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Preface

HORTENSIO: Madam, before you touch the instrument
To learn the order of my fingering,

I must begin with rudiments of art

To teach you gamouth in a briefer sort,

More pleasant, pithy and effectual,

Than hath been taught by any of my trade;

And there it is in writing, fairly drawn.

—The Taming of the Shrew, 111, i, 62—68.

On September 11, 2001, terrorists seized control of four airplanes. Three were flown
into buildings, and a fourth crashed, with catastrophic loss of life. In the aftermath, the
security and reliability of many aspects of society drew renewed scrutiny. One of these
aspects was the widespread use of computers and their interconnecting networks.

The issue is not new. In 1988, approximately 5,000 computers throughout the
Internet were rendered unusable within 4 hours by a program called a worm [3 86].!
While the spread, and the effects, of this program alarmed computer scientists, most
people were not worried because the worm did not affect their lives or their ability to
do their jobs. In 1993, more users of computer systems were alerted to such dangers
when a set of programs called sniffers were placed on many computers run by net-
work service providers and recorded login names and passwords [339].

After an attack on Tsutomu Shimomura’s computer system, and the fascinat-
ing way Shimomura followed the attacker’s trail, which led to his arrest [§21], the
public’s interest and apprehension were finally aroused. Computers were now vul-
nerable. Their once reassuring protections were now viewed as flimsy.

Several films explored these concerns. Movies such as War Games and Hack-
ers provided images of people who can, at will, wander throughout computers and
networks, maliciously or frivolously corrupting or destroying information it may
have taken millions of dollars to amass. (Reality intruded on Hackers when the
World Wide Web page set up by MGM/United Artists was quickly altered to present

!'Section 19.4 discusses computer worms.
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an irreverent commentary on the movie and to suggest that viewers see The Net
instead. Paramount Pictures denied doing this [399].) Another film, Sneakers, pre-
sented a picture of those who test the security of computer (and other) systems for
their owners and for the government.

Goals

This book has three goals. The first is to show the importance of theory to practice and
of practice to theory. All too often, practitioners regard theory as irrelevant and theoreti-
cians think of practice as trivial. In reality, theory and practice are symbiotic. For
example, the theory of covert channels, in which the goal is to limit the ability of pro-
cesses to communicate through shared resources, provides a mechanism for evaluating
the effectiveness of mechanisms that confine processes, such as sandboxes and fire-
walls. Similarly, business practices in the commercial world led to the development of
several security policy models such as the Clark-Wilson model and the Chinese Wall
model. These models in turn help the designers of security policies better understand
and evaluate the mechanisms and procedures needed to secure their sites.

The second goal is to emphasize that computer security and cryptography are
different. Although cryptography is an essential component of computer security, it is
by no means the only component. Cryptography provides a mechanism for perform-
ing specific functions, such as preventing unauthorized people from reading and
altering messages on a network. However, unless developers understand the context
in which they are using cryptography, and unless the assumptions underlying the pro-
tocol and the cryptographic mechanisms apply to the context, the cryptography may
not add to the security of the system. The canonical example is the use of cryptogra-
phy to secure communications between two low-security systems. If only trusted
users can access the two systems, cryptography protects messages in transit. But if
untrusted users can access either system (through authorized accounts or, more likely,
by breaking in), the cryptography is not sufficient to protect the messages. The
attackers can read the messages at either endpoint.

The third goal is to demonstrate that computer security is not just a science but
also an art. It is an art because no system can be considered secure without an exami-
nation of how it is to be used. The definition of a “secure computer” necessitates a
statement of requirements and an expression of those requirements in the form of
authorized actions and authorized users. (A computer engaged in work at a university
may be considered “secure” for the purposes of the work done at the university.
When moved to a military installation, that same system may not provide sufficient
control to be deemed “secure” for the purposes of the work done at that installation.)
How will people, as well as other computers, interact with the computer system?
How clear and restrictive an interface can a designer create without rendering the sys-
tem unusable while trying to prevent unauthorized use or access to the data or
resources on the system?
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Just as an artist paints his view of the world onto canvas, so does a designer of
security features articulate his view of the world of human/machine interaction in the
security policy and mechanisms of the system. Two designers may use entirely dif-
ferent designs to achieve the same creation, just as two artists may use different sub-
jects to achieve the same concept.

Computer security is also a science. Its theory is based on mathematical con-
structions, analyses, and proofs. Its systems are built in accordance with the accepted
practices of engineering. It uses inductive and deductive reasoning to examine the
security of systems from key axioms and to discover underlying principles. These
scientific principles can then be applied to untraditional situations and new theories,
policies, and mechanisms.

Philosophy

Key to understanding the problems that exist in computer security is a recognition
that the problems are not new. They are old problems, dating from the beginning of
computer security (and, in fact, arising from parallel problems in the noncomputer
world). But the locus has changed as the field of computing has changed. Before the
mid-1980s, mainframe and mid-level computers dominated the market, and com-
puter security problems and solutions were phrased in terms of securing files or pro-
cesses on a single system. With the rise of networking and the Internet, the arena has
changed. Workstations and servers, and the networking infrastructure that connects
them, now dominate the market. Computer security problems and solutions now
focus on a networked environment. However, if the workstations and servers, and the
supporting network infrastructure, are viewed as a single system, the models, theo-
ries, and problem statements developed for systems before the mid-1980s apply
equally well to current systems.

As an example, consider the issue of assurance. In the early period, assurance
arose in several ways: formal methods and proofs of correctness, validation of policy
to requirements, and acquisition of data and programs from trusted sources, to name
a few. Those providing assurance analyzed a single system, the code on it, and the
sources (vendors and users) from which the code could be acquired to ensure that
either the sources could be trusted or the programs could be confined adequately to
do minimal damage. In the later period, the same basic principles and techniques
apply, except that the scope of some has been greatly expanded (from a single system
and a small set of vendors to the world-wide Internet). The work on proof-carrying
code, an exciting development in which the proof that a downloadable program mod-
ule satisfies a stated policy is incorporated into the program itself,? is an example of
this expansion. It extends the notion of a proof of consistency with a stated policy. It

% Section 19.6.5.1 discusses proof-carrying code.
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advances the technology of the earlier period into the later period. But in order to
understand it properly, one must understand the ideas underlying the concept of
proof-carrying code, and these ideas lie in the earlier period.

As another example, consider Saltzer and Schroeder’s principles of secure
demgn Enunciated in 1975, they promote simplicity, confinement, and understand-
ing. When security mechanisms grow too complex, attackers can evade or bypass
them. Many programmers and vendors are learning this when attackers break into
their systems and servers. The argument that the principles are old, and somehow
outdated, rings hollow when the result of their violation is a nonsecure system.

The work from the earlier period is sometimes cast in terms of systems that no
longer exist and that differ in many ways from modern systems. This does not vitiate
the ideas and concepts, which also underlie the work done today. Once these ideas
and concepts are properly understood, applying them in a multiplicity of environ-
ments becomes possible. Furthermore, the current mechanisms and technologies will
become obsolete and of historical interest themselves as new forms of computing
arise, but the underlying principles will live on, to underlie the next generation—
indeed the next era—of computing.

The philosophy of this book is that certain key concepts underlie all of com-
puter security, and that the study of all parts of computer security enriches the under-
standing of all parts. Moreover, critical to an understanding of the applications of
security-related technologies and methodologies is an understanding of the theory
underlying those applications.

Advances in the theory of computer protection have illuminated the founda-
tions of security systems. Issues of abstract modeling, and modeling to meet specific
environments, lead to systems designed to achieve a specific and rewarding goal.
Theorems about the undecidability of the general security question4 have indicated
the limits of what can be done.

Application of these results has improved the quality of the security of the sys-
tems being protected. However, the issue is how compatibly the assumptions of the
model (and theory) conform to the environment to which the theory is applied.
Although our knowledge of how to apply these abstractions is continually increasing,
we still have difficulty correctly transposing the relevant information from a realistic
setting to one in which analyses can then proceed. Such abstraction often eliminates
vital information. The omitted data may pertain to security in nonobvious ways.
Without this information, the analysis is flawed.

Unfortunately, no single work can cover all aspects of computer security, so
this book focuses on those parts that are, in the author’s opinion, most fundamental
and most pervasive. The mechanisms exemplify the applications of these principles.

3 Chapter 12 discusses these principles.
4 See Section 3.2, “Basic Results.”
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Organization

The organization of this book reflects its philosophy. It begins with fundamentals and
principles that provide boundaries within which security can be modeled and analyzed
effectively. This provides a framework for expressing and analyzing the requirements
of the security of a system. These policies constrain what is allowed and what is not
allowed. Mechanisms provide the ability to implement these policies. The degree to
which the mechanisms correctly implement the policies, and indeed the degree to
which the policies themselves meet the requirements of the organizations using the
system, are questions of assurance. Exploiting failures in policy, in implementation,
and in assurance comes next, as well as mechanisms for providing information on the
attack. The book concludes with the applications of both theory and policy focused on
realistic situations. This natural progression emphasizes the development and applica-
tion of the principles existent in computer security.

The first chapter describes what computer security is all about and explores
the problems and challenges to be faced. It sets the context for the remainder of the
book.

Chapters 2 and 3 deal with basic questions such as how “security” can be
clearly and functionally defined, whether or not it is realistic, and whether or not it is
decidable.

Chapters 4 through 7 probe the relationship between policy and security. The
definition of “security” depends on policy. We examine several types of policies,
including the ever-present fundamental questions of trust, analysis of policies, and
the use of policies to constrain operations and transitions.

Chapters 9 through 12 discuss cryptography and its role in security, focusing
on applications and issues such as key management, key distribution, and how cryp-
tosystems are used in networks. A quick study of authentication completes this part.

Chapters 13 through 16 consider how to implement the requirements imposed
by policies using system-oriented techniques. Certain design principles are funda-
mental to effective security mechanisms. Policies define who can act and how they
can act, and so identity is a critical aspect of implementation. Mechanisms imple-
menting access control and flow control enforce various aspects of policies.

Chapters 17 and 18 present concepts and standards used to ascertain how well a
system, or a product, meets its goals.

Chapters 19 through 22 discuss some miscellaneous aspects of computer secu-
rity. Malicious logic thwarts many mechanisms. Despite our best efforts at high assur-
ance, systems today are replete with vulnerabilities. Why? How can a system be
analyzed to detect vulnerabilities? What models might help us improve the state of the
art? Given these security holes, how can we detect attackers who exploit them? A dis-
cussion of auditing flows naturally into a discussion of intrusion detection—a detection
method for such attacks.

Chapters 23 through 26 present examples of how to apply the principles dis-
cussed throughout the book. They begin with networks and proceed to systems, users,
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and programs. Each chapter states a desired policy and shows how to translate that pol-
icy into a set of mechanisms and procedures that support the policy. This part tries to
demonstrate that the material covered elsewhere can be, and should be, used in practice.

Each chapter in this book ends with a summary and some suggestions for fur-
ther reading. The summary highlights the important ideas in the chapter. Interested
readers who wish to pursue the topics in any chapter in more depth can go to some of
the suggested readings. They expand on the material in the chapter or present other
interesting avenues.

Differences Between this Book and
Computer Security: Art and Science

The differences between this book and Computer Security: Art and Science result
from the different intended audiences. This book is a shorter version of the latter,
omitting much of the mathematical formalism. It is suited for computer security pro-
fessionals, students, and prospective readers who have a less formal mathematical
background, or who are not interested in the mathematical formalisms and would
only be distracted by them, or for courses with a more practical than theoretical
focus.

The foundations and policy sections of this book do not present results involv-
ing formal modeling or derivations of limits on the decidability of security (although
it does present the central result, that the generic safety problem is undecidable).
Some policies, significant in the history of the development of policy models but no
longer used widely, have been omitted, as has discussion of the notions of nondeduc-
ibility and noninterference. Further, the section on assurance omits the presentation
of formal methods and the detailed discussion of designing and building secure systems.
It preserves the exposition of the basic concepts and ideas, especially those related to
reference monitors, and discusses commonly encountered evaluation criteria.

The reasons for these differences come from the different backgrounds
expected of readers. This book is intended for readers who may not be familiar with
highly mathematical concepts, or for classes in which the instructor does not intend
to expound upon formalisms, such as those required for the development of high
assurance systems, but wants students to be exposed to the ideas underlying a "high
assurance system." These situations most often arise in classes in which students’
backgrounds may not include classes that provide the understanding needed to assim-
ilate the mathematical details of the work. As a consequence, students are often intimi-
dated by the formalism even if the instructor skips it. The original version of this
book is intended for classes where the instructor wishes to explain, or allow the stu-
dents to explore on their own, the rich mathematical background and formalisms of
computer security.
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Some students learn best by an informal description of a subject. What is the
intuition underlying the ideas and principles of the field? How does the practitioner
apply these to improve the state of the art? For these students, this version of the
book is more appropriate. Other students are most comfortable with intuition aug-
mented by a formal mathematical exposition of the underlying concepts. How does
one make the intuition formal? How does one apply the ideas rigorously to assure a
secure system (for an appropriate definition of security)? For these students, the orig-
inal book, Computer Security: Art and Science, would be more appropriate.

Practitioners who are less interested in mathematical expositions of the theo-
ries underlying computer security will find this version more to their liking. This ver-
sion keeps the intuitive, non-mathematical exposition of the underlying principles,
but does so using a small amount of formal mathematics. Practitioners will find this
version shorter and, most likely, easier to read because they will not be distracted by
material they would find irrelevant.
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Chapter 1

An Overview of
Computer Security

ANTONIO: Whereof what’s past is prologue, what to come
In yours and my discharge.

—The Tempest, 11, 1, 257-258.

This chapter presents the basic concepts of computer security. The remainder of
the book will elaborate on these concepts in order to reveal the logic underlying the
principles of these concepts.

We begin with basic security-related services that protect against threats to the
security of the system. The next section discusses security policies that identify
the threats and define the requirements for ensuring a secure system. Security mech-
anisms detect and prevent attacks and recover from those that succeed. Analyzing the
security of a system requires an understanding of the mechanisms that enforce the
security policy. It also requires a knowledge of the related assumptions and trust,
which lead to the threats and the degree to which they may be realized. Such knowl-
edge allows one to design better mechanisms and policies to neutralize these threats.
This process leads to risk analysis. Human beings are the weakest link in the security
mechanisms of any system. Therefore, policies and procedures must take people into
account. This chapter discusses each of these topics.

1.1 The Basic Components

Computer security rests on confidentiality, integrity, and availability. The interpreta-
tions of these three aspects vary, as do the contexts in which they arise. The interpre-
tation of an aspect in a given environment is dictated by the needs of the individuals,
customs, and laws of the particular organization.
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1.1.1 Confidentiality

Confidentiality is the concealment of information or resources. The need for keeping
information secret arises from the use of computers in sensitive fields such as gov-
ernment and industry. For example, military and civilian institutions in the govern-
ment often restrict access to information to those who need that information. The
first formal work in computer security was motivated by the military’s attempt to
implement controls to enforce a “need to know” principle. This principle also applies
to industrial firms, which keep their proprietary designs secure lest their competitors
try to steal the designs. As a further example, all types of institutions keep personnel
records secret.

Access control mechanisms support confidentiality. One access control mech-
anism for preserving confidentiality is cryptography, which scrambles data to make it
incomprehensible. A cryptographic key controls access to the unscrambled data, but
then the cryptographic key itself becomes another datum to be protected.

EXAMPLE: Enciphering an income tax return will prevent anyone from reading it. If
the owner needs to see the return, it must be deciphered. Only the possessor of the
cryptographic key can enter it into a deciphering program. However, if someone else
can read the key when it is entered into the program, the confidentiality of the tax
return has been compromised.

Other system-dependent mechanisms can prevent processes from illicitly
accessing information. Unlike enciphered data, however, data protected only by these
controls can be read when the controls fail or are bypassed. Then their advantage is off-
set by a corresponding disadvantage. They can protect the secrecy of data more com-
pletely than cryptography, but if they fail or are evaded, the data becomes visible.

Confidentiality also applies to the existence of data, which is sometimes more
revealing than the data itself. The precise number of people who distrust a politician
may be less important than knowing that such a poll was taken by the politician’s
staff. How a particular government agency harassed citizens in its country may be
less important than knowing that such harassment occurred. Access control mecha-
nisms sometimes conceal the mere existence of data, lest the existence itself reveal
information that should be protected.

Resource hiding is another important aspect of confidentiality. Sites often
wish to conceal their configuration as well as what systems they are using; organiza-
tions may not wish others to know about specific equipment (because it could be
used without authorization or in inappropriate ways), and a company renting time
from a service provider may not want others to know what resources it is using.
Access control mechanisms provide these capabilities as well.

All the mechanisms that enforce confidentiality require supporting services
from the system. The assumption is that the security services can rely on the kernel,
and other agents, to supply correct data. Thus, assumptions and trust underlie confi-
dentiality mechanisms.
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1.1.2 Integrity

Integrity refers to the trustworthiness of data or resources, and it is usually phrased in
terms of preventing improper or unauthorized change. Integrity includes data integrity
(the content of the information) and origin integrity (the source of the data, often called
authentication). The source of the information may bear on its accuracy and credibil-
ity and on the trust that people place in the information.This dichotomy illustrates
the principle that the aspect of integrity known as credibility is central to the proper
functioning of a system. We will return to this issue when discussing malicious logic.

