13. [() ()] [() ()]ℑ ∨ ℑ ⇔ ℑ ∨x x xP x Q x P x Q x

Ì Exam ple 8.4.1: Let P(x, y, z) denote xy = z; E(x, y) denote x = y; and
G(x, y) denote x > y.
Let the universe of discourse be the integers. Transcribe the following into

logical notation.

(a) If y = 1, then xy = x for any x.
(b) If xy ≠ 0, then x ≠ 0 and y ≠ 0
(c) If xy = 0, then x = 0 or y = 0.
(d) 3x = 6 if and only if x = 2.
(e) There is no solution to x2 = y unless y ≥ 0.
(f) x < z is a necessary condition for x < y and y < z.
(g) x y≤ and y x≤ is a sufficient condition for y = x.
(h) If x < y and z < 0, then xz < yz.
(i) It cannot happen that x = y and x < y.
(j) If x < y then for some z such that z < 0, xz > yz.
(k) There is an x such that for every y and z, xy = xz.

Solu tion

(a) If y = 1, then xy = x for any x.

∨ ⇒ ∨y xE y P x y x[(,) [(, ,)]]1

(b) If xy ≠ 0, then x ≠ 0 and y ≠ 0.

∨ ∨ ¬ ⇒ ¬ ∧ ¬x y P x y E y E x[(, ,) (,) (,)]0 0 0

(c) If xy = 0, then x = 0, and y = 0.

∨ ∨ ⇒ ∧x y P x y E y E x[(, ,) (,) (,)]0 0 0

Prop o si tions and Pred i cates 283

(d) 3x = 6 if and only if x = 2

∨ ⇔x P x E x[(, ,) (,)]3 6 2

(e) There is no solution to x2 = y unless y ≥ 0.

∨ ¬ ⇔ ¬ ∨x x x y G y E y[(, ,) [(,) (,)]]0 0

(f) x < z is a necessary condition for x < y and y < z.

∨ ∨ ∨ ¬ ∧ ¬ ⇒ ¬x y z G x y G y z G x z[[(,) (,)] (,)]

(g) x y≤ and y x≤ is a sufficient condition for y = x.

∨ ∨ ¬ ∧ ¬ ⇒x y G x y G y x E y x[[(,) (,)] (,)]

(h) If x < y and z > 0, then xz > yz.

 ∨ ∨ ∨ ∧ ⇒ ∨ ∨ ∧
⇒

x y z u vG y x G z P x z u P y z v
G

[((,) (,) [[(, ,) (, ,)]]
(

0
u v,)

(i) It cannot happen that x = y and x < y.

¬ ∨ ∨ ∧x y E x y G y x[(,) (,)]

(j) If x < y then for some z such that z < 0, xz > yz.

 ∨ ∨ ∧ ℑ ⇒ ∨ ∨ ∧
⇒

x y y u vG y x G z P x z u P y z v
G

[((,) (,)] [[(, ,) (, ,)]]0
(,).u v

(k) Do it yourself.

Ì Exam ple 8.4.2: Let the universe of discourse be the set of arithmetic
assertions with predicates defined as follows:

P (x) denotes “x is provable”.
T (x) denotes “x is true”.
S (x) denotes “x is satisfiable”.
D (x, y, z) denotes “z is the disjunction x y∨ ”

Translate the following assertions into English statements.

(a) ∨ ⇒x P x T x[() ()]
(b) ∨ ∨ ¬x T x S x[() ()]
(c) ℑ ∧ ¬x T x P x[() ()]
(d) ∨ ∨ ∨ ∧ ⇒ ∨x y z D x y z P z P x P y{[(, ,) ()] [() ()]}
(e) ∨ ⇒ ∨ ∨ ⇒x y zT x D x y z T z{ () [(, ,) ()]}

Solu tion

(a) ∨ ⇒x P x T x[() ()]
If x is provable, then x is true.

284 Theory of Automata, Formal Languages and Computation

(b) V T x S xx [() ()]∨ ¬
If x is true or it is unsatisfiable.

(c) ℑ ∧ ¬x T x P x[() ()]
There is some x, for which x is true and it not provable.

(d) ∨ ∨ ∨ ∧ ⇒ ∨x y z D x y z P z P x P y{[(, ,) ()] [() ()]}
If the assertion z = x ∨ y and the assertion p(z) is provable, then
either x is provable or y is provable.

(e) ∨ ⇒ ∨ ∨ ⇒x y zT x D x y z T z{ () [(, ,) ()]}
If every arithmetic assertion is true, then the assertion z x y= ∨ is
true.

Ì Exam ple 8.4.3: Write the following using logical notation. Choose
predicates so that each assertion requires at least one quantifier.

(a) There is one and only one even prime
(b) No odd numbers are even.
(c) Every train is fasten than some cars.
(d) Some cars are slower than all trains but at least one train is faster

than every car.
(e) If it trains tomorrow, then somebody will get wet.

Solu tion

(a) P (x): x is prime
E (x): x is even
ℑ ∧! [() ()]x P x E x

(b) P (x): x is odd
E (x): x is even
¬ ℑ ∧x x E x[() ()]0

(c) T (x): x is a train
C (y): y is a car
F (x, y): x is faster than y.

∨ ⇒ ℑ ∧x yT x C y F x y[() (() (,))]

(d) ∨ ℑ ∧ ¬ ∧ ℑ ℑ ∧x y x yC y F x y T x F x y[() (,)] [() (,)]
(e) R: It rains tomorrow.

W(x): x will get wet.

R w xx⇒ ℑ [()].

Ì Exam ple 8.4.4: Find an assertion which is logically equivalent to
∨ x P x() but uses only the quantifier ℑ and the logical operator ¬ .
Similarly, express ℑx P x() in terms of ∨ and ¬. Similarly, express ℑx P x()
in terms of ∨ and ¬.

Prop o si tions and Pred i cates 285

Solu tion

(i) ∨ ⇔ ¬ ¬ ∨
⇔ ¬ ℑ ¬
⇔ ¬ ℑ ¬

x x

x

x

P x P x
P x
P x

() (())
(())

().
(ii) ℑ ⇔ ¬ ¬ ℑ

⇔ ¬ ∨ ¬
⇔ ¬ ∨ ¬

x x

x

x

P x P x
P x
P x

() (())
(())

().

Ì Exam ple 8.4.5: Find an assertion which is logically equivalent to
ℑ! ()xP x but which uses only the quantifiers ∨ and ℑ together with the
predicate for equality and logical operators.

Solu tion

ℑ ⇔ ℑ ∧ ∨ ⇒ =! () [() [()]xP x P x P y y xx y

Ì Exam ple 8.4.6: Find whether the assertion

∨ ⇒ ⇒ ∨ ⇒ ∨x x xP x Q x P x Q x[() ()] [() ()]

is true or not.

Solu tion:

P(x) Q(x) ∨ ⇒x P x Q x() () ∨ ⇒ ∨x xP x Q x() ()

T T T T

T T T T

T F F F

T F F F

F T T T

F T T T

F F T T

F F T T

The assertion is “TRUE”.

Ì Exam ple 8.4.7: For a universe containing only the elements 0 and 1,
expand ℑ ∧x P x Q x[() ()] and [() ()]ℑ ∧ ℑx xP x Q x into propositions
involving P P(), (),0 1 K etc., and without quantifiers. Rearrange the
terms of the expansion to show that

286 Theory of Automata, Formal Languages and Computation

ℑ ∧ ⇒ ℑ ∧ ℑx x xP x Q x P x Q x[() ()] [() ()]

Solu tion

ℑ ∧ ⇔ ∧ ∨ ∧
⇔ ∧

x P x Q x P P P Q
P Q

[() ()] [(() ()] [(() ()]
[[() (

0 0 1 1
0 0)] ()] [(() ()) ()]

[[() ()] [() (
∨ ∧ ∧ ∨

⇔ ∨ ∧ ∨
P P Q Q

P P Q P
1 0 0 1

0 1 0 1)] [[() ()]
[() ()]]

[[() ()] [() (

∧ ∨
∧ ∨

⇔ ∨ ∧ ∨

P Q
Q Q
P P Q Q

0 1
0 1
0 1 0 1)]]
() ()⇔ ℑ ∧ ℑx xP x Q x (for this universe).

Hence proved.

Ì Exam ple 8.4.8: For each of the following sets of premises, list the
relevant conclusions which can be drawn and the rules of inference used in
each case.

(a) All cows are mammals. Some mammals chew their cud.
(b) All even integers are divisible by 2. The integer 4 is even but 3 is

not.
(c) What’s good for the auto industry is good for the country. What’s

good for the country is good for you. What’s good for the auto
industry is for you to buy an expensive car.

Solu tion

(a) C(x): is x is a cow.
M(x): x is a mammal.
D(x): x chew their cud
∨ →x C x M x[() ()]
ℑ →x M x D x() ().

(b) E(x): x is an even Integer.
D(x): x is divisible by 2.
E x D x() ()→ .

(c) A x x(): is good for the auto industry
C(x): x is good for the country
Y(x): x is good for you.
b = “You buying an expensive car” (constant)

V A x C xx [() ()]→ (1)

V C x Y xx [() ()]→ (2)

A(b) (3)

By US, A b C b() ()→ (4)

C b Y b() ()→ (5)

Prop o si tions and Pred i cates 287

(3), (4), Modus Ponens, C(b) (6)

(5), (6), Modus Ponens, Y(b) (7)

By con junc tion, C b Y b() ()∧

Conclusion: It is good for the country and for you to buy an expensive car.

Ì Exam ple 8.4.9: Determine the validity of the argument: “It is not the
case that some trigonometric functions are not periodic. Some periodic
functions are continuous. Therefore, it is not true that all trigonometric
functions are not continuous”.
Construct proof, if it is valid.

Solu tion

T(x): x is a Trigonometric function.
P(x): x is a periodic function
C(x): x is a continuous function.

 ¬ ℑ → ¬[() ()]xT x P x ∨ ¬ →T x P x() ()

 ℑ →x P x C x() () ℑ →x P x C x() ()

∴¬ ∨ → ¬(() ()x T x C x ∴ ℑ ¬ →(() ())x T x C x

1. ∨ ¬ →T x P x() () P

2. ¬ →T a P a() () US, (1)

3. ℑ →x P x C x() ()

4. P a C a() ()→ (3), ES

5. ¬ →T a C a() () (2), (4), Impli ca tion

6. ℑ ¬ →x T x C x() () (5), EG

⇒ Asser tion is VALID.

Ì Exam ple 8.4.10: Show that ()() (,) ()() (,)∨ ∨ → ¬ ∨x y yP x y x P x y is
logically valid.

Solu tion

1. () () (,)∨ ∨x y P x y P

2. () (,)∨ y P a y US, (1)

3. P a y(,) UG, (2)

4. () (,)ℑx P a y EG, (3)

5. () (,)ℑ ∨x y P a y UG, (4)

288 Theory of Automata, Formal Languages and Computation

Ì Exam ple 8.4.11: Prove that ()() (,) ()() (,)∨ ℑ → ℑ ℑy y x yP x y P x y is
logically valid.

Solu tion

1. () () (,)∨ ℑx y P x y P

2. () (,)ℑy P a y US, (1)

3. P a y(,) ES, (2)

4. () (,)ℑy P a y (3), EG

5. () () (,)ℑ ℑx y P x y (4), EG

Ì Exam ple 8.4.12: Show that ¬ P a b(,) follows logically from
()()((,) (,))∨ ∨ →x y P x y W x y and ¬ W a b(,).

Solu tion

1. () () ((,) (,))∨ ∨ →x y P x y W x y P

2. () ((,) (,))∨ →x P x b W x b (1), US

3. P a b W a b(,) (,)→ (2), US

4. ¬ ∨P a b W a b(,) (,) P Q P Q→ ⇔ ¬ ∨
5. ¬ W a b(,) P

6. ¬ P a b(,) T P P Q Q, (), ,5 ¬ ∨ ⇒

8.5 NORMAL FORMS

Let us show how to find the formula given the Truth Table.