EXAMPLE: A newspaper may print information obtained from a leak at the White
House but attribute it to the wrong source. The information is printed as received
(preserving data integrity), but its source is incorrect (corrupting origin integrity).

Integrity mechanisms fall into two classes: prevention mechanisms and detec-
tion mechanisms.

Prevention mechanisms seek to maintain the integrity of the data by blocking
any unauthorized attempts to change the data or any attempts to change the data in
unauthorized ways. The distinction between these two types of attempts is important.
The former occurs when a user tries to change data which she has no authority to
change. The latter occurs when a user authorized to make certain changes in the data
tries to change the data in other ways. For example, suppose an accounting system is
on a computer. Someone breaks into the system and tries to modify the accounting
data. Then an unauthorized user has tried to violate the integrity of the accounting
database. But if an accountant hired by the firm to maintain its books tries to embez-
zle money by sending it overseas and hiding the transactions, a user (the accountant)
has tried to change data (the accounting data) in unauthorized ways (by moving it to
a Swiss bank account). Adequate authentication and access controls will generally
stop the break-in from the outside, but preventing the second type of attempt requires
very different controls.

Detection mechanisms do not try to prevent violations of integrity; they sim-
ply report that the data’s integrity is no longer trustworthy. Detection mechanisms
may analyze system events (user or system actions) to detect problems or (more
commonly) may analyze the data itself to see if required or expected constraints still
hold. The mechanisms may report the actual cause of the integrity violation (a spe-
cific part of a file was altered), or they may simply report that the file is now corrupt.

Working with integrity is very different from working with confidentiality.
With confidentiality, the data is either compromised or it is not, but integrity includes
both the correctness and the trustworthiness of the data. The origin of the data (how
and from whom it was obtained), how well the data was protected before it arrived at
the current machine, and how well the data is protected on the current machine all
affect the integrity of the data. Thus, evaluating integrity is often very difficult,
because it relies on assumptions about the source of the data and about trust in that
source—two underpinnings of security that are often overlooked.
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113 Availability

Availability refers to the ability to use the information or resource desired. Availabil-
ity is an important aspect of reliability as well as of system design because an
unavailable system is at least as bad as no system at all. The aspect of availability
that is relevant to security is that someone may deliberately arrange to deny access to
data or to a service by making it unavailable. System designs usually assume a statis-
tical model to analyze expected patterns of use, and mechanisms ensure availability
when that statistical model holds. Someone may be able to manipulate use (or
parameters that control use, such as network traffic) so that the assumptions of the
statistical model are no longer valid. This means that the mechanisms for keeping the
resource or data available are working in an environment for which they were not
designed. As a result, they will often fail.

EXAMPLE: Suppose Anne has compromised a bank’s secondary system server,
which supplies bank account balances. When anyone else asks that server for infor-
mation, Anne can supply any information she desires. Merchants validate checks by
contacting the bank’s primary balance server. If a merchant gets no response, the sec-
ondary server will be asked to supply the data. Anne’s colleague prevents merchants
from contacting the primary balance server, so all merchant queries go to the second-
ary server. Anne will never have a check turned down, regardless of her actual
account balance. Notice that if the bank had only one server (the primary one), this
scheme would not work. The merchant would be unable to validate the check.

Attempts to block availability, called denial of service attacks, can be the most
difficult to detect, because the analyst must determine if the unusual access patterns
are attributable to deliberate manipulation of resources or of environment. Compli-
cating this determination is the nature of statistical models. Even if the model accu-
rately describes the environment, atypical events simply contribute to the nature of
the statistics. A deliberate attempt to make a resource unavailable may simply look
like, or be, an atypical event. In some environments, it may not even appear atypical.

1.2 Threats

A threat is a potential violation of security. The violation need not actually occur for
there to be a threat. The fact that the violation might occur means that those actions
that could cause it to occur must be guarded against (or prepared for). Those actions
are called attacks. Those who execute such actions, or cause them to be executed, are
called attackers.

The three security services—confidentiality, integrity, and availability—
counter threats to the security of a system. Shirey [823] divides threats into four
broad classes: disclosure, or unauthorized access to information; deception, or
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acceptance of false data; disruption, or interruption or prevention of correct opera-
tion; and usurpation, or unauthorized control of some part of a system. These four
broad classes encompass many common threats. Because the threats are ubiquitous,
an introductory discussion of each one will present issues that recur throughout the
study of computer security.

Snooping, the unauthorized interception of information, is a form of disclosure.
It is passive, suggesting simply that some entity is listening to (or reading) communica-
tions or browsing through files or system information. Wiretapping, or passive wiretap-
ping, is a form of snooping in which a network is monitored. (It is called “wiretapping”
because of the “wires” that compose the network, although the term is used even if no
physical wiring is involved.) Confidentiality services counter this threat.

Modification or alteration, an unauthorized change of information, covers three
classes of threats. The goal may be deception, in which some entity relies on the modi-
fied data to determine which action to take, or in which incorrect information is
accepted as correct and is released. If the modified data controls the operation of the
system, the threats of disruption and usurpation arise. Unlike snooping, modification is
active; it results from an entity changing information. Active wiretapping is a form of
modification in which data moving across a network is altered; the term “active” dis-
tinguishes it from snooping (“passive” wiretapping). An example is the man-in-the-
middle attack, in which an intruder reads messages from the sender and sends (possibly
modified) versions to the recipient, in hopes that the recipient and sender will not real-
ize the presence of the intermediary. Integrity services counter this threat.

Masquerading or spoofing, an impersonation of one entity by another, is a
form of both deception and usurpation. It lures a victim into believing that the entity
with which it is communicating is a different entity. For example, if a user tries to log
into a computer across the Internet but instead reaches another computer that claims
to be the desired one, the user has been spoofed. Similarly, if a user tries to read a
file, but an attacker has arranged for the user to be given a different file, another
spoof has taken place. This may be a passive attack (in which the user does not
attempt to authenticate the recipient, but merely accesses it), but it is usually an
active attack (in which the masquerader issues responses to mislead the user about its
identity). Although primarily deception, it is often used to usurp control of a system
by an attacker impersonating an authorized manager or controller. Integrity services
(called “authentication services” in this context) counter this threat.

Some forms of masquerading may be allowed. Delegation occurs when one
entity authorizes a second entity to perform functions on its behalf. The distinctions
between delegation and masquerading are important. If Susan delegates to Thomas
the authority to act on her behalf, she is giving permission for him to perform spe-
cific actions as though she were performing them herself. All parties are aware of the
delegation. Thomas will not pretend to be Susan; rather, he will say, “I am Thomas
and I have authority to do this on Susan’s behalf.” If asked, Susan will verify this. On
the other hand, in a masquerade, Thomas will pretend to be Susan. No other parties
(including Susan) will be aware of the masquerade, and Thomas will say, “I am
Susan.” Should anyone discover that he or she is dealing with Thomas and ask Susan
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about it, she will deny that she authorized Thomas to act on her behalf. In terms of
security, masquerading is a violation of security, whereas delegation is not.

Repudiation of origin, a false denial that an entity sent (or created) something,
is a form of deception. For example, suppose a customer sends a letter to a vendor
agreeing to pay a large amount of money for a product. The vendor ships the product
and then demands payment. The customer denies having ordered the product and by
law is therefore entitled to keep the unsolicited shipment without payment. The cus-
tomer has repudiated the origin of the letter. If the vendor cannot prove that the letter
came from the customer, the attack succeeds. A variant of this is denial by a user that
he created specific information or entities such as files. Integrity mechanisms cope
with this threat.

Denial of receipt, a false denial that an entity received some information or
message, is a form of deception. Suppose a customer orders an expensive product,
but the vendor demands payment before shipment. The customer pays, and the ven-
dor ships the product. The customer then asks the vendor when he will receive the
product. If the customer has already received the product, the question constitutes a
denial of receipt attack. The vendor can defend against this attack only by proving
that the customer did, despite his denials, receive the product. Integrity and availabil-
ity mechanisms guard against these attacks.

Delay, a temporary inhibition of a service, is a form of usurpation, although it
can play a supporting role in deception. Typically, delivery of a message or service
requires some time ¢; if an attacker can force the delivery to take more than time ¢,
the attacker has successfully delayed delivery. This requires manipulation of system
control structures, such as network components or server components, and hence is a
form of usurpation. If an entity is waiting for an authorization message that is
delayed, it may query a secondary server for the authorization. Even though the
attacker may be unable to masquerade as the primary server, she might be able to
masquerade as that secondary server and supply incorrect information. Availability
mechanisms can thwart this threat.

Denial of service, a long-term inhibition of service, is a form of usurpation,
although it is often used with other mechanisms to deceive. The attacker prevents a
server from providing a service. The denial may occur at the source (by preventing
the server from obtaining the resources needed to perform its function), at the desti-
nation (by blocking the communications from the server), or along the intermediate
path (by discarding messages from either the client or the server, or both). Denial of
service poses the same threat as an infinite delay. Availability mechanisms counter
this threat.

Denial of service or delay may result from direct attacks or from nonsecurity-
related problems. From our point of view, the cause and result are important; the
intention underlying them is not. If delay or denial of service compromises system
security, or is part of a sequence of events leading to the compromise of a system,
then we view it as an attempt to breach system security. But the attempt may not be
deliberate; indeed, it may be the product of environmental characteristics rather than
specific actions of an attacker.
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1.3 Policy and Mechanism

Critical to our study of security is the distinction between policy and mechanism.

Definition 1-1. A security policy is a statement of what is, and what is not,
allowed.

Definition 1-2. A security mechanism is a method, tool, or procedure for
enforcing a security policy.

Mechanisms can be nontechnical, such as requiring proof of identity before
changing a password; in fact, policies often require some procedural mechanisms
that technology cannot enforce.

As an example, suppose a university’s computer science laboratory has a pol-
icy that prohibits any student from copying another student’s homework files. The
computer system provides mechanisms for preventing others from reading a user’s
files. Anna fails to use these mechanisms to protect her homework files, and Bill cop-
ies them. A breach of security has occurred, because Bill has violated the security
policy. Anna’s failure to protect her files does not authorize Bill to copy them.

In this example, Anna could easily have protected her files. In other environ-
ments, such protection may not be easy. For example, the Internet provides only the
most rudimentary security mechanisms, which are not adequate to protect information
sent over that network. Nevertheless, acts such as the recording of passwords and other
sensitive information violate an implicit security policy of most sites (specifically, that
passwords are a user’s confidential property and cannot be recorded by anyone).

Policies may be presented mathematically, as a list of allowed (secure) and
disallowed (nonsecure) states. For our purposes, we will assume that any given pol-
icy provides an axiomatic description of secure states and nonsecure states. In prac-
tice, policies are rarely so precise; they normally describe in English what users and
staff are allowed to do. The ambiguity inherent in such a description leads to states
that are not classified as “allowed” or “disallowed.” For example, consider the home-
work policy discussed above. If someone looks through another user’s directory
without copying homework files, is that a violation of security? The answer depends
on site custom, rules, regulations, and laws, all of which are outside our focus and
may change over time.

When two different sites communicate or cooperate, the entity they compose
has a security policy based on the security policies of the two entities. If those poli-
cies are inconsistent, either or both sites must decide what the security policy for the
combined site should be. The inconsistency often manifests itself as a security
breach. For example, if proprietary documents were given to a university, the policy
of confidentiality in the corporation would conflict with the more open policies of
most universities. The university and the company must develop a mutual security
policy that meets both their needs in order to produce a consistent policy. When the
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two sites communicate through an independent third party, such as an Internet ser-
vice provider, the complexity of the situation grows rapidly.

1.3.1 Goals of Security

Given a security policy’s specification of “secure” and “nonsecure” actions, these
security mechanisms can prevent the attack, detect the attack, or recover from the
attack. The strategies may be used together or separately.

Prevention means that an attack will fail. For example, if one attempts to
break into a host over the Internet and that host is not connected to the Internet, the
attack has been prevented. Typically, prevention involves implementation of mecha-
nisms that users cannot override and that are trusted to be implemented in a correct,
unalterable way, so that the attacker cannot defeat the mechanism by changing it.
Preventative mechanisms often are very cumbersome and interfere with system use
to the point that they hinder normal use of the system. But some simple preventative
mechanisms, such as passwords (which aim to prevent unauthorized users from
accessing the system), have become widely accepted. Prevention mechanisms can
prevent compromise of parts of the system; once in place, the resource protected by
the mechanism need not be monitored for security problems, at least in theory.

Detection is most useful when an attack cannot be prevented, but it can also
indicate the effectiveness of preventative measures. Detection mechanisms accept
that an attack will occur; the goal is to determine that an attack is under way, or has
occurred, and report it. The attack may be monitored, however, to provide data about
its nature, severity, and results. Typical detection mechanisms monitor various
aspects of the system, looking for actions or information indicating an attack. A good
example of such a mechanism is one that gives a warning when a user enters an
incorrect password three times. The login may continue, but an error message in a
system log reports the unusually high number of mistyped passwords. Detection
mechanisms do not prevent compromise of parts of the system, which is a serious
drawback. The resource protected by the detection mechanism is continuously or
periodically monitored for security problems.

Recovery has two forms. The first is to stop an attack and to assess and repair
any damage caused by that attack. As an example, if the attacker deletes a file, one
recovery mechanism would be to restore the file from backup tapes. In practice,
recovery is far more complex, because the nature of each attack is unique. Thus, the
type and extent of any damage can be difficult to characterize completely. Moreover,
the attacker may return, so recovery involves identification and fixing of the vulnera-
bilities used by the attacker to enter the system. In some cases, retaliation (by attack-
ing the attacker’s system or taking legal steps to hold the attacker accountable) is part
of recovery. In all these cases, the system’s functioning is inhibited by the attack. By
definition, recovery requires resumption of correct operation.

In a second form of recovery, the system continues to function correctly while
an attack is under way. This type of recovery is quite difficult to implement because
of the complexity of computer systems. It draws on techniques of fault tolerance as
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well as techniques of security and is typically used in safety-critical systems. It dif-
fers from the first form of recovery, because at no point does the system function
incorrectly. However, the system may disable nonessential functionality. Of course,
this type of recovery is often implemented in a weaker form whereby the system
detects incorrect functioning automatically and then corrects (or attempts to correct)
the error.

1.4 Assumptions and Trust

How do we determine if the policy correctly describes the required level and type of
security for the site? This question lies at the heart of all security, computer and oth-
erwise. Security rests on assumptions specific to the type of security required and the
environment in which it is to be employed.

EXAMPLE: Opening a door lock requires a key. The assumption is that the lock is
secure against lock picking. This assumption is treated as an axiom and is made
because most people would require a key to open a door lock. A good lock picker,
however, can open a lock without a key. Hence, in an environment with a skilled,
untrustworthy lock picker, the assumption is wrong and the consequence invalid.

If the lock picker is trustworthy, the assumption is valid. The term “trustwor-
thy” implies that the lock picker will not pick a lock unless the owner of the lock
authorizes the lock picking. This is another example of the role of trust. A well-
defined exception to the rules provides a “back door” through which the security
mechanism (the locks) can be bypassed. The trust resides in the belief that this back
door will not be used except as specified by the policy. If it is used, the trust has been
misplaced and the security mechanism (the lock) provides no security.

Like the lock example, a policy consists of a set of axioms that the policy
makers believe can be enforced. Designers of policies always make two assumptions.
First, the policy correctly and unambiguously partitions the set of system states into
“secure” and “nonsecure” states. Second, the security mechanisms prevent the sys-
tem from entering a “nonsecure” state. If either assumption is erroneous, the system
will be nonsecure.

These two assumptions are fundamentally different. The first assumption asserts
that the policy is a correct description of what constitutes a “secure” system. For exam-
ple, a bank’s policy may state that officers of the bank are authorized to shift money
among accounts. If a bank officer puts $100,000 in his account, has the bank’s security
been violated? Given the aforementioned policy statement, no, because the officer was
authorized to move the money. In the “real world,” that action would constitute embez-
zlement, something any bank would consider a security violation.

The second assumption says that the security policy can be enforced by secu-
rity mechanisms. These mechanisms are either secure, precise, or broad. Let P be the
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set of all possible states. Let Q be the set of secure states (as specified by the security
policy). Let the security mechanisms restrict the system to some set of states R (thus,
R c P). Then we have the following definition.

Definition 1-3. A security mechanism is secure if R C Q; it is precise if
R = Q; and it is broad if there are states r such that r€ Rand r ¢ Q.

Ideally, the union of all security mechanisms active on a system would pro-
duce a single precise mechanism (that is, R = Q). In practice, security mechanisms
are broad; they allow the system to enter nonsecure states. We will revisit this topic
when we explore policy formulation in more detail.

Trusting that mechanisms work requires several assumptions.

1. Each mechanism is designed to implement one or more parts of the
security policy.

2. The union of the mechanisms implements all aspects of the security
policy.

3. The mechanisms are implemented correctly.

4. The mechanisms are installed and administered correctly.

Because of the importance and complexity of trust and of assumptions, we will
revisit this topic repeatedly and in various guises throughout this book.

1.5 Assurance

Trust cannot be quantified precisely. System specification, design, and implementa-
tion can provide a basis for determining “how much” to trust a system. This aspect of
trust is called assurance. It is an attempt to provide a basis for bolstering (or substan-
tiating or specifying) how much one can trust a system.

EXAMPLE: In the United States, aspirin from a nationally known and reputable man-
ufacturer, delivered to the drugstore in a safety-sealed container, and sold with the
seal still in place, is considered trustworthy by most people. The bases for that trust
are as follows.

e The testing and certification of the drug (aspirin) by the Food and
Drug Administration. The FDA has jurisdiction over many types of
medicines and allows medicines to be marketed only if they meet
certain clinical standards of usefulness.
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* The manufacturing standards of the company and the precautions it
takes to ensure that the drug is not contaminated. National and state
regulatory commissions and groups ensure that the manufacture of
the drug meets specific acceptable standards.

* The safety seal on the bottle. To insert dangerous chemicals into a
safety-sealed bottle without damaging the seal is very difficult.

The three technologies (certification, manufacturing standards, and preventative seal-
ing) provide some degree of assurance that the aspirin is not contaminated. The
degree of trust the purchaser has in the purity of the aspirin is a result of these three
processes.

In the 1980s, drug manufacturers met two of the criteria above, but none used
safety seals.! A series of “drug scares” arose when a well-known manufacturer’s
medicines were contaminated after manufacture but before purchase. The manufac-
turer promptly introduced safety seals to assure its customers that the medicine in the
container was the same as when it was shipped from the manufacturing plants.

Assurance in the computer world is similar. It requires specific steps to ensure
that the computer will function properly. The sequence of steps includes detailed
specifications of the desired (or undesirable) behavior; an analysis of the design of
the hardware, software, and other components to show that the system will not vio-
late the specifications; and arguments or proofs that the implementation, operating
procedures, and maintenance procedures will produce the desired behavior.

Definition 1-4. A system is said to satisfy a specification if the specification
correctly states how the system will function.

This definition also applies to design and implementation satisfying a
specification.

1.5.1 Specification

A specification is a (formal or informal) statement of the desired functioning of the
system. It can be highly mathematical, using any of several languages defined for
that purpose. It can also be informal, using, for example, English to describe what
the system should do under certain conditions. The specification can be low-level,
combining program code with logical and temporal relationships to specify ordering
of events. The defining quality is a statement of what the system is allowed to do or
what it is not allowed to do.

! Many used childproof caps, but they prevented only young children (and some adults) from
opening the bottles. They were not designed to protect the medicine from malicious adults.
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EXAMPLE: A company is purchasing a new computer for internal use. They need to
trust the system to be invulnerable to attack over the Internet. One of their (English)
specifications would read “The system cannot be attacked over the Internet.”

Specifications are used not merely in security but also in systems designed for
safety, such as medical technology. They constrain such systems from performing
acts that could cause harm. A system that regulates traffic lights must ensure that
pairs of lights facing the same way turn red, green, and yellow at the same time and
that at most one set of lights facing cross streets at an intersection is green.

A major part of the derivation of specifications is determination of the set of
requirements relevant to the system’s planned use. Section 1.6 discusses the relation-
ship of requirements to security.

1.5.2 Design

The design of a system translates the specifications into components that will imple-
ment them. The design is said to satisfy the specifications if, under all relevant cir-
cumstances, the design will not permit the system to violate those specifications.

EXAMPLE: A design of the computer system for the company mentioned above had
no network interface cards, no modem cards, and no network drivers in the kernel.
This design satisfied the specification because the system would not connect to the
Internet. Hence it could not be attacked over the Internet.

An analyst can determine whether a design satisfies a set of specifications in
several ways. If the specifications and designs are expressed in terms of mathemat-
ics, the analyst must show that the design formulations are consistent with the speci-
fications. Although much of the work can be done mechanically, a human must still
perform some analyses and modify components of the design that violate specifica-
tions (or, in some cases, components that cannot be shown to satisfy the specifica-
tions). If the specifications and design do not use mathematics, then a convincing and
compelling argument should be made. Most often, the specifications are nebulous
and the arguments are half-hearted and unconvincing or provide only partial cover-
age. The design depends on assumptions about what the specifications mean. This
leads to vulnerabilities, as we will see.

1.5.3 Implementation

Given a design, the implementation creates a system that satisfies that design. If the
design also satisfies the specifications, then by transitivity the implementation will
also satisfy the specifications.

The difficulty at this step is the complexity of proving that a program correctly
implements the design and, in turn, the specifications.
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Definition 1-5. A program is correct if its implementation performs as
specified.

Proofs of correctness require each line of source code to be checked for math-
ematical correctness. Each line is seen as a function, transforming the input (con-
strained by preconditions) into some output (constrained by postconditions derived
from the function and the preconditions). Each routine is represented by the compo-
sition of the functions derived from the lines of code making up the routine. Like
those functions, the function corresponding to the routine has inputs and outputs,
constrained by preconditions and postconditions, respectively. From the combination
of routines, programs can be built and formally verified. One can apply the same
techniques to sets of programs and thus verify the correctness of a system.

There are three difficulties in this process. First, the complexity of programs
makes their mathematical verification difficult. Aside from the intrinsic difficulties,
the program itself has preconditions derived from the environment of the system.
These preconditions are often subtle and difficult to specify, but unless the mathe-
matical formalism captures them, the program verification may not be valid because
critical assumptions may be wrong. Second, program verification assumes that the
programs are compiled correctly, linked and loaded correctly, and executed correctly.
Hardware failure, buggy code, and failures in other tools may invalidate the precon-
ditions. A compiler that incorrectly compiles

X :1=x + 1
to

move X to regA
subtract 1 from contents of regA
move contents of regA to x

would invalidate the proof statement that the value of x after the line of code is 1
more than the value of x before the line of code. This would invalidate the proof of
correctness. Third, if the verification relies on conditions on the input, the program
must reject any inputs that do not meet those conditions. Otherwise, the program is
only partially verified.

Because formal proofs of correctness are so time-consuming, a posteriori ver-
ification techniques known as festing have become widespread. During testing, the
tester executes the program (or portions of it) on data to determine if the output is
what it should be and to understand how likely the program is to contain an error.
Testing techniques range from supplying input to ensure that all execution paths are
exercised to introducing errors into the program and determining how they affect the
output to stating specifications and testing the program to see if it satisfies the speci-
fications. Although these techniques are considerably simpler than the more formal
methods, they do not provide the same degree of assurance that formal methods do.
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Furthermore, testing relies on test procedures and documentation, errors in either of
which could invalidate the testing results.

Although assurance techniques do not guarantee correctness or security, they
provide a firm basis for assessing what one must trust in order to believe that a sys-
tem is secure. Their value is in eliminating possible, and common, sources of error
and forcing designers to define precisely what the system is to do.

1.6 Operational Issues

Any useful policy and mechanism must balance the benefits of the protection against
the cost of designing, implementing, and using the mechanism. This balance can be
determined by analyzing the risks of a security breach and the likelihood of it occur-
ring. Such an analysis is, to a degree, subjective, because in very few situations can
risks be rigorously quantified. Complicating the analysis are the constraints that
laws, customs, and society in general place on the acceptability of security proce-
dures and mechanisms; indeed, as these factors change, so do security mechanisms
and, possibly, security policies.

1.6.1 Cost-Benefit Analysis

Like any factor in a complex system, the benefits of computer security are weighed
against their total cost (including the additional costs incurred if the system is com-
promised). If the data or resources cost less, or are of less value, than their protec-
tion, adding security mechanisms and procedures is not cost-effective because the
data or resources can be reconstructed more cheaply than the protections themselves.
Unfortunately, this is rarely the case.

EXAMPLE: A database provides salary information to a second system that prints
checks. If the data in the database is altered, the company could suffer grievous
financial loss; hence, even a cursory cost-benefit analysis would show that the stron-
gest possible integrity mechanisms should protect the data in the database.

Now suppose the company has several branch offices, and every day the data-
base downloads a copy of the data to each branch office. The branch offices use the
data to recommend salaries for new employees. However, the main office makes the
final decision using the original database (not one of the copies). In this case, guard-
ing the integrity of the copies is not particularly important, because branch offices
cannot make any financial decisions based on the data in their copies. Hence, the
company cannot suffer any financial loss.

Both of these situations are extreme situations in which the analysis is clear-
cut. As an example of a situation in which the analysis is less clear, consider the need
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for confidentiality of the salaries in the database. The officers of the company must
decide the financial cost to the company should the salaries be disclosed, including
potential loss from lawsuits (if any); changes in policies, procedures, and personnel;
and the effect on future business. These are all business-related judgments, and deter-
mining their value is part of what company officers are paid to do.

Overlapping benefits are also a consideration. Suppose the integrity protection
mechanism can be augmented very quickly and cheaply to provide confidentiality.
Then the cost of providing confidentiality is much lower. This shows that evaluating
the cost of a particular security service depends on the mechanism chosen to imple-
ment it and on the mechanisms chosen to implement other security services. The
cost-benefit analysis should take into account as many mechanisms as possible. Add-
ing security mechanisms to an existing system is often more expensive (and, inciden-
tally, less effective) than designing them into the system in the first place.

1.6.2 Risk Analysis

To determine whether an asset should be protected, and to what level, requires analy-
sis of the potential threats against that asset and the likelihood that they will material-
ize. The level of protection is a function of the probability of an attack occurring and
the effects of the attack should it succeed. If an attack is unlikely, protecting against
it has a lower priority than protecting against a likely one. If the unlikely attack
would cause long delays in the company’s production of widgets but the likely attack
would be only a nuisance, then more effort should be put into preventing the unlikely
attack. The situations between these extreme cases are far more subjective.

Let’s revisit our company with the salary database that transmits salary infor-
mation over a network to a second computer that prints employees’ checks. The data
is stored on the database system and then moved over the network to the second sys-
tem. Hence, the risk of unauthorized changes in the data occurs in three places: on
the database system, on the network, and on the printing system. If the network is a
local (company-wide) one and no wide area networks are accessible, the threat of
attackers entering the systems is confined to untrustworthy internal personnel. If,
however, the network is connected to the Internet, the risk of geographically distant
attackers attempting to intrude is substantial enough to warrant consideration.

This example illustrates some finer points of risk analysis. First, risk is a func-
tion of environment. Attackers from a foreign country are not a threat to the company
when the computer is not connected to the Internet. If foreign attackers wanted to
break into the system, they would need physically to enter the company (and would
cease to be “foreign” because they would then be “local”). But if the computer is
connected to the Internet, foreign attackers become a threat because they can attack
over the Internet. An additional, less tangible issue is the faith in the company. If the
company is not able to meet its payroll because it does not know whom it is to pay,
the company will lose the faith of its employees. It may be unable to hire anyone,
because the people hired would not be sure they would get paid. Investors would not
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fund the company because of the likelihood of lawsuits by unpaid employees. The
risk arises from the environments in which the company functions.

Second, the risks change with time. If a company’s network is not connected
to the Internet, there seems to be no risk of attacks from other hosts on the Internet.
However, despite any policies to the contrary, someone could connect a modem to
one of the company computers and connect to the Internet through the modem.
Should this happen, any risk analysis predicated on isolation from the Internet would
no longer be accurate. Although policies can forbid the connection of such a modem
and procedures can be put in place to make such connection difficult, unless the
responsible parties can guarantee that no such modem will ever be installed, the risks
can change.

Third, many risks are quite remote but still exist. In the modem example, the
company has sought to minimize the risk of an Internet connection. Hence, this risk
is “acceptable” but not nonexistent. As a practical matter, one does not worry about
acceptable risks; instead, one worries that the risk will become unacceptable.

Finally, the problem of “analysis paralysis” refers to making risk analyses
with no effort to act on those analyses. To change the example slightly, suppose the
company performs a risk analysis. The executives decide that they are not sure if all
risks have been found, so they order a second study to verify the first. They reconcile
the studies then wait for some time to act on these analyses. At that point, the secu-
rity officers raise the objection that the conditions in the workplace are no longer
those that held when the original risk analyses were done. The analysis is repeated.
But the company cannot decide how to ameliorate the risks, so it waits until a plan of
action can be developed, and the process continues. The point is that the company is
paralyzed and cannot act on the risks it faces.

1.6.3 Laws and Customs

Laws restrict the availability and use of technology and affect procedural controls.
Hence, any policy and any selection of mechanisms must take into account legal con-
siderations.

EXAMPLE: Until the year 2000, the United States controlled the export of crypto-
graphic hardware and software (considered munitions under United States law). If a
U.S. software company worked with a computer manufacturer in London, the U.S.
company could not send cryptographic software to the manufacturer. The U.S. com-
pany first would have to obtain a license to export the software from the United
States. Any security policy that depended on the London manufacturer using that
cryptographic software would need to take this into account.

EXAMPLE: Suppose the law makes it illegal to read a user’s file without the user’s
permission. An attacker breaks into the system and begins to download users’ files. If
the system administrators notice this and observe what the attacker is reading, they
will be reading the victim’s files without his permission and therefore will be violat-
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ing the law themselves. For this reason, most sites require users to give (implicit or
explicit) permission for system administrators to read their files. In some jurisdic-
tions, an explicit exception allows system administrators to access information on
their systems without permission in order to protect the quality of service provided
or to prevent damage to their systems.

Complicating this issue are situations involving the laws of multiple jurisdic-
tions—especially foreign ones.

EXAMPLE: In the 1990s, the laws involving the use of cryptography in France were
very different from those in the United States. The laws of France required compa-
nies sending enciphered data out of the country to register their cryptographic keys
with the government. Security procedures involving the transmission of enciphered
data from a company in the United States to a branch office in France had to take
these differences into account.

EXAMPLE: If a policy called for prosecution of attackers and intruders came from
Russia to a system in the United States, prosecution would involve asking the United
States authorities to extradite the alleged attackers from Russia. This undoubtedly
would involve court testimony from company personnel involved in handling the
intrusion, possibly trips to Russia, and more court time once the extradition was
completed. The cost of prosecuting the attackers might be considerably higher than
the company would be willing (or able) to pay.

Laws are not the only constraints on policies and selection of mechanisms.
Society distinguishes between legal and acceptable practices. It may be legal for a
company to require all its employees to provide DNA samples for authentication pur-
poses, but it is not socially acceptable. Requiring the use of Social Security numbers as
passwords is legal (unless the computer is one owned by the U.S. government) but also
unacceptable. These practices provide security but at an unacceptable cost, and they
encourage users to evade or otherwise overcome the security mechanisms.

The issue that laws and customs raise is the issue of psychological acceptability.
A security mechanism that would put users and administrators at legal risk would place
a burden on these people that few would be willing to bear; thus, such a mechanism
would not be used. An unused mechanism is worse than a nonexistent one, because it
gives a false impression that a security service is available. Hence, users may rely on
that service to protect their data, when in reality their data is unprotected.

1.7 Human Issues

Implementing computer security controls is complex, and in a large organization
procedural controls often become vague or cumbersome. Regardless of the strength
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of the technical controls, if nontechnical considerations affect their implementation
and use, the effect on security can be severe. Moreover, if configured or used incor-
rectly, even the best security control is useless at best and dangerous at worst. Thus,
the designers, implementers, and maintainers of security controls are essential to the
correct operation of those controls.

1.71 Organizational Problems

Security provides no direct financial rewards to the user. It limits losses, but it also
requires the expenditure of resources that could be used elsewhere. Unless losses
occur, organizations often believe they are wasting effort related to security. After a
loss, the value of these controls suddenly becomes appreciated. Furthermore, secu-
rity controls often add complexity to otherwise simple operations. For example, if
concluding a stock trade takes two minutes without security controls and three min-
utes with security controls, adding those controls results in a 50% loss of productivity.

Losses occur when security protections are in place, but such losses are
expected to be less than they would have been without the security mechanisms. The
key question is whether such a loss, combined with the resulting loss in productivity,
would be greater than a financial loss or loss of confidence should one of the nonse-
cured transactions suffer a breach of security.

Compounding this problem is the question of who is responsible for the secu-
rity of the company’s computers. The power to implement appropriate controls must
reside with those who are responsible; the consequence of not doing so is that the
people who can most clearly see the need for security measures, and who are respon-
sible for implementing them, will be unable to do so. This is simply sound business
practice; responsibility without power causes problems in any organization, just as
does power without responsibility.

Once clear chains of responsibility and power have been established, the need
for security can compete on an equal footing with other needs of the organization.
The most common problem a security manager faces is the lack of people trained in
the area of computer security. Another common problem is that knowledgeable peo-
ple are overloaded with work. At many organizations, the “security administrator” is
also involved in system administration, development, or some other secondary func-
tion. In fact, the security aspect of the job is often secondary. The problem is that
indications of security problems often are not obvious and require time and skill to
spot. Preparation for an attack makes dealing with it less chaotic, but such prepara-
tion takes enough time and requires enough attention so that treating it as a second-
ary aspect of a job means that it will not be performed well, with the expected
consequences.