P Q R f (P, Q, R)

T T T T 














 4 Truth val ues are
“True”

T T F F

T F T T

T F F T

F T T F

F T F F

F F T T

F F F F

Prop o si tions and Pred i cates 289

f P Q R P Q R P Q R P Q r
P Q R

(, ,) () () ()
()

= ∧ ∧ ∨ ∧ ¬ ∧ ∨ ∧ ¬ ∧
∨ ¬ ∧ ¬ ∧

7

Formula obtained here is a “disjunction” of terms, each of which is a
“conjunction” of “statement variables” and their “negations”.

A product of statement variables and their negations is called “elementary
production”. A sum of variables and their negations is called “elementary
sum”.

Dis junc tive Nor mal Form

A formula which is equivalent to a given formula and which has a sum of
elementary products is called “disjunctive Normal Form” of the formula.

Con junc tive Nor mal Form

A formula which is equivalent to a given formula and that has a product of
elementary sums is called “conjunctive Normal form” of the formula.

Pro ce dure to find dis junc tive Nor mal form

(i) If the connective → and ↔ appear in the given formula, obtain an
equivalent formula in which → and ↔ does not appear.

α β→ is replaced by ()¬ ∨α β

and α β→ is replaced either by

() (

)

α β α β)

(α β) ∧ (β α

∧ ∨ ¬ ∧ ¬

¬ ∨ ¬ ∧
or

(ii) Using DeMorgan’s laws, an equivalent formula can be obtained in
which the negation is applied to statement variables only, if the
negation applied to a formula or part of the formula which is not a
statement variable.

(iii) Applying the distributive law until a sum of elementary products
is obtained.
This is the “Disjunctive Normal Form”, after applying the
Idempotent law and suitable re-ordering.
In the Normal Form, the elementary products which are
equivalent to “F” (False), if any, can be ommitted.

Ì Exam ple 8.5.1: Obtain a disjunctive normal form of

P P Q Q R∨ ¬ → ∨ → ¬((())).

290 Theory of Automata, Formal Languages and Computation

Solu tion

P P Q Q R
P P Q Q R
P P Q Q

∨ ¬ → ∨ → ¬
⇔ ∨ ¬ → ∨ ¬ ∨
⇔ ∨ ¬ → ∨ ¬ ∨

((()))
((()))
([() ()]
([()]
(())
[() ()

Q R
P P T Q R
P P Q R
P P Q R

∨
⇔ ∨ ¬ → ∨ ∨
⇔ ∨ ¬ → ∨
⇔ ∨ ¬ ¬ ∨ ∨]

[()]
() [()]

()

⇔ ∨ ∨ ∨
⇔ ∨ ∨ ∨ ∨
⇔ ∨ ∨
⇔ ∨ ∨ ∨
⇔ ∨ ∨

P P Q R
P P P Q R

P Q R
P P Q R
P Q R. (Answer)

Ì Exam ple 8.5.2: Obtain the disjunctive Normal form of

 P P Q R∨ ¬ ∧ ¬ ∨()

Solu tion

P P Q R
P P P Q P R

P P Q P R
Q

∨ ¬ ∧ ¬ ∨
⇔ ∨ ¬ ∧ ∨ ¬ ∨ ∨
⇔ ∧ ∨ ¬ ∨ ∨
⇔ ¬ ∨

()
() () ()

() ()
()P R

P Q R
∨

⇔ ∨ ¬ ∨ (Answer).

Ì Exam ple 8.5.3: Obtain the disjunctive normal form of

() ()¬ ∨ ¬ → ¬ ∧P Q P R

Solution:

() ()

[[()] ()]
[() ()]

¬ ∨ ¬ → ¬ ∧
⇔ ¬ ¬ ∨ ¬ ∨ ¬ ∧
⇔ ∧ ∨ ¬ ∧

P Q P R
P Q P R

P Q P R (Answer).

Ì Exam ple 8.5.4: Obtain the disjunctive normal form of

(()) ()P Q R P Q∧ ¬ ∧ ∨ →

Solu tion

(()) ()
(()) ()
(()) (

P Q R P Q
P Q R P Q
P Q R P

∧ ¬ ∧ ∨ →
⇔ ∧ ¬ ∧ ∨ ¬ ∨
⇔ ∧ ¬ ∨ ∨ ¬ ∨ Q

P Q P R P Q
P Q P P Q Q P R

)
() () ()
() () ()

⇔ ∧ ¬ ∨ ∧ ∨ ¬ ∨
⇔ ∧ ¬ ∨ ¬ ∨ ∧ ¬ ∨ ∨ ∧

Prop o si tions and Pred i cates 291

⇔ ∧ ¬ ∨ ∧ ∨ ∧
⇔ ∨ ∨ ∧
⇔ ∧ ∨ ∨ ¬

() () ()
()

()

T Q P T P R
Q P P R
P R P Q

7
(Answer)

Ì Exam ple 8.5.5: Obtain a Disjunctive Normal Form of

P P Q Q P→ → ∧ ¬ ¬ ∨ ¬(() ())

Solu tion

P P Q Q P
P P Q Q P

P P Q Q

→ → ∧ ¬ ¬ ∨ ¬
⇔ → ¬ ∨ ∧ ∧
⇔ ¬ ∨ ¬ ∨ �∧

(() ())
[() ()]
[() (∧

⇔ ¬ ∨ ¬ ∨ ∧ ¬ ∨ ∧
⇔ ¬ ∨ ¬ ∨ ∧ ¬ ∨ ∧

P
P P Q P Q P
P P Q P Q F

)]
[()] [()]
[()] [() ()]
[() ()] [()]
[()] ()
[(

⇔ ¬ ∨ ¬ ∨ ¬ ∨ ∧ ¬ ∨
⇔ ¬ ∨ ¬ ∨ ∧ ¬ ∨
⇔

P P P Q P Q
P P Q P Q

¬ ∨ ¬ ∨ ¬ ∨ ∧ ¬ ∨
⇔ ¬ ∨ ∧ ¬ ∨
⇔ ¬ ∨

P P P Q P Q
P Q P Q

P Q

) ()] ()
[] []

(Answer)

Ì Exam ple 8.5.6: Obtain the Conjungtive Normal Form of

¬ ∨ ↔ (∧())P Q P Q

Solu tion

¬ ∨ ↔ (∧
⇔ ¬ ∨ ∧ ∧ ∨ ¬ ¬ ∨ ∧ ¬ ∧
⇔ ¬

())
[() ()] [(()) ()]
[(

P Q P Q
P Q P Q P Q P Q
P Q P Q P Q P Q

P P Q Q P Q
∧ ¬ ∧ ∧ ∨ ∨ ∧ ¬ ∨ ¬

⇔ ∧ ¬ ∧ ∧ ¬ ∨ ∨ ∧ ¬
) ()] [() ()]

[() () (P Q
P Q P Q

∨ ¬
⇔ ∨ ∧ ¬ ∨ ¬

)]
() () (Answer)

GLOSSARY

Logic: Discipline which deals with methods of reasoning.
Proposition (statement): Any declarative sentence which is true (T) or false

(F).
Truth Value: T or F are the truth values of a statement.
Liar’s Paradox: This statement is false.
Connectives: AND, NOT, OR,
Negation: ~ P or ¬ P (NOT P)
Conjunction: AND ()p q∧
Disjunction: OR ()p q∨

292 Theory of Automata, Formal Languages and Computation

Implication: Conditional p q⇒
Biconditional: If and only if p q⇔
Tautology: Propositional form whose truth value is true for all possible

values of its propositional variables.
Contradiction: Propositional form that is always false.
Contingency: Propositional form which is neither a tautology nor a

contradiction.
Modus Ponens: (())P P Q Q∧ ⇒ ⇒
Modus Tollens: [()]P Q Q P⇒ ∧ ¬ ⇒ ¬
Disjunctive Syllogism: [()]¬ ∧ ∧ ⇒P P Q Q
Hypothetical Syllogism: [() ()] ()P Q Q R P R⇒ ∧ ⇒ ⇒ ⇒
Predicates: Assertions formed using variables in a “template” that expresses

the property of an object or a relationship between objects are
predicates.

REVIEW QUESTIONS

1. What do you mean by a proposition?
2. Give examples for proposition.
3. State the liar’s paradox.
4. What are connectives? Give examples.
5. Explain the following:

(a) Negation (b) Conjunction (c) Disjunction
(d) Implication (e) Biconditional.

6. Give the Truth Tables for:
(a) Negation (b) Conjunction (c) Disjunction
(d) Implication (e) Biconditional.

7. Explain the terms:
(a) Tautology (b) Contradiction (c) Contingency

8. What are logical Identities? Give a few of them.
9. Explain the following:

(a) Modus Ponens
(b) Modus Tollens
(c) Disjunctive Syllogism
(d) Hypothetical Syllogism

10. What are Predicates and Quantifiers?
11. Explain the following:

(a) Disjunctive Normal Form
(b) Conjunctive Normal Form

12. State the procedure to find Disjunctive Normal Form.

Prop o si tions and Pred i cates 293

EXERCISES

1. Which of the following sentences are propositions? What are the truth
values of those that are propositions?
(a) x + y = y + x for every pair of real numbers x and y
(b) Answer this question
(c) y + 2 = 17
(d) 7 + 5 = 10
(e) 3 + 2 = 5
(f) Bombay is the capital of India.
(g) ISPEX is in love with ‘L’JALAJABATVMU

2. Write the negation of each of the following propositions?
(a) Summer in Kodaikanal is hot and sunny.
(b) 7 + 8 = 15
(c) There is no air pollution in Karuppur
(d) Today is friday.

3. Let p and q be the propositions
p: I drive over 85 km per hour
q: I get a speeding ticket.
(a) I do not driver over 85 kmph
(b) I will get a speeding ticket if I drive over 85 kmph.
(c) Driving over 85 kmph is sufficient for getting a speeding ticket.
(d) Whenever I get a speeding ticket, I am driving over 85 kmph.

4. Obtain a truth table for each of the following propositional forms:
(a) ()¬ ∧p q
(b) ¬ ∧()p q
(c) () ()¬ ∨ ¬p q
(d) ()p q r∧ ∨
(e) (())p p p∧ ¬ ⇒

5. Determine whether each of the following implications is true or false.
(a) If 2 + 2 = 6, then 3 + 3 = 8
(b) If elephants can fly, then 2 + 2 = 6
(c) If 2 + 2 = 6, then elephants can fly.

6. For each of the following sentences state if the sentence means if the
“or” is an “inclusive or” (disjunction) or an “exclusive or” which of
these meanings of “or” do you think is intended
(a) Dinner for two includes two items from menu list I or three items
 from menu list II.
(b) To take Applied Physics, you should have taken a course in

Mathematics or a course in physics.

294 Theory of Automata, Formal Languages and Computation

7. Write down each of the following statements in the form “if p, then q” in
English.
(a) Your guarantee is good, only if you bought your PC less than 1

year ago.
(b) If you drive more than 800 kilometres, you have to buy diesel.

8. State the converse and contrapositive of each of the following
implications.
(a) A positive integer is a prime only if it has no divisors other than 1
 and itself.
(b) I go to class whenever there is a test.

9. Construct a truth table for each of the following compound propositions.
(a) ()p q r∨ ∨
(b) ()p q r∧ ∧
(c) ()p q r∧ ∨ ¬

10. Construct a Truth table for each of the following compound
propositions.
(a) () ()p q p r→ ∨ ¬ →
(b) () ()p q p r→ ∧ ¬ →
(c) ¬ → →p q r()

11. Show that ¬ ∨()p q and ¬ ∧ ¬p q are logically equivalent by
constructing Truth Table.

12. Show that the propositions p q→ and ¬ ∨p q are logically equivalent.
13. Show that the propositions p q r∨ ∧() and () ()p q p r∨ ∧ ∨ are

logically equivalent.
14. Show that ¬ ∨ ¬ ∧(())p p q and ¬ ∧ ¬p q are logically equivalent.
15. Show that p p≡ ¬ ¬().
16. Rewrite the statement: “It is not true that I am not happy” in simpler

form.
17. Show that ¬ ∧ ≡ ¬ ∨ ¬() () ()p q p q (De Morgan’s Laws)
18. Given p: The president is a Democrat

 q: The president is a Republican
Express (a) ¬ ∧()p q (b) () ()¬ ∨ ¬p q .