Lack of resources is another common problem. Securing a system requires
resources as well as people. It requires time to design a configuration that will pro-
vide an adequate level of security, to implement the configuration, and to administer
the system. It requires money to purchase products that are needed to build an ade-
quate security system or to pay someone else to design and implement security mea-
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sures. It requires computer resources to implement and execute the security
mechanisms and procedures. It requires training to ensure that employees understand
how to use the security tools, how to interpret the results, and how to implement the
nontechnical aspects of the security policy.

1.7.2 People Problems

The heart of any security system is people. This is particularly true in computer secu-
rity, which deals mainly with technological controls that can usually be bypassed by
human intervention. For example, a computer system authenticates a user by asking
that user for a secret code; if the correct secret code is supplied, the computer
assumes that the user is authorized to use the system. If an authorized user tells
another person his secret code, the unauthorized user can masquerade as the autho-
rized user with significantly less likelihood of detection.

People who have some motive to attack an organization and are not authorized
to use that organization’s systems are called outsiders and can pose a serious threat.
Experts agree, however, that a far more dangerous threat comes from disgruntled
employees and other insiders who are authorized to use the computers. Insiders typi-
cally know the organization of the company’s systems and what procedures the oper-
ators and users follow and often know enough passwords to bypass many security
controls that would detect an attack launched by an outsider. Insider misuse of autho-
rized privileges is a very difficult problem to solve.

Untrained personnel also pose a threat to system security. As an example, one
operator did not realize that the contents of backup tapes needed to be verified before
the tapes were stored. When attackers deleted several critical system files, she dis-
covered that none of the backup tapes could be read.

System administrators who misread the output of security mechanisms, or do
not analyze that output, contribute to the probability of successful attacks against
their systems. Similarly, administrators who misconfigure security-related features
of a system can weaken the site security. Users can also weaken site security by mis-
using security mechanisms (such as selecting passwords that are easy to guess).

Lack of training need not be in the technical arena. Many successful break-ins
have arisen from the art of social engineering. If operators will change passwords
based on telephone requests, all an attacker needs to do is to determine the name of
someone who uses the computer. A common tactic is to pick someone fairly far
above the operator (such as a vice president of the company) and to feign an emer-
gency (such as calling at night and saying that a report to the president of the com-
pany is due the next morning) so that the operator will be reluctant to refuse the
request. Once the password has been changed to one that the attacker knows, he can
simply log in as a normal user. Social engineering attacks are remarkably successful
and often devastating.

The problem of misconfiguration is aggravated by the complexity of many
security-related configuration files. For instance, a typographical error can disable
key protection features. Even worse, software does not always work as advertised.
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One widely used system had a vulnerability that arose when an administrator made
too long a list that named systems with access to certain files. Because the list was
too long, the system simply assumed that the administrator meant to allow those files
to be accessed without restriction on who could access them—exactly the opposite
of what was intended.

1.8 Tying It All Together

The considerations discussed above appear to flow linearly from one to the next (see
Figure 1-1). Human issues pervade each stage of the cycle. In addition, each stage of
the cycle feeds back to the preceding stage, and through that stage to all earlier
stages. The operation and maintenance stage is critical to the life cycle. Figure 1-1
breaks it out so as to emphasize the impact it has on all stages. The following exam-
ple shows the importance of feedback.

EXAMPLE: A major corporation decided to improve its security. It hired consultants,
determined the threats, and created a policy. From the policy, the consultants derived
several specifications that the security mechanisms had to meet. They then developed
a design that would meet the specifications.

During the implementation phase, the company discovered that employees
could connect modems to the telephones without being detected. The design required

—» Threats
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— Design

— Implementation

<« Operation and Maintenance

Figure 1-1 The security life cycle.
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all incoming connections to go through a firewall. The design had to be modified to
divide systems into two classes: systems connected to “the outside,” which were put
outside the firewall; and all other systems, which were put behind the firewall. The
design needed other modifications as well.

When the system was deployed, the operation and maintenance phase revealed
several unexpected threats. The most serious was that systems were repeatedly miscon-
figured to allow sensitive data to be sent across the Internet in the clear. The implemen-
tation made use of cryptographic software very difficult. Once this problem had been
remedied, the company discovered that several “trusted’” hosts (those allowed to log in
without authentication) were physically outside the control of the company. This vio-
lated policy, but for commercial reasons the company needed to continue to use these
hosts. The policy element that designated these systems as “trusted” was modified.
Finally, the company detected proprietary material being sent to a competitor over
electronic mail. This added a threat that the company had earlier discounted. The com-
pany did not realize that it needed to worry about insider attacks.

Feedback from operation is critical. Whether or not a program is tested or
proved to be secure, operational environments always introduce unexpected prob-
lems or difficulties. If the assurance (specification, design, implementation, and test-
ing/proof) phase is done properly, the extra problems and difficulties are minimal.
The analysts can handle them, usually easily and quickly. If the assurance phase has
been omitted or done poorly, the problems may require a complete reevaluation of
the system. The tools used for the feedback include auditing, in which the operation
of the system is recorded and analyzed so that the analyst can determine what the
problems are.

1.9 Summary

Computer security depends on many aspects of a computer system. The threats that a
site faces, and the level and quality of the countermeasures, depend on the quality of
the security services and supporting procedures. The specific mix of these attributes is
governed by the site security policy, which is created after careful analysis of the value
of the resources on the system or controlled by the system and of the risks involved.

Underlying all this are key assumptions describing what the site and the sys-
tem accept as true or trustworthy; understanding these assumptions is the key to ana-
lyzing the strength of the system’s security. This notion of “trust” is the central
notion for computer security. If trust is well placed, any system can be made accept-
ably secure. If it is misplaced, the system cannot be secure in any sense of the word.

Once this is understood, the reason that people consider security to be a relative
attribute is plain. Given enough resources, an attacker can often evade the security pro-
cedures and mechanisms that are in place. Such a desire is tempered by the cost of the
attack, which in some cases can be very expensive. If it is less expensive to regenerate
the data than to launch the attack, most attackers will simply regenerate the data.
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This chapter has laid the foundation for what follows. All aspects of computer
security begin with the nature of threats and countering security services. In future
chapters, we will build on these basic concepts.

1.10 Further Reading

Risk analysis arises in a variety of contexts. Molak [646] presents essays on risk
management and analysis in a variety of fields. Laudan [552] provides an enjoyable
introduction to the subject. Neumann [688] discusses the risks of technology and
recent problems. Software safety (Leveson [557]) requires an understanding of the
risks posed in the environment. Peterson [717] discusses many programming errors
in a readable way. All provide insights into the problems that arise in a variety of
environments.

Many authors recount stories of security incidents. The earliest, Parker’s won-
derful book [713], discusses motives and personalities as well as technical details.
Stoll recounts the technical details of uncovering an espionage ring that began as the
result of a 75¢ accounting error [878, 880]. Hafner and Markoff describe the same
episode in a study of “cyberpunks” [386]. The Internet worm [292, 386, 757, 858]
brought the problem of computer security into popular view. Numerous other inci-
dents [339, 386, 577, 821, 838, 873] have heightened public awareness of the problem.

Several books [55, 57, 737, 799] discuss computer security for the layperson.
These works tend to focus on attacks that are visible or affect the end user (such as
pornography, theft of credit card information, and deception). They are worth read-
ing for those who wish to understand the results of failures in computer security.

1.11 Exercises

1. Classify each of the following as a violation of confidentiality, of integrity,
of availability, or of some combination thereof.

a. John copies Mary’s homework.

b. Paul crashes Linda’s system.

c. Carol changes the amount of Angelo’s check from $100 to $1,000.

d. Gina forges Roger’s signature on a deed.

e. Rhonda registers the domain name “AddisonWesley.com” and
refuses to let the publishing house buy or use that domain name.

f. Jonah obtains Peter’s credit card number and has the credit card

company cancel the card and replace it with another card bearing a
different account number.



1.11 Exercises 23

g. Henry spoofs Julie’s IP address to gain access to her computer.

2. Identify mechanisms for implementing the following. State what policy or
policies they might be enforcing.

a. A password-changing program will reject passwords that are less
than five characters long or that are found in the dictionary.

b. Only students in a computer science class will be given accounts on
the department’s computer system.

c. The login program will disallow logins of any students who enter
their passwords incorrectly three times.

d. The permissions of the file containing Carol’s homework will
prevent Robert from cheating and copying it.

e. When World Wide Web traffic climbs to more than 80% of the
network’s capacity, systems will disallow any further
communications to or from Web servers.

f. Annie, a systems analyst, will be able to detect a student using a
program to scan her system for vulnerabilities.

g. A program used to submit homework will turn itself off just after the
due date.

3. The aphorism “security through obscurity” suggests that hiding
information provides some level of security. Give an example of a
situation in which hiding information does not add appreciably to the
security of a system. Then give an example of a situation in which it does.

4. Give an example of a situation in which a compromise of confidentiality
leads to a compromise in integrity.

5. Show that the three security services—confidentiality, integrity, and
availability—are sufficient to deal with the threats of disclosure,
disruption, deception, and usurpation.

6. In addition to mathematical and informal statements of policy, policies can
be implicit (not stated). Why might this be done? Might it occur with
informally stated policies? What problems can this cause?

7. For each of the following statements, give an example of a situation in
which the statement is true.

a. Prevention is more important than detection and recovery.
b. Detection is more important than prevention and recovery.
c. Recovery is more important than prevention and detection.
8. Is it possible to design and implement a system in which no assumptions
about trust are made? Why or why not?

9. Policy restricts the use of electronic mail on a particular system to faculty
and staff. Students cannot send or receive electronic mail on that host.
Classify the following mechanisms as secure, precise, or broad.
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10.

11.

12.

13.

14.

15.

16.

a. The electronic mail sending and receiving programs are disabled.

b. As each letter is sent or received, the system looks up the sender (or
recipient) in a database. If that party is listed as faculty or staff, the
mail is processed. Otherwise, it is rejected. (Assume that the
database entries are correct.)

c. The electronic mail sending programs ask the user if he or she is a
student. If so, the mail is refused. The electronic mail receiving
programs are disabled.

Consider a very high-assurance system developed for the military. The
system has a set of specifications, and both the design and implementation
have been proven to satisfy the specifications. What questions should
school administrators ask when deciding whether to purchase such a
system for their school’s use?

How do laws protecting privacy impact the ability of system
administrators to monitor user activity?

Computer viruses are programs that, among other actions, can delete files
without a user’s permission. A U.S. legislator wrote a law banning the
deletion of any files from computer disks. What was the problem with this
law from a computer security point of view? Specifically, state which
security service would have been affected if the law had been passed.

Users often bring in programs or download programs from the Internet.
Give an example of a site for which the benefits of allowing users to do
this outweigh the dangers. Then give an example of a site for which the
dangers of allowing users to do this outweigh the benefits.

A respected computer scientist has said that no computer can ever be made
perfectly secure. Why might she have said this?

An organization makes each lead system administrator responsible for
the security of the system he or she runs. However, the management
determines what programs are to be on the system and how they are to be
configured.

a. Describe the security problem(s) that this division of power would
create.
b. How would you fix them?

The president of a large software development company has become
concerned about competitors learning proprietary information. He is
determined to stop them. Part of his security mechanism is to require all
employees to report any contact with employees of the company’s
competitors, even if it is purely social. Do you believe this will have the
desired effect? Why or why not?
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The police and the public defender share a computer. What security
problems does this present? Do you feel it is a reasonable cost-saving
measure to have all public agencies share the same (set of) computers?

Companies usually restrict the use of electronic mail to company business
but do allow minimal use for personal reasons.

a. How might a company detect excessive personal use of electronic
mail, other than by reading it? (Hint: Think about the personal use of
a company telephone.)

b. Intuitively, it seems reasonable to ban all personal use of electronic
mail on company computers. Explain why most companies do not
do this.

Argue for or against the following proposition. Ciphers that the
government cannot cryptanalyze should be outlawed. How would your
argument change if such ciphers could be used provided that the users
registered the keys with the government?

For many years, industries and financial institutions hired people who
broke into their systems once those people were released from prison.
Now, such a conviction tends to prevent such people from being hired.
Why you think attitudes on this issue changed? Do you think they changed
for the better or for the worse?

A graduate student accidentally releases a program that spreads from
computer system to computer system. It deletes no files but requires much
time to implement the necessary defenses. The graduate student is
convicted. Despite demands that he be sent to prison for the maximum
time possible (to make an example of him), the judge sentences him to pay
a fine and perform community service. What factors do you believe caused
the judge to hand down the sentence he did? What would you have done
were you the judge, and what extra information would you have needed to
make your decision?






Chapter 2

Access Control Matrix

GRANDPRE: Description cannot suit itself in words
To demonstrate the life of such a battle

In life so lifeless as it shows itself.

—The Life of Henry the Fifth, 1V, ii, 53-55.

A protection system describes the conditions under which a system is secure. In this
chapter, we present a classical formulation of a protection system. The access control
matrix model arose both in operating systems research and in database research; it
describes allowed accesses using a matrix.

2.1 Protection State

The state of a system is the collection of the current values of all memory locations,
all secondary storage, and all registers and other components of the system. The sub-
set of this collection that deals with protection is the protection state of the system.
An access control matrix is one tool that can describe the current protection state.

Consider the set of possible protection states P. Some subset Q of P consists of
exactly those states in which the system is authorized to reside. So, whenever the sys-
tem state is in Q, the system is secure. When the current state is in P — 0,! the system is
not secure. Our interest in representing the state is to characterize those states in Q, and
our interest in enforcing security is to ensure that the system state is always an element
of Q. Characterizing the states in Q is the function of a security policy; preventing the
system from entering a state in P — Q is the function of a security mechanism. Recall
from Definition 1-3 that a mechanism that enforces this restriction is precise.

The access control matrix model is the most precise model used to describe a
protection state. It characterizes the rights of each subject (active entity, such as
a process) with respect to every other entity. The description of elements of A
form a specification against which the current state can be compared. Specifications

! The notation P — O means all elements of set P not in set Q.

27
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take many forms, and different specification languages have been created to describe
the characteristics of allowable states.

As the system changes, the protection state changes. When a command
changes the state of the system, a state transition occurs. Very often, constraints on
the set of allowed states use these transitions inductively; a set of authorized states is
defined, and then a set of operations is allowed on the elements of that set. The result
of transforming an authorized state with an operation allowed in that state is an
authorized state. By induction, the system will always be in an authorized state.
Hence, both states and state transitions are often constrained.

In practice, any operation on a real system causes multiple state transitions;
the reading, loading, altering, and execution of any datum or instruction causes a
transition. We are concerned only with those state transitions that affect the protec-
tion state of the system, so only transitions that alter the actions a subject is autho-
rized to take are relevant. For example, a program that changes a variable to 0 does
not (usually) alter the protection state. However, if the variable altered is one that
affects the privileges of a process, then the program does alter the protection state
and needs to be accounted for in the set of transitions.

2.2 Access Control Matrix Model

The simplest framework for describing a protection system is the access control
matrix model, which describes the rights of users over files in a matrix. Butler Lamp-
son first proposed this model in 1971 [543]; Graham and Denning [252, 370] refined
it, and we will use their version.

The set of all protected entities (that is, entities that are relevant to the protec-
tion state of the system) is called the set of objects O. The set of subjects S is the set
of active objects, such as processes and users. In the access control matrix model, the
relationship between these entities is captured by a matrix A with rights drawn from
a set of rights R in each entry af[s, o], where s € S, 0 € O, and a[s, o] < R. The sub-
ject s has the set of rights a[s, o] over the object 0. The set of protection states of the
system is represented by the triple (S, O, A). For example, Figure 2—1 shows the pro-
tection state of a system. Here, process 1 can read or write file 1 and can read file 2;
process 2 can append to file 1 and read file 2. Process 1 can communicate with pro-
cess 2 by writing to it, and process 2 can read from process 1. Each process owns
itself and the file with the same number. Note that the processes themselves are
treated as both subjects (rows) and objects (columns). This enables a process to be
the target of operations as well as the operator.

Interpretation of the meaning of these rights varies from system to system.
Reading from, writing to, and appending to files is usually clear enough, but what does
“reading from” a process mean? Depending on the instantiation of the model, it could
mean that the reader accepts messages from the process being read, or it could mean
that the reader simply looks at the state of the process being read (as a debugger does,
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file 1 file 2 process 1 process 2
process 1 read, write, read read, write, write

own execute, own
process 2 append read, own read read, write,

execute, own

Figure 2-1 An access control matrix. The system has two processes and two
files. The set of rights is {read, write, execute, append, own}.

for example). The meaning of the right may vary depending on the object involved.
The point is that the access control matrix model is an abstract model of the protection
state, and when one talks about the meaning of some particular access control matrix,
one must always talk with respect to a particular implementation or system.

The own right is a distinguished right. In most systems, the creator of an
object has special privileges: the ability to add and delete rights for other users (and
for the owner). In the system shown in Figure 2—1, for example, process 1 could alter
the contents of A[x, file 1], where x is any subject.

EXAMPLE: The UNIX system defines the rights “read,” “write,” and “execute.”
When a process accesses a file, these terms mean what one would expect. When a
process accesses a directory, “read” means to be able to list the contents of the direc-
tory; “write” means to be able to create, rename, or delete files or subdirectories in
that directory; and “execute” means to be able to access files or subdirectories in that
directory. When a process accesses another process, “read” means to be able to
receive signals, “write” means to be able to send signals, and “execute” means to be
able to execute the process as a subprocess.

Moreover, the superuser can access any (local) file regardless of the permis-
sions the owner has granted. In effect, the superuser “owns” all objects on the sys-
tem. Even in this case however, the interpretation of the rights is constrained. For
example, the superuser cannot alter a directory using the system calls and commands
that alter files. The superuser must use specific system calls and commands to create,
rename, and delete files.

Although the “objects” involved in the access control matrix are normally
thought of as files, devices, and processes, they could just as easily be messages sent
between processes, or indeed systems themselves. Figure 2-2 shows an example
access control matrix for three systems on a local area network (LAN). The rights
correspond to various network protocols: own (the ability to add servers), fp (the
ability to access the system using the File Transfer Protocol, or FTP [728]), nfs (the
ability to access file systems using the Network File System, or NFS, protocol [149,
886]), and mail (the ability to send and receive mail using the Simple Mail Transfer
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host names telegraph nob toadflax
telegraph own ftp ftp

nob ftp, nfs, mail, own ftp, nfs, mail
toadflax ftp, mail ftp, nfs, mail, own

Figure 2-2 Rights on a LAN. The set of rights is {ftp, mail, nfs, own}.

Protocol, or SMTP [727]). The subject telegraph is a personal computer with an ftp
client but no servers, so neither of the other systems can access it, but it can ftp to
them. The subject nob is configured to provide NFS service to a set of clients that
does not include the host toadflax, and both systems will exchange mail with any
host and allow any host to use fip.

At the micro level, access control matrices can model programming language
accesses; in this case, the objects are the variables and the subjects are the procedures
(or modules). Consider a program in which events must be synchronized. A module
provides functions for incrementing (inc_ctr) and decrementing (dec_ctr) a counter
private to that module. The routine manager calls these functions. The access control
matrix is shown in Figure 2—-3. Note that “+” and “-" are the rights, representing the
ability to add and subtract, respectively, and call is the ability to invoke a procedure.
The routine manager can call itself; presumably, it is recursive.

In the examples above, entries in the access control matrix are rights. How-
ever, they could as easily have been functions that determined the set of rights at any
particular state based on other data, such as a history of prior accesses, the time of
day, the rights another subject has over the object, and so forth. A common form of
such a function is a locking function used to enforce the Bernstein conditions,” so
when a process is writing to a file, other processes cannot access the file; but once the
writing is done, the processes can access the file once again.

counter inc_ctr dec_ctr manager
inc_ctr +
dec_ctr -
manager call call call

Figure 2-3 Rights in a program. The set of rights is {+, —, call}.

2 The Bernstein conditions ensure that data is consistent. They state that any number of readers
may access a datum simultaneously, but if a writer is accessing the datum, no other writers or
any reader can access the datum until the current writing is complete [718].



2.3 Protection State Transitions 31

2.3 Protection State Transitions

As processes execute operations, the state of the protection system changes. Let the
initial state of the system be Xy = (Sy, Oy, Ap)- The set of state transitions is repre-
sented as a set of operations Ty, Ty, .... Successive states are represented as X, X, ...,
where the notation A |-, and the expression

Xil= Xin
i+1
means that state transition T;,; moves the system from state X to state X;, ;. When a
system starts at some state X and, after a series of state transitions, enters state ¥, we
can write

X'y

The representation of the protection system as an access control matrix must
also be updated. In the model, sequences of state transitions are represented as single
commands, or transformation procedures, that update the access control matrix.
The commands state which entry in the matrix is to be changed, and how; hence, the
commands require parameters. Formally, let ¢; be the kth command with formal
parameters py,1, ..., P 1hen the ith transition would be written as

X; -

i+1

Xiv1-

(0 )

+1,10 pi+l,m

Note the similarity in notation between the use of the command and the state
transition operations. This is deliberate. For every command, there is a sequence of
state transition operations that takes the initial state X; to the resulting state X;, .
Using the command notation allows us to shorten the description of the transforma-
tion as well as list the parameters (subjects, objects, and entries) that affect the trans-
formation operations.

We now focus on the commands themselves. Following Harrison, Ruzzo, and
Ullman [401], we define a set of primitive commands that alter the access control
matrix. In the following list, the protection state is (S, O, A) before the execution of
each command and (S, O, A”) after each command.

1. Primitive command: create subject s

This primitive command creates a new subject s. Note that s must not exist
as a subject or an object before this command is executed. This operation
does not add any rights. It merely modifies the matrix.

2. Primitive command: create object o

This primitive command creates a new object o. Note that o must not exist
before this command is executed. Like create subject, this operation does
not add any rights. It merely modifies the matrix.
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3. Primitive command: enter r into a[s, o]

This primitive command adds the right r to the cell a[s, o]. Note that
als, o] may already contain the right, in which case the effect of this
primitive depends on the instantiation of the model (it may add another
copy of the right or may do nothing).

4. Primitive command: delete r from af[s, o]

This primitive command deletes the right » from the cell a[s, o]. Note that
als, o] need not contain the right, in which case this operation has no
effect.

5. Primitive command: destroy subject s

This primitive command deletes the subject s. The column and row for s in
A are deleted also.

6. Primitive command: destroy object o

This primitive command deletes the object 0. The column for 0 in A is
deleted also.

These primitive operations can be combined into commands, during which
multiple primitive operations may be executed.

EXAMPLE: In the UNIX system, if process p created a file f with owner read () and
write (w) permission, the command capturing the resulting changes in the access
control matrix would be

command createfile(p, f)
create object f;
enter own into a[p, f1;
enter r into a[p, f1;
enter w into a[p, f1;
end

Suppose the process p wishes to create a new process g. The following command
would capture the resulting changes in the access control matrix.

command spawneprocess(p, q)
create subject g;
enter own into a[p, ql;
enter r into a[p, ql;
enter w into a[p, gl;
enter r into alqg, pl;
enter w into a[q, pl;

end

The r and w rights enable the parent and child to signal each other.
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The system can update the matrix only by using defined commands; it cannot
use the primitive commands directly. Of course, a command may invoke only a sin-
gle primitive; such a command is called mono-operational.

EXAMPLE: The command

command makecowner(p, f)
enter own into a[p, f1;
end

is a mono-operational command. It does not delete any existing owner rights. It
merely adds p to the set of owners of f. Hence, f may have multiple owners after this
command is executed.

2.3.1 Conditional Commands

The execution of some primitives requires that specific preconditions be satisfied.
For example, suppose a process p wishes to give another process ¢ the right to read a
file f. In some systems, p must own f. The abstract command would be

command grantereadefilesl(p, f, q)
if own in a[p, f]
then
enter r into a[q, f1;
end

Any number of conditions may be placed together using and. For example, suppose
a system has the distinguished right c. If a subject has the rights r and ¢ over an
object, it may give any other subject r rights over that object. Then

command grantereadefile*2(p, f, q)
if rin a[p, f]1 and c in a[p, ]
then

enter r into a[q, f1;
end

Commands with one condition are called monoconditional. Commands with two
conditions are called biconditional. The command grantereadefilesl is monocondi-
tional, and the command grantereadefiles2 is biconditional. Because both have one
primitive command, both are mono-operational.

Note that all conditions are joined by and, and never by or. Because joining
conditions with or is equivalent to two commands each with one of the conditions,
the disjunction is unnecessary and thus is omitted. For example, suppose the right a
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enables one to grant the right r to another subject. To achieve the effect of a com-
mand equivalent to

if own in alp, f] or a in a[p, f]
then
enter r into alq, f1;

define the following two commands:

command grantswritefileel(p, f, q)
if own in a[p, f]
then
enter r into a[qg, f1;
end
command grantswritesfilee2(p, f, q)
if a in a[p, f]
then
enter r into a[qg, f1;
end

and then say
grantswritesfileel(p, f, q); grantewrite*files2(p, f, q);

Also, the negation of a condition is not permitted—that is, one cannot test for
the absence of a right within a command by the condition

if  not in A[p, f].

This has some interesting consequences, which we will explore in the next chapter.

24 Summary

The access control matrix is the primary abstraction mechanism in computer secu-
rity. In its purest form, it can express any expressible security policy. In practice, it is
not used directly because of space requirements; most systems have (at least) thou-
sands of objects and could have thousands of subjects, and the storage requirements
would simply be too much. However, its simplicity makes it ideal for theoretical
analyses of security problems.

Transitions change the state of the system. Transitions are expressed in terms
of commands. A command consists of a possible condition followed by one or more
primitive operations. Conditions may involve ownership or the ability to copy a right.
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2.5 Further Reading

The access control matrix is sometimes called an authorization matrix in older litera-
ture [426].

In 1972, Conway, Maxwell, and Morgan [205], in parallel with Graham and
Denning, proposed a protection method for databases equivalent to the access control
model. Hartson and Hsiao [404] point out that databases in particular use functions
as described above to control access to records and fields; for this reason, entries in
the access control matrix for a database are called decision procedures or decision
rules. These entries are very similar to the earlier formulary model [425], in which
access procedures determine whether to grant access and, if so, provide a mapping to
virtual addresses and any required encryption and decryption.

Miller and Baldwin [637] use an access control matrix with entries determined
by the evaluation of boolean expressions to control access to fields in a database. The
query-set-overlap control [275] is a prevention mechanism that answers queries only
when the size of the intersection of the query set and each previous query set is smaller
than some parameter r, and can be represented as an access control matrix with entries
determined by the history of queries.

2.6 Exercises

1. Consider a computer system with three users: Alice, Bob, and Cyndy.
Alice owns the file alicerc, and Bob and Cyndy can read it. Cyndy can
read and write the file bobrc, which Bob owns, but Alice can only read it.
Only Cyndy can read and write the file cyndyrc, which she owns. Assume
that the owner of each of these files can execute it.

a. Create the corresponding access control matrix.
b. Cyndy gives Alice permission to read cyndyrc, and Alice removes
Bob’s ability to read alicerc. Show the new access control matrix.

2. Consider the set of rights {read, write, execute, append, list, modify, own}.

a. Using the syntax in Section 2.3, write a command delete_all_rights
(p, g, s). This command causes p to delete all rights the subject g has
over an object s.

b. Modify your command so that the deletion can occur only if p has
modify rights over s.

c. Modify your command so that the deletion can occur only if p has
modify rights over s and g does not have own rights over s.
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Foundational Results

MARIA: Ay, but you must confine yourself
within the modest limits of order.

— Twelfth Night, 1, iii, 8-9.

In 1976, Harrison, Ruzzo, and Ullman [401] proved that in the most general abstract
case, the security of computer systems was undecidable and explored some of the
limits of this result.

Models explore the most basic question of the art and science of computer
security: under what conditions can a generic algorithm determine whether a system
is secure? Understanding models and the results derived from them lays the founda-
tions for coping with limits in policy and policy composition as well as applying the
theoretical work.

3.1 The General Question

Given a computer system, how can we determine if it is secure? More simply, is
there a generic algorithm that allows us to determine whether a computer system is
secure? If so, we could simply apply that algorithm to any system; although the algo-
rithm might not tell us where the security problems were, it would tell us whether
any existed.

The first question is the definition of “secure.” What policy shall define
“secure”? For a general result, the definition should be as broad as possible. We use
the access control matrix to express our policy. However, we do not provide any spe-
cial rights such as copy or own, and the principle of attenuation of privilege does not
apply.

Let R be the set of generic (primitive) rights of the system.

Definition 3-1. When a generic right r is added to an element of the access
control matrix not already containing r, that right is said to be leaked.

37
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Our policy defines the authorized set of states A to be the set of states in which
no command c(xy, ..., x,,) can leak r. This means that no generic rights can be added
to the matrix.

We do not distinguish between the leaking of rights and an authorized transfer
of rights. In our model, there is no authorized transfer of rights. (If we wish to allow such
a transfer, we designate the subjects involved as “trusted.” We then eliminate all trusted
subjects from the matrix, because the security mechanisms no longer apply to them.)

Let a computer system begin in protection state s.

Definition 3-2. If a system can never leak the right r, the system (including
the initial state s() is called safe with respect to the right r. If the system can
leak the right r (enter an unauthorized state), it is called unsafe with respect to
the right r.

We use these terms rather than secure and nonsecure because safety refers to
the abstract model and security refers to the actual implementation. Thus, a secure
system corresponds to a model safe with respect to all rights, but a model safe with
respect to all rights does not ensure a secure system.

EXAMPLE: A computer system allows the network administrator to read all network
traffic. It disallows all other users from reading this traffic. The system is designed in
such a way that the network administrator cannot communicate with other users.
Thus, there is no way for the right r of the network administrator over the network
device to leak. This system is safe.

Unfortunately, the operating system has a flaw. If a user specifies a certain file
name in a file deletion system call, that user can obtain access to any file on the sys-
tem (bypassing all file system access controls). This is an implementation flaw, not a
theoretical one. It also allows the user to read data from the network. So this system
is not secure.

Our question (called the safety question) is: Does there exist an algorithm for
determining whether a given protection system with initial state s is safe with
respect to a generic right r?

3.2 Basic Results

The simplest case is a system in which the commands are mono-operational (each con-
sisting of a single primitive command). In such a system, the following theorem holds.

Theorem 3-1. [401] There exists an algorithm that will determine whether a
given mono-operational protection system with initial state s is safe with
respect to a generic right r.
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Proof Because all commands are mono-operational, we can identify each
command by the type of primitive operation it invokes. Consider the minimal
sequence of commands cy, ..., ¢, needed to leak the right r from the system
with initial state s.

Because no commands can test for the absence of rights in an access
control matrix entry, we can omit the delete and destroy commands from the
analysis. They do not affect the ability of a right to leak.

Now suppose that multiple create commands occurred during the
sequence of commands, causing a leak. Subsequent commands check only for
the presence of rights in an access control matrix element. They distinguish
between different elements only by the presence (or lack of presence) of a par-
ticular right. Suppose that two subjects s and s, are created and the rights in
Alsy, 0] and A[s,, 05] are tested. The same test for A[sy, 0;] and A[sy, 05] =
Alsy, 05] U Als,, 0,] will produce the same result. Hence, all creates are
unnecessary except possibly the first (and that only if there are no subjects ini-
tially), and any commands entering rights into the new subjects are rewritten
to enter the new right into the lone created subject. Similarly, any tests for the
presence of rights in the new subjects are rewritten to test for the presence of
that right in an existing subject (or, if none initially, the first subject created).

Let ISyl be the number of subjects and 10| the number of objects in the
initial state. Let n be the number of generic rights. Then, in the worst case, one
new subject must be created (one command), and the sequence of commands
will enter every right into every element of the access control matrix. After the
creation, there are 1Syl + 1 subjects and 10| + 1 objects, and (ISyl + )10 + 1)
elements. Because there are n generic rights, this leads to n(1Syl + 1)(10gl + 1)
commands. Hence, k < n(1Syl + 1)(10p1 + 1) + 1.

By enumerating all possible states we can determine whether the system is
safe. Clearly, this may be computationally infeasible, especially if many subjects,
objects, and rights are involved, but it is computable. (See Exercise 2.) Unfortu-
nately, this result does not generalize to all protection systems.

Before proving this, let us review the notation for a Turing machine. A Turing
machine 7 consists of a head and an infinite tape divided into cells numbered 1, 2, ...,
from left to right. The machine also has a finite set of states K and a finite set of tape
symbols M. The distinguished symbol b € M is a blank and appears on all the cells of
the tape at the start of all computations; also, at that time 7 is in the initial state g,

The tape head occupies one square of the tape, and can read and write sym-
bols on that cell of the tape, and can move into the cell to the left or right of the cell it
currently occupies. The function 8: K X M — K x M x {L, R} describes the action of
T. For example, let p, g € K and A, B € M. Then, if d(p, A) = (¢, B, R), when T is in
state p and the head rests on a cell with symbol A, the tape head changes the symbol
in the cell to B, moves right to the next cell (that is, if the head is in cell i, it moves to
cell i + 1), and the Turing machine enters state g. If d(p, A) = (¢, B, L), then the
actions would be the same except the head would move to the left unless it were
already in the leftmost square (because the head may never move off the tape).
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Let the final state be gy, if T enters this state, it halts. The halting problem is to
determine whether an arbitrary Turing machine will enter the state gy, and is known
to be undecidable [299].

Given this, we can now present the following theorem.

Theorem 3-2. [401] It is undecidable whether a given state of a given protec-
tion system is safe for a given generic right.