19. Show that the statement p p∨ ¬() is a tautology.
20. Show that () [() ()]p q p q∨ ∨ ¬ ∧ ¬ is a tautology.
21. Show that the statement () [() ()]p q p q∨ ∧ ¬ ∧ ¬ is a contradiction.
22. Simplify the statement ¬ ∧ ¬ ∧([()]).p q r
23. Consider: “You will get an A if either you are clever and the sun shines,

or you are clever and it rains”. Rephrase the conditions more simply.
24. Show that p q p q→ ≡ ¬ ∨() using Truth Table construction.
25. Verify the “Switcheroo Law” using Truth Table. p q p q→ ≡ ¬ ∨() .

Prop o si tions and Pred i cates 295

26. Using the Switcheroo law p q p q→ ≡ ∨()7 transform the following
statement into a disjunction: “If 0 = 1, then I am the queen of Texas.”

27. Check whether the followings statements are equivalent or not.
(a) If it is Tuesday, this must be Mexico.
(b) That this is Mexico is a necessary condition
(c) Its being Tuesday is sufficient for this to be Mexico.

28. Verify whether commutative law holds good for the “conditional” i.e.,
p q→ is the same as q p→ or not?

29. Prove the valid argument:

() ()p r s t
p

t

∨ → ∧

∴

30. Prove the valid argument:

a b c
b

a

→ ∧
¬
∴ ¬

()

31. Prove the valid argument:

p a
p b
p

a b

→
→

∴ ∧

32. Check the validity of the argument:

s r
p q r
s q r

p
q

→
∨ → ¬

¬ → ¬ →

∴

()
()

33. Prove and comment on the argument:

p p
p
∧ ¬

∴
()

34. Show that the argument

p q
q

p

→

∴

is not valid.

296 Theory of Automata, Formal Languages and Computation

35. Check whether the following argument is valid. If it is, then give a
proof, if it is not, then give a counterexample.
“Heat dissipation accompanies every irreversible chemical reaction.
Therefore, if a chemical reaction is reversible, it dissipates no heat”.

36. Check whether the following is valid.
If it is, then give a proof; it it is not, then give a counterexample.
“It the moon is made of red chease, then elephants can fly and circles are
round. The moon is indeed made of red cheese. Therefore elephants can
fly”.

37. Prove the valid argument

() ()p q r s
p q

r s

∧ → ∨
∧

∴ ∨

38. Check the validity of the following arguments:

(a) ¬ ∨
∧ → ∨

∴ ¬ ∧

()
() ()

()

r s
p q r s

p q

(b)

p q
p r

r

∧
→

∴

(c) p q r
p

r
q

→ ∨

¬

()

39. Let P(x) denote “x spends more than six hours every weak is class”,
where the universe of discourse for x is the set of students. Express each
of the following quantifications in English.
(a) ℑx P x()
(b) ∨ x P x()
(c) ℑ ¬x P x()
(d) ∨ ¬x P x()

40. Given P (x): x can speak Hindi
Q (x): x knows computer language “Small Talk” express each of the
following sentences in terms of P(x), Q(x), quantifiers and logical
connectives. Universe of discourse is the set of all students at your
school.
(a) There is a student at your school who can speak Hindi and who

knows small talk.
(b) There is a student at your school who can speak Hindi but who

does not know small talk.
41. Use quantifiers to express the associative law for multiplication of real

numbers.

Prop o si tions and Pred i cates 297

42. Prove that the statements

¬ ℑ ∨x y P x y(,) and ∨ ℑ ¬x y P x y(,)

have the same truth table.
43. State the truth values of the following:

(a) ℑ → ℑ! () ()xP x P xx

(b) ∨ → ℑx P x x P x() ! ()
(c) ℑ ¬ → ¬ ∨! () ()P x P xx

44. Show that ∨ ∨∨x xP x Q x() () and ∨ ∨x P x Q x(() ()) are not logically
equivalent.

45. Show that ∨ ∨ ℑx xP x Q x() () and ∨ ℑ ∨x y P x Q y(() ()) are equivalent.
46. Obtain the principal disjunctive normal form and principal conjunctive

normal form of

P Q↔ .

47. Obtain the PDNF of the following
(a) ¬ ∨P Q
(b) () () ().P Q P Q Q R∧ ∨ ¬ ∧ ∨ ∧

48. Obtain the disjunctive normal form of

P P Q Q R∨ ¬ → ∨ ¬ →((()))

49. Derive the disjunctive normal form of

P P Q Q R→ → ∧ ¬ →(() ()))

50. Obtain the conjunctive normal form of

() ()¬ → ∧ ↔P R Q R

51. State whether the following argument is valid or not. Give proof if it is
valid. Otherwise give counter example.
Babies are illogical.
Nobody is despised, who can manage crocodiles.
Illogical people are despised.
Therefore babies cannot manage crocodiles.

52. If the colonel was out of the room when the murder was committed, then
he could not have been right about the weapon used. Either the butler is
lying or he knows who the murderer was. If Lady Sharon was not the
murderer, then either colonel was in the room at the time or the butler is
lying. Either the butler knows who the murdered was or the colonel was
out of the room of the time of the murder. The policeman deduced that if
the colonel was right about the weapon, they Lady Sharon was the
murderer. Was he right?

298 Theory of Automata, Formal Languages and Computation

SHORT QUESTIONS AND ANSWERS

1. Define a mathematical structure.
It is defined as a set of axioms.

2. What is an axiom?
An oxiom is a true statement about the properties of the structure.

3. What is logic?
Logic is the discipline that deals with the method of reasoning. It

gives a set of rules and techniques to determine whether a given
argument is valid or not.

4. What are Theorems?
True assertions which can be inferred from the truth of axioms are

called ‘Theorems’.
5. What is meant by ‘proof’ of a Theorem?

Proof of a theorem is an argument that establishes that the theorem is
true for a specified mathematical structure.

6. What is a proposition or a statement?
Any declarative sentence which is true (T) or false (F) is called a

proposition or a statement.
7. What do you mean by truth value of a statement?

We refer to T (True) or F (False) as the truth value of the statement.
8. Give examples for statements (propositions).

(a) 3 + 3 = 6
(b) It will rain tomorrow.

9. What is Liar’s paradox?
(a) “This statement is false”.
(b) “I am lying”.

Statement (b) is a pseudostatement equivalent to (a).
Such a self-referential sentence is a Liar’s Paradox.

10. Give examples of sentential connectives
And, or, not.

11. Draw the truth table of Negation.

P ~P

T F

F T

Prop o si tions and Pred i cates 299

12. Draw the truth table of conjunction (AND).

p q p q∧

T T T

T F F

F T F

F F F

13. Obtain the Negation of the statements:
(a) Not all the doctors in this town are crooks.
(b) I loved neither Padmaja nor Naveena.
(a) All the doctors in this town are crooks.
(b) I loved either Padmaja or Naveena.

14. Obtain the conjunction of the statements.
(a) p: I am rich.

q: You are old.
(b) p: 8 + 8 = 17

q: Sun rises in the east.
(a) p ∧ q : “I am rich and you are old”.

(b) p ∧ q : 8 + 8 = 17 and Sun rises in the East.
15. Sketch the truth table of disjunction (OR).

p q p q∧

T T T

T F F

F T T

F F F

16. Obtain the disjunction of the statements
p: Ravi did it
q: Ram did it.

p q∨ : Either Ravi or Ram did it.
17. What is meant by implication? Sketch the Truth Table.

p q⇒ read as “if p, then q” is an implication.

300 Theory of Automata, Formal Languages and Computation

The Truth Table is as follows.

p q p q⇒

T T T

T F F

F T T

F F T

18. What is the Truth Table of Biconditional?
Biconditional means “q if and only if p”. or “p is equivalent to q”.

p q p q⇔

T T T

T F F

F T F

F F T

19. What do you mean by Tautology?
A Tautology is a propositional form whose truth value is true for all

possible values of its propositional variables.
Example: P P∨ ¬ .

20. What do you mean by contradiction?
A contradiction or absurdity is a propositional form which is always

false.
Example: P P∧ ¬ .

21. What do you mean by contingency?
A propositional form which is neither a tautology nor a contradiction

is called a contingency.
22. What are the representations for tautology and contradiction?

Tautology → 1
Contradiction → 0.

23. What is Modus Ponens?

[()]P P Q Q∧ ⇒ ⇒

24. What is Modus Tollens?

[()] .P Q Q P⇒ ∧ ¬ ⇒ ¬

Prop o si tions and Pred i cates 301

25. What is disjunctive syllogism?

[()]¬ ∧ ∨ ⇒P P Q Q

26. What is Hypothetical Syllogism?

[() ()] ()P Q Q R P R⇒ ∧ ⇒ ⇒ ⇒

27. What do you mean by contrapositive identity?

() ().P Q Q P⇒ ⇔ ⇒7 7

28. Explain the logical identity: Exportation.

[()] [()]P Q R P Q R∧ ⇒ ⇔ ⇒ ⇒

29. Explain the logical identify: Absurdity

[() ()]P Q P Q P⇒ ∧ ⇒ ¬ ⇔ ¬

30. Explain the logical identity: Equivalence

() [() ()]P Q P Q Q P⇔ ⇔ ⇒ ∧ ⇒

31. Explain the logical identify: Implication

() ()P Q P Q⇒ ⇔ ¬ ∨

32. State the following rules of inference
(a) Hypothetical Syllogism
(b) Disjunctive Syllogism

(a) P Q Q R P R→ → ⇒ →,
(b) ¬ ∨ ⇒P P Q Q,

33. State the following rules of inference
(a) Modus Ponens
(b) Modus Tollens

(a) P P Q Q, → ⇒
(b) ¬ → ⇒ ¬Q P Q P, .

34. What is double negation?

¬ ¬ ⇔P P

35. State De Morgan’s laws in terms of Equivalences.

¬ ∧ ⇔ ¬ ∨ ¬
¬ ∨ ⇔ ¬ ∧ ¬

()
()
P Q P Q
P Q P Q

36. State Distributive Laws in terms of equivalences.

P Q R P Q P R
P Q R P Q P R

∨ ∧ ⇔ ∨ ∧ ∨
∧ ∧ ⇔ ∧ ∨ ∧

() () ()
() () ()

302 Theory of Automata, Formal Languages and Computation

37. State Associative Laws in terms of equivalences.

() ()
() ()
P Q R P Q R
P Q R P Q R

∧ ∧ ⇔ ∧ ∨
∨ ∨ ⇔ ∨ ∨

38. State Commutative laws in terms of equivalences.

P Q Q P
P Q Q P

∧ ⇔ ∧
∨ ⇔ ∧

39. What are Predicates?
Assertions formed using variables in a “template” that expresses the

property of an object or a relationship between objects are called
Predicates.

Prop o si tions and Pred i cates 303

Answers to Exer cises

CHAPTER 0

1. (a) No (b) No (c) Yes
2. (a) Yes (b) No (c) Yes
3. (a) True (b) True (c) False
4. Suppose that x A∈ . Since A B⊆ , this implies that x B∈ . Since B C⊆ ,

we have x C∈ . Since x A∈ implies that x C∈ , it follows that A C⊆ .
5. (a) 1 (b) 1 (c) 2 (d) 3
6. (a) { ,{ }}φ a

(b) { ,{ },{ },{ , }}φ a b a b
(c) { ,{ },{{ }},{ ,{ }}}φ φ φ φ φ

7. (a) 2 (b) 16
8. (a) {(,), (,), (,), (,), (,), (,), (,), (,)}a y b y c y d y a z b z c z d z

(b) {(,), (,), (,)(,), (,), (,), (,), (,)}y a y b y c y d z a z b z c z d
9. The set of triples (a, b, c) where a is an airline and b and c are cities.

10. φ φ
φ φ

φ

× = ∈ ∈
= = ∈ ∈
= ×

Α {(,) | }
{(, | }

x y x y A
x y x A y

A

and
and

11. mn
13. (a) {0, 1, 2, 3, 4, 5, 6}

(b) {3}
(c) {1, 2, 4, 5}
(d) {0,6}

18. (a) B A⊆
(b) A B⊆
(c) A B∩ = φ
(d) Nothing, since this is always true
(e) A = B

19. (a) { , , , }1 2 3 KKn
(b) {1}

25. A a a
B ababab
AB ab aab

2 2

3

= ∈
=
=

{ , , }
{ }
{ , }

26. A a a a n
B ab n
B ab n

n

n

n

*

*
{ , , , } { | }
{() | }
{() |

= ∈ = ≥
= ≥
= ≥+

2 0
0
1

KK

}

28. Σ Σ+ = − ∈* { }

29. (a) L L ab bc aa ac cb1 2∪ = { , , , , }
(b) L L aa1 2∩ = { }
(c) L L xy x L y L1 2 1 2− = ∈ ∧ ∈{ | }
(d) L L abaa abac abcb bcaa bcac bccb caaa caac cacb1 2 = { , , , , , , , , }

30. A A A A Ai
i

* = = ∪ ∪
≥

0 1 2
0

KKU
31. A A A A Ai

i
+

≥
= = ∪ ∪1 2 3

1
KKU

32. A = {a, aa}, B = {a} and C = {aa}, to prove that

A B C AB AC() .∩ ⊂ ∩

AB = {aa, aaa}, AC = {aaa, aaaa}
AB AC aaa B C A B C

A B C AB AC
∩ = ∩ = ∩ =

⇒ ∩ ⊂ ∩
{ }, , ()

() .
φ φ

33. (a) 155 (b) 100
35. (a) We know, A B A∩ ⊂ .

If A B⊂ , then A B A∩ = .
∴ ∪ ∩ =A A B A() .

(b) A A B A A A B
A A B
A a

∩ ∪ = ∩ ∪ ∩
= ∪ ∩
=

() () ()
()

(())by

(c) x A B x A x B
x A x B
x A B

∈ − ⇔ ∈ ∧ ∉
⇔ ∈ ∧ ∈
⇔ ∈ ∩

()

()

∨ ∈ − = ∨ ∈ ∩
∴ − = ∩

x xx A B x A B
A B A B

[()] [()]
.

(d) A A B A A A B
U A B
A B

∪ ∧ = ∪ ∩ ∪
= ∩ ∪
= ∪

() () ()
()

.

(e) A A B A A A B
A B

A B

∩ ∪ = ∩ ∪ ∩
= ∪ ∩
= ∩

() () ()
()

.
φ

36. (a) No (b) No (c) No.

Answers to Exercises 305

38. (a) only
40. Only (a) and (d) are onto functions.
41. (a) Yes (b) No (c) Yes (d) No.
46. (a) Bijection

(b) None
47. {(1,1), (2, 2), (3, 3), (4,4)}

48. f g x x
g f x
o

o

= + +
= +

2

2

8 14
2

49. (a) R = {(3, 3), (6, 2), (9, 1)}
(b) Domain = {3, 6, 9}

Range = {3, 2, 1}
50. (a) R = {(3, 2), (5, 2), (5, 4), (7, 2), (7, 4), (7, 6), (9, 2), (9, 4), (9, 6),

 (9, 8)}
(b) Domain = {3, 5, 7, 9}

Range = {2, 4, 6, 8}
51. (a) Transistive

(b) Reflexive, symmetric, transitive
(c) Symmetric
(d) Antisymmetric.

52. (a) 2 21n n()+

(b) 2 3 21n n n()−

(c) 3 21n n()−

(d) 2 1n n()−

(e) 2 21n n()−

(f) 2 2 2
2 1n n n− ⋅ −()

53. R is reflexive if and only if (,)a a R∈ for all a A∈ if and only if
(,)a a R∈ −1 if and only if R −1 is reflexive.

54. No, Example R = {(,), (,)}13 31
56. (a) {(,) |a b b adivides }

(b) {(,) |a b a bdoes not divide }
57. (a) Symmetric, transitive

(b) Reflexive, symmetric, transitive
(c) Antisymmetric

58. L(G) = {b, aaa}
59. G = (V, T, S, P) where V = {0, 1, S} T = {0, 1}, S is the start symbol and

productions are

S S
S

→
→

0 1
λ.

306 Theory of Automata, Formal Languages and Computation

60. G1: V S T= ={ , , }, { , }0 1 0 1 .
Production P: S S S S S→ → →0 1, , λ
G2 : V S A T= ={ , , , }, { , }0 1 0 1
Productions P: S S S A S A A A S→ → → → → →0 1 1 1 1, , , , , .λ

61. G V T S P= (, , ,)
V = {0, 1, 2, S, A, B}
T = {0, 1, 2}
S = Starting state
Productions P: S SAB S BA AB

A A B B
→ → →

→ → → →
0

0 01 1 11 1 12 2 22
, , ,

, , , .
λ

62. (a) S S S→ →00 , λ
(b) S AS S ABS S A AB BA BA AB A B→ → → → → → →, , , , , ,0 1
(c) S ABS S AB BA BA AB A B→ → → → → →, , , , ,λ 0 1
(d) S ABS S T B U T AT T A

U BU U B AB BA BA AB A B
→ → → → →
→ → → → → →

, , , , ,
, , , , ,0 1.

69. Let P(n) be 3 5 3 5 1 41

0

⋅ = −+

=
∑ j n

j

n

() / .

Basis: P(0) is true time since 3 5 3 3 5 1 41

0

⋅ = = −
=

∑ j

j

n

() / .

Induction: Assume that 3 5 3 5 1 41

0

⋅ = −+

=
∑ j n

j

n

() / .

Then

3 5 3 5 3 5

3 5 1 4 3 5
0

1

0

1

1

⋅ = ⋅








 + ⋅

= − + ⋅
=

+

=

+

+

∑ ∑j

j

n
j

j

n
n

n n() +

+ +

+
= + −
= −

1

1 1

2
3 5 45 1 4
3 5 1 4

(.)
() .

n n

n

72. Postages are 5 cents, 6 cents, 10 cents, 11 cents, 12 cents, 15 cents, 16
cents, 17 cents, 18 cents and all postages of 20 cents or more.

CHAPTER 1

1. (a)

(b)

Answers to Exercises 307

q0 q1

b

a

b

q0 q1

b

a

b

a

(c)

(d) (i)

(ii)

(iii)

(e)

2.

3.

a b

q0 {q0, q1} ∅
q1 ∅ {q1, q2}

q2 ∅ ∅

4.

308 Theory of Automata, Formal Languages and Computation

q0

b
q1

b
q2

b
q3

b

a a a

q0 q1 q2

a

q3
a b b

a

a

q0 q1 q2

a
q3

b a b

a

a

q0 q1 q2

a
q3

b b a

a

a

q0 q1 q2 q3
a,b a,b a,b

a

b

0

1

λ 0 00 001

1

0

1

0 0,1

q0 q1

a
q2

b

a b

q0 q1

q2 q3

0

0

0

0,11

0

1

1

q2

1

0 1

5. L nn n n= ≥{ , , }0 0 010 11 0
6. M q q q q q q q q q

q

1
0 1 2 0 1 0 2 1 2

0

= ∅({[], [], [], [], [,], [,], [,]
[, ,]},{ , }, , [],{[], [,],
[,], [,

q q a b q q q q
q q q q

1 2 0 1 0 1

1 2 0

′δ
1 2,]}q

which is the DFA of the form ′ = ′ ′ ′ ′M Q q F(, , , ,)Σ δ 0 with δ′ given by
the table below.

a b

[∅] [∅] [∅]

[q0] [q1, q2] [∅]

[q1] [∅] [q2]

[q2] [∅] [q2]

[q0, q1] [q1, q2] [q2]

[q0, q2] [q1, q2] [q2]

[q1, q2] [∅] [q2]

[q0, q1, q2] [q1, q2] [q2]

7.

8.

9. (a) b aa ab a* * *

Answers to Exercises 309

q0 q1 q2

a

q3

a
ba

q4 q5

b

b a b

q4

q3

b

b

a,b

a a

a

(b) () () () ()* * * *aabb b bab ba b ab+ +
(c) a ba* *

10.

11.

State g h

Input Input

s0 s1 s3 1 0

s1 s1 s2 1 1

s2 s3 s4 0 0

s3 s1 s0 0 0

s4 s3 s4 0 0

12.

14. (a) 1100
(b) 00110110
(c) 11111111111

15.

310 Theory of Automata, Formal Languages and Computation

s0

s1

s2

s3
1,1

0,1

0,0

1,0
1,0

Start

0,0

1,1

s0 s1 s2

Start

0,0

1,0

0,0

0,0

1,0

1,1

16.

17.

State

f

Input

0 1 g

s0 s1 s2 1

s1 s1 s0 1
s2 s1 s2 0

18. (a) 11111 (b) 1000000 (c) 100011001100

19.

20. (a) L na
n= ={ | , , , }1 0 1 2 KK

(b) Lb = { , }1 01
(c) L x n xc

n n= ={ , | , , ,0 0 10 0 1 2 K and is any string}

21.

Answers to Exercises 311

s3s1

s2 s4

s0
0,0

0,0
1,0

0,0

Start

0,0

1,1

s3

s4

1,0

s5

s6

1,0

0,0

0,0

1,1

0,0

1,0

1,0

s0

s1

s2

Start

0
1

1

0 0

0

s3

1

0

1

1
1

0

s0

s1

Start

1
0

0

s3

s2

1

1

0

0 0,1

1

1

0

22.

State f

Input

0 1

s0 s0, s2 s1

s1 s3

s2 s4

s3 s3

s4 s3 s3

23. L nn n n= ≥{ , , | }0 0 010 11 0

24. (a) L = {0, 01, 11}
(b) L m nm n= ∪ ≥ ≥{ , } { | , }λ 0 0 1 1 1

(c) L n n mn n m= ≥ ∪ ≥{ | } { | , }10 0 10 10 0

25. (a) {0, 10, 11} {0, 1}*

(b) (| }0 1 0 1m n m n≥ ≥and

26. (a)

312 Theory of Automata, Formal Languages and Computation

{ , }s s1 4

{ , }s s3 4{ }s0

{ , }s s0 2

{ }s1 { }s4

Start
{ }s3

0,1

0,1

0

1

1

0

1

1

{ }s0

φ

0,1

0 0

0

s0 s1 s2

s3

1

1 1Start

0 0
0

0

(b)

(c)

28. (a) A 1 followed by any number of 0s
(b) Any number of copies of 10, including null string
(c) The string 0 or the string 01
(d) Any string beginning with 0.
(e) Any string not ending with 0.

29.

30. G = (V, T, S, P)
G S A B= { , , , , }01
T = { , }0 1
S A S B S A A A B
A B A B B B

→ → → → →
→ → → →

0 1 0 1
1 0 1 1

, , , , ,
, , , .

λ

32. (a) 00 1*

(b) () () ()* *0 1 0 1 0 1 0000∪ ∪ ∪
34.

Answers to Exercises 313

s0 s1
1Start

0,10

s4s2
1

s3
0,10

0,1

s0 s1
0Start

0,11

s2

0,1

s0 s2
0Start s1

1

1

s0 s2
Start s1

0

s3 s4 s5
0 0

0 1

1

10
0

35. Assume L n n= { }0 12 is regular. Assume S is the set of states of a finite-

 state machine recognizing the set. Let Z n n= 0 12 where 3n s≥ | | . Then by

pumping lemma, Z uvw l vn n= = ≥0 1 12 , () , and uv w ni n n∈ ≥{ | }.0 1 02 It
is obvious that V cannot contain both 0 and 1, since V2 could then
contain 10. Therefore V is all 0s or all 1s, and so uv2w contains too many
0s or too many 1s, so it is not in L. This is a contradiction which shows L
is not regular.

36. Assume that the set of palindromes over {0, 1} is regular. Assume S is
the set of states of a finite-state machine that recognizes the set. Let Z =
0n10n, when n > | S |.
Apply the pumping lemma to get uv w Li ∈ for all positive integers i
where l v() ≥1, and l uv s() | |≤ and z uvwn n= =0 10 . Then v must be a
string of 0s (since | | | |)n s> , so uv2w is not a palindrome. Therefore the set
is not regular.

37.

38. (ab ∪ a)*

314 Theory of Automata, Formal Languages and Computation

φ

{3}

{1}

{1,3}

{2}

{2,3}

{1,2}

{1,2,3}

a,b

a b

b

a

b

a

b

a

a

b

a,b

ε

ε

ε

ε

ε

ε

39. (a ∪ b)* aba

CHAPTER 2

3.