Proof Proof by contradiction. We show that an arbitrary Turing machine can
be reduced to the safety problem, with the Turing machine entering a final
state corresponding to the leaking of a given generic right. Then, if the safety
problem is decidable, we can determine when the Turing machine halts, show-
ing that the halting problem is decidable, which (as we said above) is false.

First, we construct a map from the states and symbols of 7 to rights in
the access control matrix model. Let the set of generic rights be the symbols
in M and a set of distinct symbols each representing an element in Kj; in other
words, the set of tape symbols and states are represented by generic rights,
one right for each symbol and one for each state.

The cells of the Turing machine tape are sequentially ordered. We con-
sider only the cells that the head has visited, so suppose 7 has scanned cells 1,
2, ..., n. To simulate this, we represent each cell as a subject and define a dis-
tinguished right called own such that s; owns s;, 1 for 1 <i < k. If cell i contains
the symbol A, then subject s; has A rights over itself. Furthermore, the subject
sk which corresponds to the rightmost cell visited, has end rights over itself;
notice that sy, ; has not been created in this case. Finally, if the head is in cell j
and 7'is in state p, then subject s; has p rights over itself also. (To keep the
meanings of the rights unambiguous, we require the rights corresponding to
the symbols for the tape to be distinct from the rights corresponding to the
states.) Figure 3—1 shows an example of this mapping, when the head has vis-
ited four cells.

Next, we must translate the Turing machine function d into access con-
trol matrix commands. Suppose that d(p, A) = (¢, B, L) and the head is not in

51 52 | 53 54
tape | A| B| Cc| D | 51 A | own
S2 B own
cell# 1 2 T3 4 > .y lown
s
head 4 D, end

Figure 3—-1 The Turing machine (at left) is in state p. The corresponding access
control matrix is shown at right.
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the leftmost cell. Then, in terms of the access control matrix, the rights A and
p must be replaced by B in the entry a[s;, s;] and the right ¢ must be added to
als;_;, s;_1]. The following access control matrix command, in which s; repre-
sents the subject corresponding to the current cell, captures this.

command Cps AGsi 8i21)
if own in als;_;, s;] and p in a[s;, s;] and A in a[s;, s;]
then
delete p from afs;, s;1;
delete A from a[s;, s;1;
enter B into als;, s;];
enter g into a[s;_, s;_11;
end

If the head is in the leftmost cell of the tape, both s; and s;_; are sy.

Now consider motion to the right, such as d(p, A) = (¢, B, R). If the head
is not in the rightmost cell k, by the same reasoning as for the left motion, we
have

command ¢, A(S;, Siy1)
if own in a[s;, s;;1] and p in a[s;, s;] and A in als;, s;]
then
delete p from afs;, s;1;
delete A from a[s;, s;1;
enter B into als;, s;];
enter g into a[s; ., s;. 115
end

However, if the head is in the rightmost cell k, the command must create a
new subject s;,;. Then, to maintain the consistency of the access control
matrix, s; is given own rights over the new subject s, 1, Sy, 1S given end
rights over itself, and s;’s end rights over itself must be removed. At that point,
the problem is reduced to the problem of regular right motion. So:

command crightmost,,, s(Sg, Si+1)
if end in al[s;, s;] and p in a[s;, s;] and A in a[s;, s;]
then
delete end from als;, s;l;
create new subject s, ;
enter own into als;, s;.1;
enter end into alsy, 1, Si+11;
delete p from afs;, s;1;
delete A from a[s;, s;1;
enter B into als;, s;];
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enter g into als;,{, s;.115
end

Clearly, only one right in any of the access control matrices corresponds to
a state, and there will be exactly one end right in the matrix (by the nature of the
commands simulating Turing machine actions). Hence, in each configuration of
the Turing machine, there is at most one applicable command. Thus, the protec-
tion system exactly simulates the Turing machine, given the representation above.
Now, if the Turing machine enters state gy, then the protection system has leaked
the right gg; otherwise, the protection system is safe for the generic right gy
But whether the Turing machine will enter the (halting) state g, is undecidable, so
whether the protection system is safe must be undecidable also.

However, we can generate a list of all unsafe systems.
Theorem 3-3. [242] The set of unsafe systems is recursively enumerable.
Proof See Exercise 3.

Assume that the create primitive is disallowed. Clearly, the safety question is
decidable (simply enumerate all possible sequences of commands from the given
state; as no new subjects or objects are created, at some point no new rights can be
added to any element of the access control matrix, so if the leak has not yet occurred,
it cannot occur). Hence, we have the following theorem.

Theorem 3—4. [401] For protection systems without the create primitives, the
question of safety is complete in P-SPACE.

Proof Consider a Turing machine bounded in polynomial space. A construc-
tion similar to that of Theorem 3-2 reduces that Turing machine in polyno-
mial time to an access control matrix whose size is polynomial in the length of
the Turing machine input.

If deleting the create primitives makes the safety question decidable, would
deleting the delete and destroy primitives but not the create primitive also make the
safety question decidable? Such systems are called monotonic because they only
increase in size and complexity; they cannot decrease. But:

Theorem 3-5. [402] It is undecidable whether a given configuration of a
given monotonic protection system is safe for a given generic right.

Restricting the number of conditions in the commands to two does not help:

Theorem 3-6. [402] The safety question for biconditional monotonic protec-
tion systems is undecidable.
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But if at most one condition per command is allowed:

Theorem 3-7. [402] The safety question for monoconditional monotonic pro-
tection systems is decidable.

This can be made somewhat stronger:

Theorem 3-8. [402] The safety question for monoconditional protection sys-
tems with create, enter, and delete primitives (but no destroy primitive) is
decidable.

Thus, the safety question is undecidable for generic protection models but is
decidable if the protection system is restricted in some way. Two questions arise.
First, given a particular system with specific rules for transformation, can we show
that the safety question is decidable? Second, what are the weakest restrictions on a
protection system that will make the safety question decidable in that system?

3.3 Summary

The safety problem is a rich problem that has led to the development of several mod-
els and analysis techniques. The key result is that the general problem of safety is
undecidable. But in specific cases, or in systems with limited sets of rules and enti-
ties, safety may well be decidable. Ultimately, however, security (the analogue of
safety) is analyzed for a system or for a class of systems.

3.4 Further Reading

In that same year as the HRU result, Jones, Lipton, and Snyder [473] presented a
specific model, called the Take-Grant Protection Model, in which security was not
only decidable, but decidable in time linear with the size of the system. Several
papers [112,576,848,849,850] have explored this system and its applications. Budd
[141] analyzes safety properties of grammatical protection schemes, which he and
Lipton defined earlier [575]. Minsky [639] suggested another model to examine what
made the general, abstract case undecidable but at least one specific case decidable.
Sandhu and others [777,778,779] extended this model, which he called the Sche-
matic Protection Model or SPM, to examine the boundary even more closely. Sandhu
has also presented interesting work on the representation of models, and has unified
many of them with his transform model [781, 782, 786].

Some interesting work [18,19,20,780,783] has characterized the expressive
power of these, and other, models.
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Sandhu and Ganta [785] have explored the effects of allowing testing for the
absence of rights in an access control matrix (as opposed to testing for the presence
of rights, which all the models described in this chapter do).

3.5 Exercises

1. The proof of Theorem 3-1 states the following: Suppose two subjects s;
and s, are created and the rights in A[sq, 01] and A[s,, 0,] are tested. The
same test for A[sy, 0] and A[s1, 05] = Alsq, 0] U Als,, 0,] will produce
the same result. Justify this statement. Would it be true if one could test for
the absence of rights as well as for the presence of rights?

2. Devise an algorithm that determines whether or not a system is safe by
enumerating all possible states. Is this problem NP-complete? Justify your
answer.

3. Prove Theorem 3-3. (Hint: Use a diagonalization argument to test each
system as the set of protection systems is enumerated. Whenever a
protection system leaks a right, add it to the list of unsafe protection
systems.)



Chapter 4

Security Policies

PORTIA: Of a strange nature is the suit you follow;
Yet in such rule that the Venetian law

Cannot impugn you as you do proceed.

[7o Antonio.] You stand within his danger, do you not?
—The Merchant of Venice, 1V, i, 177-180.

A security policy defines “secure” for a system or a set of systems. Security policies
can be informal or highly mathematical in nature. After defining a security policy
precisely, we expand on the nature of “trust” and its relationship to security policies.
We also discuss different types of policy models.

4.1 Security Policies

Consider a computer system to be a finite-state automaton with a set of transition
functions that change state. Then:

Definition 4-1. A security policy is a statement that partitions the states of
the system into a set of authorized, or secure, states and a set of unauthorized,
or nonsecure, states.

A security policy sets the context in which we can define a secure system.
What is secure under one policy may not be secure under a different policy. More
precisely:

Definition 4-2. A secure system is a system that starts in an authorized state
and cannot enter an unauthorized state.

Consider the finite-state machine in Figure 4-1. It consists of four states and

five transitions. The security policy partitions the states into a set of authorized states
A ={ 51, 57 } and a set of unauthorized states UA = { s3, 54 }. This system is not

45
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Figure 4-1 A simple finite-state machine. In this example, the authorized
states are s; and s..

secure, because regardless of which authorized state it starts in, it can enter an unau-
thorized state. However, if the edge from s, to s3 were not present, the system would
be secure, because it could not enter an unauthorized state from an authorized state.

Definition 4-3. A breach of security occurs when a system enters an unau-
thorized state.

We informally discussed the three basic properties relevant to security in Sec-
tion 1.1. We now define them precisely.

Definition 4-4. Let X be a set of entities and let 7 be some information. Then
[ has the property of confidentiality with respect to X if no member of X can
obtain information about /.

Confidentiality implies that information must not be disclosed to some set of
entities. It may be disclosed to others. The membership of set X is often implicit—for
example, when we speak of a document that is confidential. Some entity has access
to the document. All entities not authorized to have such access make up the set X.

Definition 4-5. Let X be a set of entities and let / be some information or a
resource. Then [ has the property of integrity with respect to X if all members
of X trust /.

This definition is deceptively simple. In addition to trusting the information
itself, the members of X also trust that the conveyance and storage of / do not change
the information or its trustworthiness (this aspect is sometimes called data integrity).
If I is information about the origin of something, or about an identity, the members of
X trust that the information is correct and unchanged (this aspect is sometimes called
origin integrity or, more commonly, authentication). Also, I may be a resource rather
than information. In that case, integrity means that the resource functions correctly
(meeting its specifications). This aspect is called assurance and will be discussed in
Part 6, “Assurance.” As with confidentiality, the membership of X is often implicit.

Definition 4-6. Let X be a set of entities and let / be a resource. Then [ has
the property of availability with respect to X if all members of X can access /.
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The exact definition of “access” in Definition 4—6 varies depending on the
needs of the members of X, the nature of the resource, and the use to which the
resource is put. If a book-selling server takes up to 1 hour to service a request to pur-
chase a book, that may meet the client’s requirements for “availability.” If a server of
medical information takes up to 1 hour to service a request for information regarding
an allergy to an anesthetic, that will not meet an emergency room’s requirements for
“availability.”

A security policy considers all relevant aspects of confidentiality, integrity,
and availability. With respect to confidentiality, it identifies those states in which
information leaks to those not authorized to receive it. This includes not only the
leakage of rights but also the illicit transmission of information without leakage of
rights, called information flow. Also, the policy must handle dynamic changes of
authorization, so it includes a temporal element. For example, a contractor working
for a company may be authorized to access proprietary information during the life-
time of a nondisclosure agreement, but when that nondisclosure agreement expires,
the contractor can no longer access that information. This aspect of the security pol-
icy is often called a confidentiality policy.

With respect to integrity, a security policy identifies authorized ways in which
information may be altered and entities authorized to alter it. Authorization may
derive from a variety of relationships, and external influences may constrain it; for
example, in many transactions, a principle called separation of duties forbids an
entity from completing the transaction on its own. Those parts of the security policy
that describe the conditions and manner in which data can be altered are called the
integrity policy.

With respect to availability, a security policy describes what services must be
provided. It may present parameters within which the services will be accessible—
for example, that a browser may download Web pages but not Java applets. It may
require a level of service—for example, that a server will provide authentication data
within 1 minute of the request being made. This relates directly to issues of quality of
service.

The statement of a security policy may formally state the desired properties of
the system. If the system is to be provably secure, the formal statement will allow the
designers and implementers to prove that those desired properties hold. If a formal
proof is unnecessary or infeasible, analysts can test that the desired properties hold
for some set of inputs. Later chapters will discuss both these topics in detail.

In practice, a less formal type of security policy defines the set of authorized
states. Typically, the security policy assumes that the reader understands the context
in which the policy is issued—in particular, the laws, organizational policies, and
other environmental factors. The security policy then describes conduct, actions, and
authorizations defining “authorized users” and “authorized use.”

EXAMPLE: A university disallows cheating, which is defined to include copying
another student’s homework assignment (with or without permission). A computer
science class requires the students to do their homework on the department’s com-
puter. One student notices that a second student has not read protected the file
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containing her homework and copies it. Has either student (or have both students)
breached security?

The second student has not, despite her failure to protect her homework. The
security policy requires no action to prevent files from being read. Although she may
have been too trusting, the policy does not ban this; hence, the second student has not
breached security.

The first student has breached security. The security policy disallows the
copying of homework, and the student has done exactly that. Whether the security
policy specifically states that “files containing homework shall not be copied” or
simply says that “users are bound by the rules of the university” is irrelevant; in the
latter case, one of those rules bans cheating. If the security policy is silent on such
matters, the most reasonable interpretation is that the policy disallows actions that
the university disallows, because the computer science department is part of the
university.

The retort that the first user could copy the files, and therefore the action is
allowed, confuses mechanism with policy. The distinction is sharp:

Definition 4-7. A security mechanism is an entity or procedure that enforces
some part of the security policy.

EXAMPLE: In the preceding example, the policy is the statement that no student may
copy another student’s homework. One mechanism is the file access controls; if the
second student had set permissions to prevent the first student from reading the file
containing her homework, the first student could not have copied that file.

EXAMPLE: Another site’s security policy states that information relating to a partic-
ular product is proprietary and is not to leave the control of the company. The com-
pany stores its backup tapes in a vault in the town’s bank (this is common practice in
case the computer installation is completely destroyed). The company must ensure
that only authorized employees have access to the backup tapes even when the tapes
are stored off-site; hence, the bank’s controls on access to the vault, and the proce-
dures used to transport the tapes to and from the bank, are considered security mech-
anisms. Note that these mechanisms are not technical controls built into the
computer. Procedural, or operational, controls also can be security mechanisms.

Security policies are often implicit rather than explicit. This causes confusion,
especially when the policy is defined in terms of the mechanisms. This definition
may be ambiguous—for example, if some mechanisms prevent a specific action and
others allow it. Such policies lead to confusion, and sites should avoid them.

EXAMPLE: The UNIX operating system, initially developed for a small research
group, had mechanisms sufficient to prevent users from accidentally damaging one
another’s files; for example, the user ken could not delete the user dmr’s files (unless
dmr had set the files and the containing directories appropriately). The implied
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security policy for this friendly environment was “do not delete or corrupt another’s
files, and any file not protected may be read.”

When the UNIX operating system moved into academic institutions and com-
mercial and government environments, the previous security policy became inade-
quate; for example, some files had to be protected from individual users (rather than
from groups of users). Not surprisingly, the security mechanisms were inadequate
for those environments.

The difference between a policy and an abstract description of that policy is
crucial to the analysis that follows.

Definition 4-8. A security model is a model that represents a particular pol-
icy or set of policies.

A model abstracts details relevant for analysis. Analyses rarely discuss partic-
ular policies; they usually focus on specific characteristics of policies, because many
policies exhibit these characteristics; and the more policies with those characteris-
tics, the more useful the analysis. By the HRU result (see Theorem 3-2), no single
nontrivial analysis can cover all policies, but restricting the class of security policies
sufficiently allows meaningful analysis of that class of policies.

4.2 Types of Security Policies

Each site has its own requirements for the levels of confidentiality, integrity, and
availability, and the site policy states these needs for that particular site.

Definition 4-9. A military security policy (also called a governmental secu-
rity policy) is a security policy developed primarily to provide confidentiality.

The name comes from the military’s need to keep information, such as the
date that a troop ship will sail, secret. Although integrity and availability are impor-
tant, organizations using this class of policies can overcome the loss of either—for
example, by using orders not sent through a computer network. But the compromise
of confidentiality would be catastrophic, because an opponent would be able to plan
countermeasures (and the organization may not know of the compromise).

Confidentiality is one of the factors of privacy, an issue recognized in the laws
of many government entities (such as the Privacy Act of the United States and similar
legislation in Sweden). Aside from constraining what information a government entity
can legally obtain from individuals, such acts place constraints on the disclosure and
use of that information. Unauthorized disclosure can result in penalties that include
jail or fines; also, such disclosure undermines the authority and respect that individuals
have for the government and inhibits them from disclosing that type of information
to the agencies so compromised.
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Definition 4-10. A commercial security policy is a security policy developed
primarily to provide integrity.