5.

7. Let SA and SB be the start symbols of GA and GB respectively. Let S be a
new start symbol.
(a) Add S and productions S S A→ and S S B→
(b) Add S and production S S SA B→
(c) Add S and production S → λ and S S SA→ .

8. (a) Type 2, not type 3
(b) Type 0, not type 1
(c) Type 2
(d) Type 3
(e) Type 2, not type 3

Answers to Exercises 315

S

S

S

S S S S

a b a

+

* *

b

a

a

x0

b

c

b

x0

x0

x1

x1

a
ε

ε
b

ε

ε

εε

ε

ε

εε ba a

10.

14.

23. (a) Yes
(b) No.

CHAPTER 3

12. Defining A q q a b z a b q z qf= ({ , },{ , },{ , , }, , , ,{ }}0 0 3δ δ is given by
δ δ
δ

(, ,) {(,)} (, ,) {(,)}
(, ,) {(
q a z q az q b z q bz
q a a q

0 0 0 0= =
= ,)} (, ,) {(,)}

(, ,) {(,)} (, ,)
(

aa q b b q bb
q a b q q b a
q

δ
δ δ
δ

=
= ∈ =

, ,) {(,)}∈ = ∈a q f

A accepts the given set by final state.
14. M q S B q S= ∅({ },{ , },{ , , , }, , , , }01 01 δ δ is defined as

δ
δ

δ

(, ,) {(,)}
(, ,) {(,), (,), (,)}

(

q S q BB
q B q S q s q

∈ =
∈ =

0
0 1 0

q q
q q
, ,) {(,)}

(, ,) {(,)}
0 0
11

= ∈
= ∈δ

15. G S a b P S= ({ },{ , }, ,)
P S aSb S aS S a: , ,→ → →
A q a b S a b q S:({ },{ , },{ , , }, , , ,)δ ∅
where δ(, ,) {(,), (,), (,)}q S q aSb q aS q a∈ =
δ δ(, ,) (, ,) {(,)}q a a q b b q= = ∈

316 Theory of Automata, Formal Languages and Computation

a

S

A

b
S

a

S

a
A

a a

{ , }q q1 4

{ }q3

{ }q2

{ }q4

{ }s0{ }q0

φ

a

b

a,b a,b

a

a

b

b a

b

CHAPTER 4

1. M Q q q q= (, , , , , ,).Σ Π δ 1 accept reject

Σ = { }0
Γ = {0, x, £}
q1 — start state
qaccept — accept state
qreject — reject state
δ is described by the state diagram shown below.

9. (, , , ,)s s R0 00 0 (,*, , ,)s s B R0 5 (, *, , *,)3 3s s L

(, , , ,)s s L3 30 0 (, , , ,)s s L3 31 1 ()s , B, s , B, R3 0

(, , , ,)s s B R5 51 (, , , ,)s s B R5 50 ()s , B, s , B, L5 6

(, , , ,)s B s B L6 6 (, , , ,)s s L6 70 1 ()s , , s , , L7 20 1

(, , , ,)s s R0 11 0 (, , , ,)s s R1 11 1 ()s , B, s , B, L2 4

(, , , ,)s s L4 40 1 (,*, , ,)s s B L4 8 ()s , , s , B,L8 80

(, , , ,)s s B L8 81

where B = Blank cell, L = Left and R = Right
13. (, , , ,), (, , , ,), (, , , ,), (, ,s s R s s R s s R s s0 0 0 1 1 1 1 00 0 1 1 0 0 1 , ,), (, , , ,).1 0 2R s B s B R
14. (, , , ,), (, , , ,), (, , , ,), (, ,s s R s s R s s R s s0 1 0 0 1 1 1 00 0 1 0 0 0 1 , ,), (, , , ,)0 1 2R s B s B R
15. (, , , ,), (, , , ,), (, , , ,), (, , ,s s R s s R s s R s s0 0 0 1 1 1 10 0 1 1 0 0 1 0,)R
16. (, , , ,), (, , , ,)s s R s s R0 1 0 00 1 1 1
20. Since the universal Turing machine that simulates every Turing

machine, the present problem is equivalent to the Halting problem of
Turing machines, therefore, it is unsolvable.

CHAPTER 6

1. (a) 0

Answers to Exercises 317

→

→

→
→

→
→

→

→
 →
→

 →

(b) 3
(c) 3
(d) 83

2. (a) λ
(b) aababab
(c) babababa

3. (a) Function is defined for all natural numbers divisible by 9.
(b) Function is defined for all x ≥ 5
(c) Function is defined for all N.
(d) Function is defined for all N.

13. A (2, 4) = 11; A (3, 3) = 37.

CHAPTER 8

1. (a) Yes, T
(b) No
(c) No
(d) Yes, F
(e) Yes, T
(f) Yes, F
(g) Yes, T

2. (a) Summer in Kodaikanal is not hot or it is not Sunny
(b) There is air pollution in Karuppur.
(c) 7 8 15+ ≠
(d) Today is not friday.

3. (a) ¬ p
(b) p q→
(c) p q→
(d) q p→

5. (a) True
(b) True
(c) True

7. (a) If your guarantee is good, then you must have bought your PC less
than 1 year ago.

(b) If you drive more than 800 kilometers, then you have to buy diesel.
8. (a) Converse: A positive integer is a prime if it has no divisors other

than 1 and itself.
Contrapositive: If a positive integer has a divisor other than 1 and
itself, then it is not prime.

(b) Converse: If I goto class there will be a test.
Contrapositive: If I do not go to class, then there will not be a test.

318 Theory of Automata, Formal Languages and Computation

16. I am happy.
18. (a) The President is not both a Democrat and a republican.

(b) Either the President is not a Democrat, or he is not a Republican, or
he is neither.

19.

p ¬ p p p∨ ¬()

T F T

F T T

Since there are only T’s in the p p∨ ¬() column, we conclude that
p p∨ ¬() is a tautology.

21. Hint: Show that all the entries in the last column are all F’s.
22. () ()¬ ∨ ∨ ¬p q r
23. You will get an A if you are clever and either the sun shines or it rains.
26. Either 0 1≠ , or I am the Queen of Texas.
27. Yes
28. No (verify using Truth Table construction).
36. Valid.
38. (a) Valid

(b) Valid
(c) Valid

39. (a) There is a student who spends more than 6 hours every weekday in
class.

(b) Every student spends more than 6 hours every weekday in class.
(c) There is student who does not spend more than 6 hours every
 weekday in class.
(d) No student spends more than 6 hours every weekday in class.

40. (a) ℑ ∧x P x Q x(() ())
(b) ℑ ∧ ¬x P x Q x(() ())

41. ∨ ∨ ∨ ⋅ ⋅ = ⋅ ⋅x y z x y z x y z(() ())
43. (a) True

(b) False, unless the Universe of discourse has just one element
(c) True

46. PDNF P Q P Q
PCNF P Q P Q

:() ()
:() ()

∧ ∨ ¬ ∧ ¬
∨ ¬ ∨ ¬ ∨

47. (a) () () ()P Q P Q P Q∧ ∨ ¬ ∧ ∨ ¬ ∧ ¬
(b) () () () ()P Q R P Q R P Q R P Q R∧ ∧ ∨ ∧ ∧ ¬ ∨ ¬ ∧ ∧ ∨ ¬ ∧ ∧ ¬

48. P Q R∨ ∨
49. () () ()P Q P Q P Q∧ ∨ ¬ ∧ ∨ ¬ ∧ ¬

Answers to Exercises 319

Uni ver sity Ques tion Papers

THEORY OF COMPUTING

GROUP I

(ANSWER ALL QUESTIONS)

1. The positive closure operator denotes
(a) Proper suffix (b) Proper prefix
(c) One or more occurrance (d) the length of string is zero

2. Type 3 Grammars are known as
(a) Regular Grammar (b) Context Sensitive Grammar
(c) Context Free Grammar (d) Unrestricted Grammar

3. If a grammar produces more than one parse free for a sentence, the
grammar is known as
(a) Left Linear Grammar (b) Ambiguous Grammar
(c) Context Free Grammar (d) Regular Grammar

(4) Which is the data structure used to implement the Push Down
Automata?
(a) Linked List (b) Queue
(c) Stack (d) Array

5. The graphical representation of derivation is known as
(a) Derivation Tree (b) Derivation structure
(c) Linear Graph (d) Cellular Automata

6. An unrestricted language can be accepted by
(a) Finite Automata (b) Turing Machine
(c) Push Down Automata (d) Cellular Automata

7. The grammar with the productions
S aA→ and A → ε ε(-epsilon) belongs to
(a) Regular Grammar only (b) Context-Free Grammar only
(c) Regular Grammar and context-free grammar
(d) Context sensitive grammar.

8. The functions which are computable by a Turing Machine are known as
(a) Partial Recursive Functions (b) Enumerable Functions
(c) Partial Functions (d) Finite-Automata

10. In a digraph, if all the vertices have the same outer degree, then it is
known as
(a) Connected Graph (b) Euler Graph
(c) Hamiitonion Graph (d) Regular Graph

GROUP II

11. Which Automation is used for accepting Regular Expressions? Write
the definition for it.

12. Define “prefix” and “suffix” of a string.
13. When an NFA becomes a DFA?
14. What is CNF? and What is GNF? Define.
15. Write the definition of Context-Free Grammar.
16. Define “Unit Production” and “Null Production”.
17. Write the definition of “Turing machine”.
18. What is meant by Recursively Enumerable language?
19. What is meant by Partial Recursive Function?
20. When a “digraph” becomes a “regular graph”?

SEMESTER EXAMINATIONS
(NOV./DEC. 1999)

M.Sc. — COMPUTER TECHNOLOGY — I SEMESTER

THEORY OF COMPUTING

Time : 3 hours Max. Marks: 60

Instruc tions

1. Answer ALL questions from Part A and FIVE questions from Part B.
2. All questions must be answered in same answer book.

PART A

1. Define regular expression.

University Question Papers 321

2. Show that the CFG with the following productions is ambiguous.

S a Sa bSS SSb SbS→ | | | | |

3. When NFA becomes DFA?
4. List the properties of Finite State Machine.
5. Define tree automata.
6. What is priority rewriting?
7. Define Kleene closure.
8. What is star free sets?
9. State the two methods used by PDA to accept a language.

10. Define Rabin tree automation.

PART B

11. Construct DFA accepting each of the following languages.
(a) W a b∈{ , }* each a in W is immediately proceded and immediately

followed by “ab”.
(b) W a b W∈{ , } :* has “abab” as a substring.

12. Construct and explain special automata for the given string “abbaab”.
13. Design a Push Down Automata to accept the strings of the grammar.

G E r E r eE e e: | | .→

Explain the sequence of moves.
14. Find star heights of the following regular expressions.

(a) (())* * *a ab c (b) (())* * *c a b

(c) ()* * *a b ab∪ ∪ (d) ()* *abb a

15. Write markov algorithm to find the following.
(a) Reverse of the given string “abcd”
(b) Whether a given decimal number is divisible by 3.

16. Construct NFA accepting the following languages over alphabet {0, 1}
(a) The set of all strings with 3 consecutive 0’s (zeroes).
(b) The set of all strings such that every block of five consecutive sym-

bols contains atleast 2 zeroes.
(c) The set of all strings ending in oo.

END

322 Theory of Automata, Formal Languages and Computation

THEORY OF COMPUTATION

Time: 3 hours Marks : 60

Instruc tions:

Answer any Six questions each carry 10 marks.
1. (a) State and prove the principle of mathematical induction using two

examples other than Q no. lb.
(b) Prove using mathematical induction ‘For every n > 1 the number of

subsets of {1, 2,n} is 2n.
2. (a) Prove that the language accepted by any Finite Automation is

regular.
(b) Construct a minimal DFA for the regular expression

(() / *) **ab b ab

3. (a) Write short notes on Pumping lemma.
(b) State and Prove the properties of Context Free languages.

4. (a) Distinguish between deterministic Pushdown Automata and
 Non-deterministic Pushdown Automata.
(b) Let G be the Context free grammar with productions

S aS ASbS c→ / /

Let G1 be the Context free grammar with productions

S T U T aTbT c U aS aTbU1 1→ → →/ / /

(i) Show that G is ambiguous.
(ii) Show that G and G1 generate the same language.
(iii) Show that G1 is unambiguous.

5. (a) Construct a Turing machine to accept a palindrome over | |a b⋅ .
 Draw the transition diagram and trace the moves for the any string.
(b) Does every Turing machine computes a partial function? Explain.

6. State the Rice’s theorem and post correspondence problem and give the
proof of Rice’s theorem.

7. (a) Show that a language L ⊆ Σ* is recursively enumerable (i.e. can be
accepted by some TM) if and only if L can be enumerated by some

 TM.
(b) Distinguish halting problem and Unsolvability.

University Question Papers 323

THEORY OF COMPUTING

GROUP I

(ANSWER ALL QUESTIONS)

1. Let a and b be two regular expressions then ()* *a b∗ ∪ is equivalent to

(a) a b∪ (b) ()*a b∪
(c) ()*b a∪ (d) ()* * *b a∪

2. Every context free Grammar can be transferred into an equivalent
(a) Greibach Normal Form (GNF)
(b) Chomsky Normal Form (CNF)
(c) Either (A) or (B)
(d) None of the above

3. Finite state machine — recognizes palindromes
(a) can (b) may
(c) Can’t (d) may not

4. Pushdown machine represents
(a) Type 3 regular grammar (b) Type 2 context free grammar
(c) Type 1 context sensitive grammar
(d) Type 0 phrase structural grammar

5. The Turing machine is computable if final state contains
(a) transition function (b) no tansition function
(c) halt state (d) both B and C

6. Match the following
1. BNF (a) S aAa A SbA→ →,
2. CNF (b) S aAA A bBB→ →,
3. GNF (c) S AA A a→ →,
(A) 1-a, 2-b, 3-c, (B) 1-b, 2-c, 3-a
(C) 1-a, 2-c, 3-b (D) 1-c, 2-b, 3-a.

7. Which is the data structure used to implement the PDA?
(a) Linked list (b) queue
(c) stack (d) Array

8. A connected graph as a strongly regular colouring if and only if it is a
(a) digraph (b) cayley graph
(c) regular graph (d) cellular Automata.

9. Which is the following is a model of massive parallelism.
(a) Finite Automata (b) Linear Bounded Automata
(c) Turing machine (d) Cellular Automata

324 Theory of Automata, Formal Languages and Computation

10. The free abelian group of ranked with the standard set of free generator
is the lattice of integer co-ordinate prints of euclidean space Rd denoted
as 2d is is
(a) triangular tessellation (b) Torus
(c) Torus tessellation (d) 2D-euclidean grid

THEORY OF COMPUTING

GROUP II

11. Draw the NFA that recognize the following set 01*/00*1.
12. Construct a Turing machine that recognizes the set of all bit strings that

end with a ‘0’.
13. Derive the string aaabbbccc from S ABSc S Abc→ →, , BA AB→ ,

Bb bb Ab ab Aa aa→ → →, , .
14. Is the Grammar ‘S AB B ab A aa A a B b→ → → → →, , , , ’ ambiguous?

Prove.
15. Define Pushdown Automata.
16. What is a unit production & ε- (epsilon) production?
17. State the church’s Hypothesis.
18. State the Halting problem.
19. State some practical application for linear cellular automata.
20. Draw 3 examples for cayley graph.

THEORY OF COMPUTING

GROUP I

(ANSWER ALL QUESTIONS)

1. The grammar with the productions

S aA bB B b A→ → →/ , , ε (ε-epsi lon) belongs to

(a) Regular grammar only (b) Context free grammar only
(c) Regular and Context free only
(d) Context sensitive only

2. State the regular expression recognized by the transition diagram

University Question Papers 325

A B 0Start 1
10

1
0

10

(i) 10 (ii) 0*1* (iii) {0, 1}*{10} (iv) (101)*
(A) (i) only (B) (i) & (ii) only
(C) (i) & (iii) only (D) (ii) & (iii) only

3. The context free grammar defined by ab* is
(a) S Sb a→ / (b) S XY X ax Y by→ → →, ,
(c) C SS baa abb S→ →/ / , ε (d) S aS S bS→ →, .

4. Find the useless symbol in the given CFG

S AB CA B BC AB A a C aB b→ → → →/ , / , ; /

(a) A (b) B (c) C (d) all of the above.
5. The grammar that does not have an equivalent deterministic automata

for a non-deterministic one is
(a) Finite state automata (b) Turing machine
(c) Pushdown automata (d) None of the above

6. A CFG is ambiguous if
(a) The grammar contains useless Non-Terminals.
(b) It produces more than one parse tree for some sentence.
(c) Some productions has two Non-Terminals side by side.
(d) The grammar contains only terminals on the right side.

7. Which of the following is a model of massive parallelism
(a) Cellular automata (b) Turing machine
(c) Linear bounded automata (d) Finite automata

8. When a connected graph has a strongly regular coloring
(a) If the graph is a digraph
(b) If the graph is a Cayley graph
(c) If the graph is a Euler graph.
(d) If the graph is a Hamiltonian graph.

9. Match the following
(a) BNF (i) S AA A BB B a→ → →, ,
(b) CNF (ii) S aAA A bBB B b→ → →, ,
(c) GNF (iii) S aAa A SA A b→ → →, ,
(a) a - i, b - iii, c - ii (b) a - ii, b - iii, c - i
(c) a - i, b - ii, c - iii (d) a - iii, b - i, c - ii.

10. If ‘a’ and ‘x’ as configuration with finite support and ‘x’ be an arbitrary
configuration then the convolution a*x is given by.

326 Theory of Automata, Formal Languages and Computation

THEORY OF COMPUTING

GROUP II

11. Describe in English the sets accepted by the finite automata along with
the regular expression for the following transition diagram.

12. List the application of finte automata.
13. Show that the following context Free Grammar generates the language

of all strings over {0, 1} with twice as many 1’s as 0’s.

S SS TT T T TT
T S S S S

→
→

/ / /
/ / / .

0 0 0
1 1 1 1

14. Is the following grammar ambiguous. Justify

S AB A aA B ab bB→ → →, / / / .ε ε

15. Give the new set of productions after removng the unit productions for
the following CFG.

S AA A B BB B abB b bb→ → →, / , / / .

16. Construct two different NFA for the RE a*.
17. Is unsolvability a halting problem. Justify.
18. When a ‘digraph’ becomes regular?
19. Define cellular automata.
20. What is meant by Recursively Enumerable language?

B.E. — COMPUTER SCIENCE & ENGINEERING — IV SEMESTER

THEORY OF COMPUTING

Time: 3 Hours Max. Marks: 60

GROUP III

21. Construct and explain pushdown Automata for the following grammar.

S aAA
A aS bS a

→
→ / /

University Question Papers 327

A B
0Start 1

C

0

10

D
1

0

1

22. Construct NFA for the following regular expressions. Show the
sequence of moves made by the each in processing the input string
“ababbab”.
(a) (ab)* (ac)*
(b) (a / b)* abb (a / b)*
(c) (a* / b*)

23. Construct GNF for the BNF grammar S AB A B B aB Bb→ → →, , | | .ε
24. Construct Turing Machine for identifying the language consisting of 0’s

and 1’s in which all the string consisting of even number of 0’s and odd
number of 1’s.

25. The roles played by Linear Cellular Automatadiscuss. Explain Global
maps and dynamical systems.

THEORY OF COMPUTING

Time: 3 Hours Max. Marks: 60

GROUP III

21. Let M q q q q q= ({ , , },{ , }, ,{ },{ })1 2 3 1 301 δ is a NDFA where δ is given by
δ δ
δ δ

(,) { , } (,) { }

(,) { , } (,)

q q q q q

q q q q
1 2 3 1

2 1 2 2

0 1 1

0 1

= =
= = { }

,) { } (,) { , }

φ
δ(δq q q q q3 2 3 1 20 1= =
(a) Construct an equivalent DFA and draw the transition diagram.
(b) Check whether the string ‘011010’ is accepted by DFA and NFA.

22. Consider the grammar with the following productions

S iC t S iCtSeS a C b→ →/ / ,

(a) Generate a sentence ‘ibtibtaea’ using leftmost derivation and con-
struct a derivation tree for it.

(b) Derive an equivalent chomsky norma form productions.
23. (a) Construct a PDA for the given grammar

S AaA CA BaB
A aaBa CDA aa DC
B bB bAB bbaS
C Ca bC D

→
→
→
→

/ /
/ / /

/ /
/ /

D bD→ / .ε
(b) Using the above show the sequence of PDA for the string
 ‘aabbaaaaaaa’.

24. (a) State the problems in Turing Machine.

328 Theory of Automata, Formal Languages and Computation

(b) Construct a Turing Machine that will accept the following langua -
ges in {a, b}

L a b n n mn m= ≥ ≠{ , , }.1

25. (a) Explain the basic properties of linear cellular Automata.
(b) Draw any 3 common types of Cayley graph.

THEORY OF COMPUTING

TEST II

Class: BE—CSE Time 90 mts.
Sem: IV Marks : 30

GROUP I

1. The CFG defined by ab* is

(a) S Sb a→ | (b)
S XY
X ax
Y by

→
→
→

(c) C SS baa abb
S

→
→

| |
ε

(d) S aS
S Bs

→
→

2. Consider the Left Recursive (LR) grammar
S Aa b
A Ac bd

→
→

|
|

Which of the following grammar is equivalent to the given grammar.
When LR is removed

(a)
S Aa b
A bdA
A cA

→
→ ′
→ ′

|

|ε
(b) S bA

A C da
→ ′
→ |

(c) S Aa b
A CA

→
→ ′

| (d) S Aa b
A A C bd

→
→ ′

|
| |ε

3. Match the following
1. BNF (a) S aAa A SbA→ →,
2. CNF (b) S aAA A bBB→ →,
3. GNF (c) S AA A a→ →,
(a) 1- a, 2 - b, 3 - c (b) 1 - a, 2 - c, 3 - b
(c) 1 - b, 2 - c, 3 - a (d) 1 - c, 2 - b, 3 - a

4. In PDA, the δ is defined by
(a) δ γ(, ,) (,)q a z p= 1 1 (b) δ γ(,) (,)q z p= 1 1
(c) δ γ(,) (,)q a p= 1 1 (d) both a & b.

University Question Papers 329

5. The Turing machine is computable if final state contains__________
(a) transition function (b) halt state
(c) no transition function (d) both b & c.

GROUP II

6. Check whether the following grammar is ambiguous or Unambiguous

S S S→ () |ε

7. Rewrite the given grammar after removing unit production
S AB
A B
B aB Bb

→
→
→ | |ε

8. Define PDA
9. Find the moves for the following configuration of TM

Q0

↓
0 1 1

Q1

↓
0 1 1

10. Define Turing Machine.

GROUP III

Answer Any 2 Ques tions

11. Construct GNF for the BNF given in problem no. 7.
12. (a) Construct PDA from the following grammar

S aAA bBB aB a
A aA a
B bB b

→
→
→

| | |
|
|

(b) Show the sequence of moves of PDA of problem given in 12(a).
13. Construct TM for identifying the language consisting of 0’s and 1’s in

which all the string consists of even no. of 0’s and 1’s.

330 Theory of Automata, Formal Languages and Computation

THEORY OF COMPUTING

GROUP I

1. The regular expression for the set of strings that consists of alternating
0’s and 1’s.
(a) () () () ()* * * *01 10 0 10 1 01+ + + (b) () () () ()* * * *01 10 1 01 0 10

(c) ()() ()*ε ε+ +1 01 0 (d) both a & c.

2. Consider the following 2 DFA’s (Refer fig.)
3. The CFG is defined by the following productions

S A B
A A
B B B

→
→
→

1
0
0 1

/
/ /
ε

ε
Which of the following substring is encountered during the derivation
process for the sentence 00101
(a) 0A1B (b) 0 1∈ B (c) 0101B (d) All of the above

4. Match the following
1. BNF (a) A xXyz→
2. GNF (b) A xy→
3. CNF (c) A XxYyZz→
(a) 1 - a, 2 - b, 3 - c (b) 1 - b, 2 - c, 3 - a
(c) 1 - c, 2 - A, 3 - b (d) 1 - a, 2 - b, 3 - c

5. The equivalent PDA for the given CFG is S S A→ 0 1 / (Refer fig.)
6. The pumping lemma for regular language

(a) xy z′ for any i ≥ 0 (b) x yz′ for any i ≥ 0
(c) xyz′ for any i ≥1 (d) x y z′ ′ ′ for any i ≥1

7. The transition function of Turing machine can be defined as
(a) δ(,) (, ,)q x p y D= (b) δ(,) (, ,)q p y D∈ =
(c) δ(,) (, ,)q xy p y D= (d) No transistion function.