The name comes from the need of commercial firms to prevent tampering
with their data, because they could not survive such compromises. For example, if
the confidentiality of a bank’s computer is compromised, a customer’s account bal-
ance may be revealed. This would certainly embarrass the bank and possibly cause
the customer to take her business elsewhere. But the loss to the bank’s “bottom line”
would be minor. However, if the integrity of the computer holding the accounts were
compromised, the balances in the customers’ accounts could be altered, with finan-
cially ruinous effects.

Some integrity policies use the notion of a transaction; like database specifica-
tions, they require that actions occur in such a way as to leave the database in a con-
sistent state. These policies, called transaction-oriented integrity security policies,
are critical to organizations that require consistency of databases.

EXAMPLE: When a customer moves money from one account to another, the bank
uses a well-formed transaction. This transaction has two distinct parts: money is first
debited to the original account and then credited to the second account. Unless both
parts of the transaction are completed, the customer will lose the money. With a well-
formed transaction, if the transaction is interrupted, the state of the database is still
consistent—either as it was before the transaction began or as it would have been
when the transaction ended. Hence, part of the bank’s security policy is that all trans-
actions must be well-formed.

The role of trust in these policies highlights their difference. Confidentiality
policies place no trust in objects; so far as the policy is concerned, the object could
be a factually correct report or a tale taken from Aesop’s Fables. The policy state-
ment dictates whether that object can be disclosed. It says nothing about whether the
object should be believed.

Integrity policies, to the contrary, indicate how much the object can be trusted.
Given that this level of trust is correct, the policy dictates what a subject can do with
that object. But the crucial question is how the level of trust is assigned. For example,
if a site obtains a new version of a program, should that program have high integrity
(that is, the site trusts the new version of that program) or low integrity (that is, the
site does not yet trust the new program), or should the level of trust be somewhere in
between (because the vendor supplied the program, but it has not been tested at the
local site as thoroughly as the old version)? This makes integrity policies consider-
ably more nebulous than confidentiality policies. The assignment of a level of confi-
dentiality is based on what the classifier wants others to know, but the assignment of
a level of integrity is based on what the classifier subjectively believes to be true
about the trustworthiness of the information.

Two other terms describe policies related to security needs; because they
appear elsewhere, we define them now.
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Definition 4-11. A confidentiality policy is a security policy dealing only
with confidentiality.

Definition 4—-12. An integrity policy is a security policy dealing only with
integrity.

Both confidentiality policies and military policies deal with confidentiality;
however, a confidentiality policy does not deal with integrity at all, whereas a mili-
tary policy may. A similar distinction holds for integrity policies and commercial
policies.

4.3 The Role of Trust

The role of trust is crucial to understanding the nature of computer security. This
book presents theories and mechanisms for analyzing and enhancing computer secu-
rity, but any theories or mechanisms rest on certain assumptions. When someone
understands the assumptions her security policies, mechanisms, and procedures rest
on, she will have a very good understanding of how effective those policies, mecha-
nisms, and procedures are. Let us examine the consequences of this maxim.

A system administrator receives a security patch for her computer’s operating
system. She installs it. Has she improved the security of her system? She has indeed,
given the correctness of certain assumptions:

1. She is assuming that the patch came from the vendor and was not
tampered with in transit, rather than from an attacker trying to trick her
into installing a bogus patch that would actually open security holes.
Winkler [947] describes a penetration test in which this technique enabled
attackers to gain direct access to the computer systems of the target.

2. She is assuming that the vendor tested the patch thoroughly. Vendors are
often under considerable pressure to issue patches quickly and sometimes
test them only against a particular attack. The vulnerability may be deeper,
however, and other attacks may succeed. When someone released an
exploit of one vendor’s operating system code, the vendor released a
correcting patch in 24 hours. Unfortunately, the patch opened a second
hole, one that was far easier to exploit. The next patch (released 48 hours
later) fixed both problems correctly.

3. She is assuming that the vendor’s test environment corresponds to her
environment. Otherwise, the patch may not work as expected. As an
example, a vendor’s patch once reset ownerships of executables to the user
root. At some installations, maintenance procedures required that these
executables be owned by the user bin. The vendor’s patch had to be
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undone and fixed for the local configuration. This assumption also covers
possible conflicts between different patches, as well as patches that
conflict with one another (such as patches from different vendors of
software that the system is using).

4. She is assuming that the patch is installed correctly. Some patches are
simple to install, because they are simply executable files. Others are
complex, requiring the system administrator to reconfigure network-
oriented properties, add a user, modify the contents of a registry, give
rights to some set of users, and then reboot the system. An error in any of
these steps could prevent the patch from correcting the problems, as could
an inconsistency between the environments in which the patch was
developed and in which the patch is applied. Furthermore, the patch may
claim to require specific privileges, when in reality the privileges are
unnecessary and in fact dangerous.

These assumptions are fairly high-level, but invalidating any of them makes the
patch a potential security problem.

Assumptions arise also at a much lower level. Consider formal verification, an
oft-touted panacea for security problems. The important aspect is that formal verifi-
cation provides a formal mathematical proof that a given program P is correct—that
is, given any set of inputs i, j, k, the program P will produce the output x that its spec-
ification requires. This level of assurance is greater than most existing programs
provide, and hence makes P a desirable program. Suppose a security-related pro-
gram S has been formally verified for the operating system O. What assumptions
would be made when it was installed?

1. The formal verification of § is correct—that is, the proof has no errors.
Because formal verification relies on automated theorem provers as well
as human analysis, the theorem provers must be programmed correctly.

2. The assumptions made in the formal verification of S are correct;
specifically, the preconditions hold in the environment in which the
program is to be executed. These preconditions are typically fed to the
theorem provers as well as the program S. An implicit aspect of this
assumption is that the version of O in the environment in which the
program is to be executed is the same as the version of O used to verify S.

3. The program will be transformed into an executable whose actions
correspond to those indicated by the source code; in other words, the
compiler, linker, loader, and any libraries are correct. An experiment with
one version of the UNIX operating system demonstrated how devastating
arigged compiler could be, and attackers have replaced libraries with others
that performed additional functions, thereby increasing security risks.
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4. The hardware will execute the program as intended. A program that relies
on floating point calculations would yield incorrect results on some
computer CPU chips, regardless of any formal verification of the program,
owing to a flaw in these chips [178]. Similarly, a program that relies on
inputs from hardware assumes that specific conditions cause those inputs.

The point is that any security policy, mechanism, or procedure is based on
assumptions that, if incorrect, destroy the superstructure on which it is built. Analysts
and designers (and users) must bear this in mind, because unless they understand
what the security policy, mechanism, or procedure is based on, they jump from an
unwarranted assumption to an erroneous conclusion.

4.4 Types of Access Control

A security policy may use two types of access controls, alone or in combination. In
one, access control is left to the discretion of the owner. In the other, the operating
system controls access, and the owner cannot override the controls.

The first type is based on user identity and is the most widely known:

Definition 4-13. If an individual user can set an access control mechanism to
allow or deny access to an object, that mechanism is a discretionary access
control (DAC), also called an identity-based access control (IBAC).

Discretionary access controls base access rights on the identity of the subject
and the identity of the object involved. Identity is the key; the owner of the object
constrains who can access it by allowing only particular subjects to have access. The
owner states the constraint in terms of the identity of the subject, or the owner of the
subject.

EXAMPLE: Suppose a child keeps a diary. The child controls access to the diary,
because she can allow someone to read it (grant read access) or not allow someone to
read it (deny read access). The child allows her mother to read it, but no one else.
This is a discretionary access control because access to the diary is based on the
identity of the subject (mom) requesting read access to the object (the diary).

The second type of access control is based on fiat, and identity is irrelevant:
Definition 4-14. When a system mechanism controls access to an object and

an individual user cannot alter that access, the control is a mandatory access
control (MAC), occasionally called a rule-based access control.
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The operating system enforces mandatory access controls. Neither the subject
nor the owner of the object can determine whether access is granted. Typically, the
system mechanism will check information associated with both the subject and
the object to determine whether the subject should access the object. Rules describe
the conditions under which access is allowed.

EXAMPLE: The law allows a court to access driving records without the owners’ per-
mission. This is a mandatory control, because the owner of the record has no control
over the court’s accessing the information.

Definition 4-15. An originator controlled access control (ORCON or ORG-
CON) bases access on the creator of an object (or the information it contains).

The goal of this control is to allow the originator of the file (or of the informa-
tion it contains) to control the dissemination of the information. The owner of the file
has no control over who may access the file. Section 7.3 discusses this type of con-
trol in detail.

EXAMPLE: Bit Twiddlers, Inc., a company famous for its embedded systems, con-
tracts with Microhackers Ltd., a company equally famous for its microcoding abili-
ties. The contract requires Microhackers to develop a new microcode language for a
particular processor designed to be used in high-performance embedded systems. Bit
Twiddlers gives Microhackers a copy of its specifications for the processor. The
terms of the contract require Microhackers to obtain permission before it gives any
information about the processor to its subcontractors. This is an originator controlled
access mechanism because, even though Microhackers owns the file containing the
specifications, it may not allow anyone to access that information unless the creator,
Bit Twiddlers, gives permission.

4.5 Example: Academic Computer Security Policy

Security policies can have few details, or many. The explicitness of a security policy
depends on the environment in which it exists. A research lab or office environment
may have an unwritten policy. A bank needs a very explicit policy. In practice, poli-
cies begin as generic statements of constraints on the members of the organization.
These statements are derived from an analysis of threats, as described in Chapter 1,
“An Overview of Computer Security.” As questions (or incidents) arise, the policy is
refined to cover specifics. As an example, we present an academic security policy.



4.5 Example: Academic Computer Security Policy 55

451 General University Policy

This policy is an “Acceptable Use Policy” (AUP) for the Davis campus of the Uni-
versity of California. Because computing services vary from campus unit to campus
unit, the policy does not dictate how the specific resources can be used. Instead, it
presents generic constraints that the individual units can tighten.

The policy first presents the goals of campus computing: to provide access to
resources and to allow the users to communicate with others throughout the world. It
then states the responsibilities associated with the privilege of using campus comput-
ers. All users must “respect the rights of other users, respect the integrity of the sys-
tems and related physical resources, and observe all relevant laws, regulations, and
contractual obli gations.”1

The policy states the intent underlying the rules, and notes that the system
managers and users must abide by the law (for example, “Since electronic informa-
tion is volatile and easily reproduced, users must exercise care in acknowledging and
respecting the work of others through strict adherence to software licensing agree-
ments and copyright laws”).2

The enforcement mechanisms in this policy are procedural. For minor viola-
tions, either the unit itself resolves the problem (for example, by asking the offender
not to do it again) or formal warnings are given. For more serious infractions, the
administration may take stronger action such as denying access to campus computer
systems. In very serious cases, the university may invoke disciplinary action. The
Office of Student Judicial Affairs hears such cases and determines appropriate conse-
quences.

The policy then enumerates specific examples of actions that are considered to
be irresponsible use. Among these are illicitly monitoring others, spamming, and
locating and exploiting security vulnerabilities. These are examples; they are not
exhaustive. The policy concludes with references to other documents of interest.

This is a typical AUP. It is written informally and is aimed at the user commu-
nity that is to abide by it. The electronic mail policy presents an interesting contrast
to the AUP, probably because the AUP is for UC Davis only, and the electronic mail
policy applies to all nine University of California campuses.

4.5.2 Electronic Mail Policy

The university has several auxiliary policies, which are subordinate to the general
university policy. The electronic mail policy describes the constraints imposed on
access to, and use of, electronic mail. It conforms to the general university policy but
details additional constraints on both users and system administrators.

The electronic mail policy consists of three parts. The first is a short summary
intended for the general user community, much as the AUP for UC Davis is intended

! From Part 1, Section 2 of the AUP for the University of California, Davis.
2 From Part 1, Section 2 of the AUP for the University of California, Davis.
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for the general user community. The second part is the full policy for all university
campuses and is written as precisely as possible. The last document describes how
the Davis campus implements the general university electronic mail policy.

4.5.2.1 The Electronic Mail Policy Summary

The summary first warns users that their electronic mail is not private. It may be read
accidentally, in the course of normal system maintenance, or in other ways stated in
the full policy. It also warns users that electronic mail can be forged or altered as well
as forwarded (and that forwarded messages may be altered). This section is interest-
ing because policies rarely alert users to the threats they face; policies usually focus
on the remedial techniques.

The next two sections are lists of what users should, and should not, do. They
may be summarized as “think before you send; be courteous and respectful of others;
and don’t interfere with others’ use of electronic mail.” They emphasize that supervi-
sors have the right to examine employees’ electronic mail that relates to the job. Sur-
prisingly, the university does not ban personal use of electronic mail, probably in the
recognition that enforcement would demoralize people and that the overhead of car-
rying personal mail is minimal in a university environment. The policy does require
that users not use personal mail to such an extent that it interferes with their work or
causes the university to incur extra expense.

Finally, the policy concludes with a statement about its application. In a pri-
vate company, this would be unnecessary, but the University of California is a quasi-
governmental institution and as such is bound to respect parts of the United States
Constitution and the California Constitution that private companies are not bound to
respect. Also, as an educational institution, the university takes the issues surround-
ing freedom of expression and inquiry very seriously. Would a visitor to campus be
bound by these policies? The final section says yes. Would an employee of Lawrence
Livermore National Laboratories, run for the Department of Energy by the Univer-
sity of California, also be bound by these policies? Here, the summary suggests that
they would be, but whether the employees of the lab are Department of Energy
employees or University of California employees could affect this. So we turn to the
full policy.

4.5.2.2 The Full Policy

The full policy also begins with a description of the context of the policy, as well as
its purpose and scope. The scope here is far more explicit than that in the summary.
For example, the full policy does not apply to e-mail services of the Department of
Energy laboratories run by the university, such as Lawrence Livermore National
Laboratories. Moreover, this policy does not apply to printed copies of e-mail,
because other university policies apply to such copies.

The general provisions follow. They state that e-mail services and infrastruc-
ture are university property, and that all who use them are expected to abide by the
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law and by university policies. Failure to do so may result in access to e-mail being
revoked. The policy reiterates that the university will apply principles of academic
freedom and freedom of speech in its handling of e-mail, and so will seek access to
e-mail without the holder’s permission only under extreme circumstances, which are
enumerated, and only with the approval of a campus vice chancellor or a university
vice president (essentially, the second ranking officer of a campus or of the university
system). If this is infeasible, the e-mail may be read only as is needed to resolve the
emergency, and then authorization must be secured after the fact.

The next section discusses legitimate and illegitimate use of the university’s
e-mail. The policy allows anonymity to senders provided that it does not violate laws
or other policies. It disallows using mail to interfere with others, such as by sending
spam or letter bombs. It also expressly permits the use of university facilities for
sending personal e-mail, provided that doing so does not interfere with university
business; and it cautions that such personal e-mail may be treated as a “University
record” subject to disclosure.

The discussion of security and confidentiality emphasizes that, although the
university will not go out of its way to read e-mail, it can do so for legitimate busi-
ness purposes and to keep e-mail service robust and reliable. The section on
archiving and retention says that people may be able to recover e-mail from end sys-
tems where it may be archived as part of a regular backup.

The last three sections discuss the consequences of violations and direct the
chancellor of each campus to develop procedures to implement the policy.

An interesting sidelight occurs in Appendix A, “Definitions.” The definition of
“E-mail” includes any computer records viewed with e-mail systems or services, and
the “transactional information associated with such records [E-mail], such as head-
ers, summaries, addresses, and addressees.” This appears to encompass the network
packets used to carry the e-mail from one host to another. This ambiguity illustrates
the problem with policies. The language is imprecise. This motivates the use of more
mathematical languages, such as DTEL, for specifying policies.

4.5.2.3 Implementation at UC Davis

This interpretation of the policy simply specifies those points delegated to the cam-
pus. Specifically, “incidental personal use” is not allowed if that personal use benefits
a non-university organization, with a few specific exceptions enumerated in the pol-
icy. Then procedures for inspecting, monitoring, and disclosing the contents of
e-mail are given, as are appeal procedures. The section on backups states that the
campus does not archive all e-mail, and even if e-mail is backed up incidental to
usual backup practices, it need not be made available to the employee.

This interpretation adds campus-specific requirements and procedures to the
university’s policy. The local augmentation amplifies the system policy; it does not
contradict it or limit it. Indeed, what would happen if the campus policy conflicted
with the system’s policy? In general, the higher (system-wide) policy would prevail.
The advantage of leaving implementation to the campuses is that they can take into
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account local variations and customs, as well as any peculiarities in the way the
administration and the Academic Senate govern that campus.

4.6 Summary

Security policies define “security” for a system or site. They may be implied policies
defined by the common consensus of the community, or they may be informal poli-
cies whose interpretations are defined by the community. Both of these types of
policies are usually ambiguous and do not precisely define “security.” A policy may
be formal, in which case ambiguities arise either from the use of natural languages
such as English or from the failure to cover specific areas.