8. The Turing machine is said to be acceptance by halting, if
(a) δ(,)q x is undefined (b) δ(,)q x is defined
(c) δ(,)q x is ∈ (d) δ(,) (,)q x p y=

9. model does not exchange information during
computation
(a) uniform arrays (b) mosaic automata
(c) tessellation structure (d) all of the above

10. The transition function of cellular space is denoted by
(a) δ:Q Q Qd× → (b) δ:Q Q Q d× →
(c) δ:→ Q d (d) δ:Q Qd →

University Question Papers 331

B.E. — COMPUTER SCIENCE & ENGINEERING
THEORY OF COMPUTING

SEMESTER IV

Time: 3 Hours Maximum Marks : 60

GROUP II

11. Find a regular expression for the language of the set of all strings of 0’s
& 1’s whose number of 0’s is divisible by 5 and whose number of 1’s is
even.

12. Compute ∈-NFA for the following, regular expression

1 1 10 10 0 01() ()* *+ + +

13. Prove that { / }0 102 0n n n ≥ is not a regular language.

14. Find whether the given grammar is ambiguous (or) Unambiguous

S T U
T aTbT c
U aA aTbU

→
→
→

|
|

|

15. Rewrite the given grammar after removing unit production:

S ABA
A aA
B bB

→
→ ∈
→ ∈

|
|

16. Design a CFG generating the following language

{ / }a b c j i ki j k ≠ +

17. Define Turing Machine.
18. Why accepting state is called as Halting State in TM?
19. Differentiate Cellular and Linear Cellular automata.
20. Write the local rules of Cellular automata.

GROUP III

21. (a) Construct finite automata to recognize the language of all strings of
0’s and 1’s of length at least 1, if they were interrupted as binary
representation of integers, would represent integers evenly divisi-
ble by 3. Leading 0’s are permissible.

332 Theory of Automata, Formal Languages and Computation

(b) Find an equivalent FA and Regular expression from the given NFA
(Refer fig.)

22. (a) Design a PDA to recognize the language of all odd-length palin-
dromes over {a, b}

(b) Construct CFG for the language generated in Question No. 22(a).
23. Construct GNF from the given grammar

S aAa bBb
A c a
B c b
C CDE
D A B ab

→
→
→
→
→

| |
|
|

|
| |

24. (a) Construct a Turing Machine that creates a copy of its input string
(Ex: abcd) to the right of the input but with a blank separating the

 copy from the original.
(b) Design a Turing machine for computing the LCM of two numbers.

25. Write short notes on
(a) Cellular Automata
(b) Linear Cellular Automata

THEORY OF COMPUTING

Time: 3 hours Max. Marks: 40

GROUP I

1. Find the start height of the following and draw the NFA for the given
regular expressions.
(a) ((/) /)* *a a a aa aaa

(b) (((/)) /)* * * *a a aa aa aaaaaa

2. Consider the two regular expressions
r1 0 1: /* * r2 01 10 1 0 0 1: / / / ()* * * * *

(a) Find a string corresponding to r1 but not to r2.
(b) Find a string corresponding to r2 but not to r1.
(c) Find a string corresponding to both r1 and r2.
(d) Find a string in {0, 1}* corresponding to neither r1 nor r2.

3. Define and Construct a language for Context sensitive grammar.
‘We do not define ε-transitions for a Turing machine’. True or False.
Justify.

University Question Papers 333

4. State and distinguish halting problem and Unsolvability.

GROUP II

5. State the Kleene’s theorem (not the corollary) and give the proof with
neat sketch wherever necessary.

6. State the rules for a Context Free Grammar to be in Chomsky Normal
form. Find a CFG G’ in CNF generating L(G)—{ε}, where G has a
productions of

S AaA CA BaB A aaBa CDA aa DC

B bB bAB bb As C Ca bC

→ →
→ →

/ / / / /

/ / / / / D

D bD→ / ε

7. Consider the CFG with productions
S S S S T T T T F F F S a→ → + → →1 1 1 1$ / * / () /
(a) Write the CFG obtained from this one by eliminating left recursion.

(2)
(b) State the rules for DPDA and give a transition table for a DPDA

that acts as a top down parser for this language.
8. Define Universal TM.

Show that a language L ⊆ Σ* is recursively enumerable (i.e., can be
accepted by some TM) if and only if L can be enumerated by some TM.

9. State and prove Rice’s Theorem.

THEORY OF COMPUTING

Time : 90 Mts. Max Marks: 30

TEST II

GROUP I

1. The CFG defined by ab* is

(a) S Sb a→ | (b)
S XY
X ax
Y by

→
→
→

(c) C SS baa abb
S

→
→ ∈

| | (d) S aS bS→ |

2. The transition function of PDA is defined as
(a) δ γ(, ,) (,)q a z p=
(b) δ γ(,) (,)q z p=

334 Theory of Automata, Formal Languages and Computation

(c) δ γ(,) (,)q a p=
(d) δ γ(, ,) (,)q a z p=

3. Say True or False
A language L is Context free Language, if there is a Pushdown automata
accepting.

4. A CFG is Unambiguous if,
(a) it contains uselss Nonterminals
(b) it produces more than one parse tree for some sentence
(c) it produces more than one derivation for some sentence
(d) Both b & c

5. S aAa A SA A b→ → →, , . The given grammar is in normal
form.
(a) BNF (b) CNF (c) GNF (d) both a & b

GROUP II

6. Define PDA.
7. Show that the CFG with following production is Unambiguous.

S S S→ ∈() |

8. Let L be the language generated by the CFG with productions

S S S S S S S S S S a→ + −| | * | / | () |

How many derivation trees (Parse trees) are there fore the string a | a | a |
a | a | a ?

9. Write Instantaneous descriptions for the PDA generated in the Qn. No.
11 for accepting the sentence aabb.

10. Rewrite the grammar after removing Left recursion.

S Aa b
A Ac bd

→
→

|
|

GROUP III

Answer any 2 Ques tions

11. Convert the following grammar to GNF.

S ASB
A aAS a
B SbS A bb

→ ∈
→
→

|
|
| |

University Question Papers 335

12. (a) Construct PDA from the given grammar.

S S
S S T S T T
T T F T F F
F S a

→
→ + −

→
→

1
1 1

$
| |

* | / |
() |

(b) Show the moves of the PDA for accepting the sentence

a a a a+ * / $

13. Design a Context Free grammar for Boolean expressions and Construct
PDA for the same.

THEORY OF COMPUTING

GROUP II

11. Describes in English the sets accepted by the finite automata along with
the regular expression for the following transition diagram.

12. List the application of finite automata.
13. Show that the following context Free Grammar generates the language

of all strings over {0, 1} with twice as many 1’s as 0’s.

S SS TT T T TT
T S S S S

→
→

/ / /
/ / / .

0 0 0
1 1 1 1

14. Is the following grammar ambiguous. Justify

S AB A aA B ab bB→ → ∈ → ∈, / , / / .

15. Give the new set of productions after removing the unit productions for
the following CFG.

S AA A B BB B abB b bb→ → →, / , / / .

16. Construct two different NFA for the RE a*.
17. Is unsolvability a halting problem. Justify.
18. When a ‘digraph’ becomes regular?
19. Define cellular automata.
20. What is meant by Recursively Enumerable language?

336 Theory of Automata, Formal Languages and Computation

A B
0Start 1

C

0

10

D
1

0

1

B.E.—COMPUTER SCIENCE & ENGINEERING—IV SEMESTER

THEORY OF COMPUTING

Time : 3 Hours Max. Marks: 60

GROUP III

21. Let M q q q q q= ({ , , },{ , }, ,{ },{ })1 2 3 1 301 δ is a NDFA where δ is given
by
δ δ
δ δ(

(,) { , } (,) { }

(,) { , } ,)

q q q q q

q q q q
1 2 3 1 1

2 1 2 2

0 1

0 1

= =
= = { }

(,) { } (,) { , }

φ
δ δq q q q q3 2 3 1 20 1= =

(a) Construct an equivalent DFA and draw the transition diagram.
(b) Check whether the string ‘011010’ is accepted by DFA and NFA.

22. Consider the grammar with the following productions

S iCtS iCtSeS a C b→ →/ / ,

(a) Generate a sentence ‘ibtibtaea’ using leftmost derivation and con-
struct a derivation tree for it.

(b) Derive an equivalent chomsky normal form productions.
23. (a) Construct a PDA for the given grammar

S AaA CA BaB
A aaBa CDA aa DC
B bB bAB bbaS
C Ca bC D

→
→
→
→

/ /
/ / /

/ /
/ /

D bD→ ∈/ .

(b) Using the above show the sequence of PDA for the string
‘aabbaaaaaaa’.

24. (a) State the problems in Turing Machine.
(b) Construct a Turing Machine that will accept the following languages

in {a, b}

L a b n n mn m= ≥ ≠{ , , }.1

25. (a) Explain the basic properties of linear cellular Automata.
(b) Draw any 3 common types of Cayley graph.

University Question Papers 337

COMPUTER SCIENCE AND ENGINEERING — FIFTH SEMESTER

THEORY OF COMPUTATIONS

Time: 3 Hours Max. Marks: 50

*Answer All Ques tions

PART A

1. (a) Explain the Chomsky’s hierarchy of language.
(b) Explain the need for Theory of Computing.

2. (a) Prove by mathematical induction: Every integer, greater than 17, is
a nonnegative integer combination of 4 and 7. In other words, for
every n > 17, there exists integers in and jn both ≥ 0, so that

n i jn n= +* * .4 7

(b) For every n n n≥ +0 52, () is divisible by 6.

3. (a) Prove that for every NDFA, there exists a DFA.
(b) Find the deterministic acceptor equivalent to

M q q q a b= ({ , , }, (,), , ,)0 1 2 0 2δ δ δ is given below:

State a b

q0 q0, q1 q2

q1 q0 q1

q2 q0, q1

4. (a) Find the language generated by the following grammars:
 (i) S A S A A S→ →0 1 0 1 1 1 1| | | , | |
(ii) S S A A A→ →0 1 0 1 1 0 0| , | .

(b) Construct a grammar to generate

{() |) {() | }.ab n ba nn n≥ ∪ ≥1 1

5. List any 12 idetities for regular expressions.
6. Draw the transition system corresponding to () .* *ab c b+

338 Theory of Automata, Formal Languages and Computation

7. Transition table of a Turing machine is given below:

Pres ent
State

Tape Sym bols Ini tial State→

b 0 1 finite state

→ q1 1Lq2 0Rq1

q2 bRq3 0Lq2 1Lq2

q3 bRq4 bRq5

q4 0Rq5 0Rq4 1Rq4

q5 0Lq2

Draw the computation sequence of the input string 00.
8. Explain how a Turing-machine can be used as a language acceptor.
9. Prove that not all languages are recursively enumerable.

10. (a) What is Rice’s Theorem?
(b) List six unsolvable problems.

11. (i) Construct a minimal finite automaton for the given FA.

(ii) Below are a number of language over {0, 1}. In each case, decide
whether or not the language is regular, and prove that your answer
is correct.
(a) The set of all strings x beginning with a non null string of the

form WW.
(b) Set of all strings x containing some non null substring of the

form WW.
(c) Set of all strings x containing some non null substring of the

form WWW.
(d) Set of all length strings over {0,1} with middle symbol 0.

University Question Papers 339

1

0

2

3

4

5

6

7

0

1

1

1

1

1

0

0

0

1

(e) Set of non palindromes.
(f) Set of strings in which the number of 0’s and the number of

1’s are both divisible by 5.
12. What is a non deterministic turing machine? Explain how is it used for

computing.
13. (a) (i) Construct a turing machine that can accept the strings over

{0, 1} containing even number of 1’s.
(ii) Construct a turing macine that can accept the set of all even

palindromens over {0, 1}.
(OR)

(b) M is a turing machine represented by the transition system as in
the figure given. Obtain the computation sequence of M for
processing the i/p string 0011.

340 Theory of Automata, Formal Languages and Computation

q2

q4

q1 q3 q5 q

(1, ,)x R

(0),x,R (1),y,L ()x,x,R ()b,b,R

()y,y,R ()y,y,L ()b,b,R

(0 0), ,L

(0 0), ,L

Bib li og ra phy

1. Richard Johnsonbaugh, Discrete Mathematics, Fifth Edition, Pearson
Education Asia Publishers, 2001.

2. Kolman, Bushy, Ross, Discrete Mathematical Structures, Fourth
Edition, Pearson Education, 2001.

3. Dexter C. Kozen, Automata and Computability, Springer, 1997.
4. Seymour Lipschutz., Discrete Structures, Schaum’s Outline series,

TMH, 1986.
5. Michael Sipser, Introduction to Theory of Computation, Thomson,

Brooks/Kole, 2001.
6. Peter Linz., An Introduction to Formal Languages and Automata,

Second Edition, Narosa Publishers, 1997.
7. Raymond Greenlaw, H-James Hoover, Fundamentals of the Theory of

Computation, Principles and Practice, Morgan Kaufmann Publishers, 1998.
8. John E. Hoperoft, Rajeev Motwani, Jeffrey D. Ullman, Introduction to

Automata Theory, Languages and Computation, Pearson Education, 2001.
9. Leon. S. Levy, Discrete Structures of Computer Science, Wiley Eastern

Limited, 1994.
10. K.L.P. Mishra, N. Chandrasekaran, Theory of Computer Science,

Second Edition, EEE, Prentice Hall of India, 1998.
11. Kenneth Ht. Rosen, Discrete Mathematics and Its Applications, Tata

McGraw-Hill, Edition 2001.
12. B.S. Vatssa, Discrete Mathematics, Wishwa Prakashan, 1993.
13. Bernard M. Moret. The Theory of Computation, Pearson Education

Asia, 1998.
14. Harry R. Lewis, Christos H. Papadimitrion, Elements of the Theory of

Computation, Pearson Education Asia, Second Edn., 1998.
15. Ralph P. Grimaldi, Discrete and Combinatorial Mathematics, Pearson

Education, Asia, 2002.
16. John C. Martin, Introduction to Languages and the Theory of

Computation, Second Edition, McGraw Hill International Edition, 1997.
17. John. E. Hopcroft, Jeffrey D. Ullman, Introduction to Automata Theory,

Languages and Computation, Narosa Publishers, 1979.

THIS PAGE IS
BLANK

Index

Absorp tion 3, 44, 53
Absur dity 255, 259, 302
Accep tor 59, 99, 114, 170, 186, 188
Ackermann’s func tion 229, 231, 234
Alpha bet 18, 43, 55
Ambi gu ity 127, 129-130
Ambig u ous gram mar 130, 149, 155
Asso cia tiv ity 2, 44, 52-53, 259
Autom a ton 58, 97, 99, 108
Axiom 245, 299

Biconditional 249, 293, 301
Bijection 13, 43, 54
Binary turing machine 196, 208
Blank 187, 207
Boolean logic 27, 43, 56
Boolean satisfiability 238, 243
Bottomup pars ing 128-129, 149, 155
Bub ble sort 236, 243

Car di nal ity 7, 43-44, 46, 53, vii
Car te sian prod uct 7, 53, vii
Chomsky nor mal form (CNF) 142, 149,

157, 167, 184
Cir cuit 16, 55
Clo sure 91, 96, 112, 175
Commutativity 2, 44, 52, 259
Com ple ment 2, 43, 52, vii
Com plex ity the ory 235, 240, 242
Com po si tion of func tions 222, 231, 233
Con cat e na tion 18, 56, 80-81, 92, 99
Con junc tion 27, 43, 56, 247, 290, 292,

300
Con nected graph 16, 55
Con text sen si tive gram mar 210, 214, 216
Con text sen si tive lan guage 210-211, 214,

216-217

Con text-free gram mar (CFG) 115,
148-149, 153, 167

Con tin gency 255, 257, 293, 301
Con tra dic tion 94, 173, 203, 255-256, 293,

301
Contrapositive 259-260, 302
Cycle 17, 55, 94

Deci sion algo rithm 176, 180, 185
Degree of ver tex 15, 43, 55
DeMorgan’s law 3, 6, 44, 53, 259, 290
Der i va tion tree 118, 125, 154
Deter min is tic autom ata 58, 109
Directed graph 17, 43, 55
Dis joint set 7, 44, 53
Disjunction 27, 43, 56, 248, 290, 292,

300
Dis junc tive syl lo gism 259, 293, 302
Distributivity 3, 44, 52, 259, 273

Empty pro duc tion removal 133, 184
Empty set 1, 43, vii
Empty string 18, 56, vii
Equiv a lence 259, 266, 302
Equiv a lence rela tion 9-11, 44, 53, 97-98
Exhaus tive search pars ing 128, 155
Expor ta tion 259, 302

Finite accep tor 110, 170
For mal sys tem 197, 218, 230, 232, 234

completeness 218, 230, 232
consistency 218, 230, 232

Func tion 12, 43, 54

Godel’s proof of num bers 218, 233
Gram mar 37-38, 57, 117, viii
Graph 15, 55

	Cover
	Preface
	Notations
	Contents
	Chapter 0. Introduction
	0.1 Basics
	0.1.1 Sets
	0.1.2 Relations and Functions

	0.1.3 Graphs and Trees
	0.1.4 Strings and Languages

	0.1.5 Boolean Logic
	0.1.6 Fundamental Proof Techniques

	0.1.7 Introduction to Grammar

	Glossary
	Review Questions
	Exercises
	Short Questions and Answers

	Chapter 1. DFA and NFA
	1.1 Deterministic Finite Automata (DFA)
	1.1.1 Automata—What is it?
	1.1.2 Types of Automation

	1.1.3 Definition of
Deterministic Finite Automation

	1.2 Non-Deterministic Finite Automata (NFA)
	1.3 Equivalence of NFA and DFA
	1.4 Regular Expression
	1.4.1 Regular Languages

	1.4.2 Regular Expressions

	1.4.3 Building Regular Expressions

	1.4.4 Languages defined by Regular Expressions

	1.4.5 Regular Expressions to NFA

	1.4.6 NFAs to Regular Expression

	1.5 Two-Way Finite Automata
	1.6 Finite Automata with Output
	1.6.1 Definition
	1.6.2 Mealey Machine
	1.6.3 Moore Machine

	1.7 Properties of Regular Sets (Languages)
	1.7.1 Closure

	1.7.2 Union, Concatenation, Negation, Kleene Star, Reverse

	1.7.3 Intersection and Set Difference

	1.8 Pumping Lemma
	1.8.1 Principle of Pumping Lemma
	1.8.2 Applying the Pumping Lemma

	1.9 Closure Properties of Regular Languages
	1.10 Myhill-Nerode Theorem
	1.10.1 Myhill-Nerode Relations

	1.10.2 Myhill-Nerode Theorem

	Glossary
	Review Questions
	Exercises
	Short Questions and Answers

	Chapter 2. Context-Free Grammars
	2.1 Introduction
	2.1.1 Definition of CFG

	2.1.2 Example of CFG

	2.1.3 Right-Linear Grammar

	2.1.4 Right-Linear Grammars and NFAs

	2.1.5 Left-Linear Grammar

	2.1.6 Conversion of Left-linear Grammar into Right-Linear Grammar

	2.2 Derivation Trees
	2.2.1 Definition of a Derivation Tree
	2.2.2 Sentential Form
	2.2.3 Partial Derivation Tree
	2.2.4 Right Most/Left Most/Mixed Derivation

	2.3 Parsing and Ambiguity
	2.3.1 Parsing
	2.3.2 Exhaustive Search Parsing
	2.3.3 Topdown/Bottomup Parsing
	2.3.4 Ambiguity
	2.3.5 Ambiguous Grammars/Ambiguous Languages

	2.4 Simplification of CFG
	2.4.1. Simplification of CFG-Introduction
	2.4.2 Abolishing Useless Productions

	2.5 Normal Forms
	2.5.1 Chomsky Normal Form (CNF)
	2.5.2 Greibach Normal Form
	Glossary
	Review Questions
	Exercises
	Short-Questions and Answers

	Chapter 3. Pushdown Automata
	3.1 Definitions
	3.1.1 Nondeterministic PDA (Definition)
	3.1.2 Transition Functions for NPDA
	3.1.3 Drawing NPDAs
	3.1.4 Execution of NPDA
	3.1.5 Accepting Strings with an NPDA
	3.1.6. An Example of NPDA Execution

	3.1.7 Accepting Strings with NPDA (Formal Version)

	3.2 Relationship Between PDA and Context Free Languages

	3.2.1 Simplifying CFGs
	3.2.2 Normal Forms of Context-Free Grammars
	3.2.3 CFG to NPDA
	3.2.4 NPDA to CFG
	3.2.5 Deterministic Pushdown Automata

	3.3 Properties of Context free Languages
	3.3.1 Pumping Lemma for CFG
	3.3.2 Definitions
	3.3.3 Proof of Pumping Lemma
	3.3.4 Usage of Pumping Lemma

	3.4 Decision Algorithms
	Glossary
	Review Questions
	Exercises
	Short Questions and Answers

	Chapter 4. Turing Machines
	4.1 Turing Machine Model
	4.1.1 What is a Turing Machine?
	4.1.2 Definition of Turing Machines

	4.1.3 Transition Function, Instantaneous Description and Moves

	4.1.4 Programming a Turing Machine
	4.1.5 Turing Machines as Acceptors
	4.1.6 How to Recognize a Language
	4.1.7 Turing Machines as Transducers

	4.2 Complete Languages and Functions
	4.3 Modification of Turing Machines
	4.3.1 N-Track Turing Machine
	4.3.2 Semi-infinite Tape/Offline/Multitape/ND Turing Machines
	4.3.3 Multidimensional/Two-state Turing Machine

	4.4 Church–Turing’s Thesis
	4.4.1 Counting
	4.4.2 Recursive and Recursively Enumerable Language

	4.4.3 Enumerating Strings in a Language

	4.4.4 Non-recursively Enumerable Languages

	4.5 Undecidability
	4.5.1 Halting Problem

	4.5.2 Implications of Halting Problem

	4.5.3 Reduction to Halting Problem

	4.5.4 Post’s Correspondence Problem

	4.6 Rice’s Theorem
	Glossary
	Review Questions
	Exercises
	Short Questions and Answers

	Chapter 5. Chomsky Hier archy
	5.1 Context Sensitive Grammars and Languages
	5.2 Linear Bounded Automata
	5.3 Relationship of other Grammars

	5.4 The Chomsky Hierarchy
	5.5 Extending the Chomsky Hierarchy
	5.6 Unrestricted Grammar
	5.7 Random-Access Machine
	Glossary
	Review Questions
	Exercises
	Short Questions and Answers

	Chapter 6. Computability
	6.1 Formal Systems
	6.2 Recursive Function Theory
	6.3 Primitive Recursive Functions
	6.4 Composition and Recursion
	6.5 Ackermann’s Function
	Glossary
	Review Questions
	Exercises
	Short Questions and Answers

	Chapter 7. Complexity Theory
	7.1 Introduction
	7.2 Polynomial-Time Algorithms
	7.3 Non-Deterministic Polynomial Time Algorithms
	7.4 Integer Bin Packing
	7.5 Boolean Satisfiability
	7.6 Additional NP Problems
	7.7 NP-Complete Problems

	Glossary
	Review Questions
	Exercises
	Short Questions and Answers

	Chapter 8. Propositions and Predicates
	8.1 Propositions
	8.1.1 Connectives

	8.1.2 Tautology, Contradiction and Contingency

	8.1.3 Logical Identities

	8.2 Logical Inference
	8.3 Predicates and Quantifiers
	8.4 Quantifiers and Logical Operators
	8.5 Normal Forms
	Glossary
	Review Questions
	Exercises
	Short Questions and Answers

	Answers to Exercises
	University Question Papers

	Bibliography
	index