Formal mathematical models of policies enable analysts to deduce a rigorous
definition of “security” but do little to improve the average user’s understanding of
what “security” means for a site. The average user is not mathematically sophisti-
cated enough to read and interpret the mathematics.

Trust underlies all policies and enforcement mechanisms. Policies themselves
make assumptions about the way systems, software, hardware, and people behave. At a
lower level, security mechanisms and procedures also make such assumptions. Even
when rigorous methodologies (such as formal mathematical models or formal verifica-
tion) are applied, the methodologies themselves simply push the assumptions, and there-
fore the trust, to a lower level. Understanding the assumptions and the trust involved in
any policies and mechanisms deepens one’s understanding of the security of a system.

This brief overview of policy, and of policy expression, lays the foundation
for understanding the more detailed policy models used in practice.

4.7 Further Reading

Much of security analysis involves definition and refinement of security policies.
Wood [954] has published a book of templates for specific parts of policies. That
book justifies each part and allows readers to develop policies by selecting the appro-
priate parts from a large set of possibilities. Essays by Bailey [51] and Abrams and
Bailey [4] discuss management of security issues and explain why different members
of an organization interpret the same policy differently. Sterne’s wonderful paper
[875] discusses the nature of policy in general.

Jajodia and his colleagues [467] present a “little language” for expressing
authorization policies. They show that their language can express many aspects of
existing policies and argue that it allows elements of these policies to be combined
into authorization schemes. Other little languages include DTEL [50,336], a constraint
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language for Java programs [708]. File system state analysis programs use low-level
policy languages to describe the current file system state; two examples are the pro-
grams tripwire [510] and the RIACS auditing and checking system [98].

Boebert and Kain [119] observed that type checking provides a form of access
control. Some policy languages (such as DTEL) are based on this observation. At
least one firewall [900] has security mechanisms also based on type checking.

Cholvy and Cuppens [173] describe a method of checking policies for consis-
tency and determining how they apply to given situations.

Son, Chaney, and Thomlinson [856] discuss enforcement of partial security
policies in real-time databases to balance real-time requirements with security. Their
idea of “partial security policies” has applications in other environments. Zurko and
Simon [966] present an alternative focus for policies.

Jones and Lipton [472] explored the balancing of security and precision for
confidentiality policies.

4.8 Exercises

1. In Figure 4-1, suppose that edge #3 went from s; to s4. Would the resulting
system be secure?

2. Revisit the example of one student copying another student’s homework
assignment. Describe three other ways the first student could copy the
second student’s homework assignment, even assuming that the file access
control mechanisms are set to deny him permission to read the file.

3. A noted computer security expert has said that without integrity, no system
can provide confidentiality.

a. Do you agree? Justify your answer.
b. Can a system provide integrity without confidentiality? Again,
justify your answer.

4. A cryptographer once claimed that security mechanisms other than
cryptography were unnecessary because cryptography could provide any
desired level of confidentiality and integrity. Ignoring availability, either
justify or refute the cryptographer’s claim.

5. Classify each of the following as an example of a mandatory,
discretionary, or originator controlled policy, or a combination thereof.
Justify your answers.

a. The file access control mechanisms of the UNIX operating system

b. A system in which no memorandum can be distributed without the
author’s consent

c. A military facility in which only generals can enter a particular room
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d. A university registrar’s office, in which a faculty member can see the
grades of a particular student provided that the student has given
written permission for the faculty member to see them.

6. Consider the UC Davis policy on reading electronic mail. A research
group wants to obtain raw data from a network that carries all network
traffic to the Department of Political Science.

a. Discuss the impact of the electronic mail policy on the collection of
such data.

b. How would you change the policy to allow the collection of this data
without abandoning the principle that electronic mail should be
protected?



Chapter 5

Confidentiality Policies

SHEPHERD: Sir, there lies such secrets in this fardel
and box which none must know but the king;

and which he shall know within this hour, if I

may come to the speech of him.

—The Winter’s Tuale, IV, iv, 785-788.

Confidentiality policies emphasize the protection of confidentiality. The importance
of these policies lies in part in what they provide, and in part in their role in the
development of the concept of security. This chapter explores one such policy—the
Bell-LaPadula Model—and the controversy it engendered.

5.1 Goals of Confidentiality Policies

A confidentiality policy, also called an information flow policy, prevents the unautho-
rized disclosure of information. Unauthorized alteration of information is secondary.
For example, the navy must keep confidential the date on which a troop ship will sail.
If the date is changed, the redundancy in the systems and paperwork should catch
that change. But if the enemy knows the date of sailing, the ship could be sunk.
Because of extensive redundancy in military communications channels, availability
is also less of a problem.

The term “governmental” covers several requirements that protect citizens’
privacy. In the United States, the Privacy Act requires that certain personal data be
kept confidential. Income tax returns are legally confidential and are available only to
the Internal Revenue Service or to legal authorities with a court order. The principle
of “executive privilege” and the system of nonmilitary classifications suggest that the
people working in the government need to limit the distribution of certain documents
and information. Governmental models represent the policies that satisfy these
requirements.

61
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5.2 The Bell-LaPadula Model

The Bell-LaPadula Model [63, 64] corresponds to military-style classifications. It
has influenced the development of many other models and indeed much of the devel-
opment of computer security technologies.1

5.2.1 Informal Description

The simplest type of confidentiality classification is a set of security clearances
arranged in a linear (total) ordering (see Figure 5—1). These clearances represent sen-
sitivity levels. The higher the security clearance, the more sensitive the information
(and the greater the need to keep it confidential). A subject has a security clearance.
In the figure, Claire’s security clearance is C (for CONFIDENTIAL), and Thomas’ is
TS (for TOP SECRET). An object has a security classification; the security classifi-
cation of the electronic mail files is S (for SECRET), and that of the telephone list
files is UC (for UNCLASSIFIED). (When we refer to both subject clearances and
object classifications, we use the term “classification.”) The goal of the Bell-LaPadula
security model is to prevent read access to objects at a security classification higher
than the subject’s clearance.

The Bell-LaPadula security model combines mandatory and discretionary
access controls. In what follows, “S has discretionary read (write) access to O”
means that the access control matrix entry for S and O corresponding to the discre-
tionary access control component contains a read (write) right. In other words, were
the mandatory controls not present, S would be able to read (write) O.

TOP SECRET (TS) Tamara, Thomas Personnel Files
SECRlET S) Sally, éamuel ElectroniclMail Files
CONFIDE{\ITIAL ©) Claire, élarence Activity ILog Files
UNCLASS}FIED (UC) Ulaley,I Ursula TelephoneI List Files

Figure 5—1 At the left is the basic confidentiality classification system. The
four security levels are arranged with the most sensitive at the top and the

least sensitive at the bottom. In the middle are individuals grouped by their
security clearances, and at the right is a set of documents grouped by their
security levels.

!'The terminology in this section follows that of the unified exposition of the Bell-LaPadula
Model [64].



5.2 The Bell-LaPadula Model 63

Let L(S) = [ be the security clearance of subject S, and let L(O) = [, be the secu-
rity classification of object O. For all security classifications /;, i =0, ..., k— 1, [; < [;4.

» Simple Security Condition, Preliminary Version: S can read O if and only
if [, <[ and S has discretionary read access to O.

In Figure 5-1, for example, Claire and Clarence cannot read personnel files, but Tam-
ara and Sally can read the activity log files (and, in fact, Tamara can read any of the
files, given her clearance), assuming that the discretionary access controls allow it.

Should Tamara decide to copy the contents of the personnel files into the
activity log files and set the discretionary access permissions appropriately, Claire
could then read the personnel files. Thus, for all practical purposes, Claire could read
the files at a higher level of security. A second property prevents this:

» *-Property (Star Property), Preliminary Version: S can write O if and
only if /; <[, and § has discretionary write access to O.

Because the activity log files are classified C and Tamara has a clearance of TS, she
cannot write to the activity log files.

Define a secure system as one in which both the simple security condition,
preliminary version, and the *-property, preliminary version, hold. A straightforward
induction establishes the following theorem.

Theorem 5-1. Basic Security Theorem, Preliminary Version: Let X be a sys-
tem with a secure initial state 6, and let T be a set of state transformations. If
every element of 7 preserves the simple security condition, preliminary version,
and the *-property, preliminary version, then every state o;, i = 0, is secure.

Expand the model by adding a set of categories to each security classification.
Each category describes a kind of information. Objects placed in multiple categories
have the kinds of information in all of those categories. These categories arise from
the “need to know” principle, which states that no subject should be able to read
objects unless reading them is necessary for that subject to perform its functions. The
sets of categories to which a person may have access is simply the power set of the
set of categories. For example, if the categories are NUC, EUR, and US, someone
can have access to any of the following sets of categories: & (none), { NUC },
{ EUR }, { US }, { NUC, EUR }, {NUC, US }, { EUR, US }, and { NUC, EUR, US }.
These sets of categories form a lattice under the operation C (subset of); see Figure
5-2. (Chapter 27, “Lattices,” discusses the mathematical nature of lattices.)

Each security level and category form a security level.> As before, we say that
subjects have clearance at (or are cleared into, or are in) a security level and that

2 There is less than full agreement on this terminology. Some call security levels “‘compartments.”
However, others use this term as a synonym for “categories.” We follow the terminology of the
unified exposition [64].
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{ NUC, EUR, US }
|

\

{ NUC, EUR } { NUC, US } { EUR, US}
{ NUC } {EU|R} {US}
@/

Figure 5-2 Lattice generated by the categories NUC, EUR, and US. The lines
represent the ordering relation induced by c.

objects are at the level of (or are in) a security level. For example, William may be
cleared into the level (SECRET, { EUR }) and George into the level (TOP SECRET,
{ NUC, US }). A document may be classified as (CONFIDENTIAL, {EUR }).

Security levels change access. Because categories are based on a “need to
know,” someone with access to the category set { NUC, US } presumably has no
need to access items in the category EUR. Hence, read access should be denied, even
if the security clearance of the subject is higher than the security classification of the
object. But if the desired object is in any of the security levels &, { NUC }, { US },
or { NUC, US } and the subject’s security clearance is no less than the document’s
security classification, access should be granted because the subject is cleared into
the same category set as the object.

This suggests a new relation for capturing the combination of security classifi-
cation and category set. Define the relation dom (dominates) as follows.

Definition 5-1. The security level (L, C) dominates the security level (L°, C”)
ifandonly if L"<Land C"'c C.

We write (L, C) —dom (L", C”) when (L, C) dom (L", C") is false. This rela-
tion also induces a lattice on the set of security levels [240].

EXAMPLE: George is cleared into security level (SECRET, { NUC, EUR} ), DocA is
classified as ( CONFIDENTIAL, { NUC } ), DocB is classified as ( SECRET,
{ EUR, US}), and DocC is classified as (SECRET, { EUR }). Then:

George dom DocA as CONFIDENTIAL < SECRET and { NUC } ¢ { NUC, EUR }
George —dom DocB as { EUR, US } ¢ { NUC, EUR }
George dom DocC as SECRET < SECRET and { EUR } ¢ { NUC, EUR }

Let C(S) be the category set of subject S, and let C(O) be the category set of
object O. The simple security condition, preliminary version, is modified in the obvi-
ous way:
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»  Simple Security Condition: S can read O if and only if S dom O and S has
discretionary read access to O.

In the example above, George can read DocA and DocC but not DocB (again, assum-
ing that the discretionary access controls allow such access).

Suppose Paul is cleared into security level (SECRET, { EUR, US, NUC })
and has discretionary read access to DocB. Paul can read DocB; were he to copy its
contents to DocA and set its access permissions accordingly, George could then read
DocB. The modified *-property prevents this:

* - Property: S can write to O if and only if O dom S and § has discretionary
write access to O.

Because DocA dom Paul is false (because C(Paul) ¢ C(DocA)), Paul cannot write to
DocA.

The simple security condition is often described as “no reads up” and the
*-property as “no writes down.”

Redefine a secure system as one in which both the simple security property
and the *-property hold. The analogue to the Basic Security Theorem, preliminary
version, can also be established by induction.

Theorem 5-2. Basic Security Theorem: Let X be a system with a secure ini-
tial state 0, and let T be a set of state transformations. If every element of T
preserves the simple security condition and the *-property, then every 6;, i = 0,
is secure.

At times, a subject must communicate with another subject at a lower level.
This requires the higher-level subject to write into a lower-level object that the lower-
level subject can read.

EXAMPLE: A colonel with (SECRET, { NUC, EUR }) clearance needs to send a
message to a major with (SECRET, { EUR }) clearance. The colonel must write a
document that has at most the (SECRET, { EUR }) classification. But this violates
the *-property, because (SECRET, { NUC, EUR }) dom (SECRET, { EUR }).

The model provides a mechanism for allowing this type of communication. A
subject has a maximum security level and a current security level. The maximum
security level must dominate the current security level. A subject may (effectively)
decrease its security level from the maximum in order to communicate with entities
at lower security levels.

EXAMPLE: The colonel’s maximum security level is (SECRET, { NUC, EUR }).
She changes her current security level to (SECRET, { EUR }). This is valid, because
the maximum security level dominates the current security level. She can then create
the document at the major’s clearance level and send it to him.
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How this policy is instantiated in different environments depends on the
requirements of each environment. The conventional use is to define “read” as
“allowing information to flow from the object being read to the subject reading,” and
“write” as “allowing information to flow from the subject writing to the object being
written.” Thus, “read” usually includes “execute” (because by monitoring the
instructions executed, one can determine the contents of portions of the file) and
“write” includes “append” (as the information is placed in the file, it does not over-
write what is already in the file, however). Other actions may be included as appro-
priate; however, those who instantiate the model must understand exactly what those
actions are.

5.2.2 Example: The Data General B2 UNIX System

The Data General B2 UNIX (DG/UX) system provides mandatory access controls
(MACs). The MAC label is a label identifying a particular compartment. This section
describes only the default labels; the system enables other labels to be created.

5.2.2.1 Assigning MAC Labels

When a process (subject) begins, it is assigned the MAC label of its parent. The ini-
tial label (assigned at login time) is the label assigned to the user in a database called
the Authorization and Authentication (A&A) Database. Objects are assigned labels at
creation, but the labels may be either explicit or implicit. The system stores explicit
labels as parts of the object’s attributes. It determines implicit labels from the parent
directory of the object.

The least upper bound of all compartments in the DG/UX lattice has the label
IMPL_HI (for “implementation high”); the greatest lower bound has the label
IMPL_LO (for “implementation low”). The lattice is divided into three regions,
which are summarized in Figure 5-3.3

The highest region (administrative region) is reserved for data that users can-
not access, such as logs, MAC label definitions, and so forth. Because reading up and
writing up are disallowed (the latter is a DG/UX extension to the multilevel security
model; see Section 5.2.2.2), users can neither read nor alter data in this region.
Administrative processes such as servers execute with MAC labels in this region;
however, they sanitize data sent to user processes with MAC labels in the user
region.

System programs are in the lowest region (virus prevention region). No user
process can write to them, so no user process can alter them. Because execution
requires read access, users can execute the programs. The name of this region comes

3 The terminology used here corresponds to that of the DG/UX system. Note that “hierarchy
level” corresponds to “clearance” or “classification” in the preceding section.
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A&A database, audit Administrative Region
Eigla;mhy User data and applications User Region
VP-1 Site executables
VP—2__TrUSted data Virus Prevention Region
VP-3 Executables not part of the TCB
Vb4 Executables part of the TCB
VP-5 Reserved for future use

Categories

Figure 5-3 The three MAC regions in the MAC lattice (modified from the
DG/UX Security Manual [230], p. 4-7, Figure 4-4). TCB stands for “trusted
computing base.”

from the fact that viruses and other forms of malicious logic involve alterations of
trusted executables.*

Problems arise when programs of different levels access the same directory. If
a program with MAC label MAC_A tries to create a file, and a file of that name but
with MAC label MAC_B (MAC_B dom MAC_A) exists, the create will fail. To prevent
this leakage of information, only programs with the same MAC label as the directory
can create files in that directory. For the /fmp directory, and the mail spool directory
/var/mail, this restriction will prevent standard operations such as compiling and
delivering mail. DG/UX introduces a “multilevel directory” to solve this problem.

A multilevel directory is a directory with a set of subdirectories, one for each
label. These “hidden directories” normally are not visible to the user, but if a process
with MAC label MAC_A tries to create a file in /tmp, it actually creates a file in the
hidden directory under /tmp with MAC label MAC_A. The file can have the same
name as one in the hidden directory corresponding to label MAC_A. The parent
directory of a file in /tmp is the hidden directory. Furthermore, a reference to the par-
ent directory goes to the hidden directory.

EXAMPLE: A process with label MAC_A creates a directory /tmp/a. Another process
with label MAC_B creates a directory /tmp/a. The processes then change the correct
working directory to /tmp/a and then to .. (the parent directory). Both processes will
appear to have /tmp as the current working directory. However, the system call

stat(“.”, &stat_buffer)

4The TCB, or trusted computing base, is that part of the system that enforces security.
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returns a different inode number for each process, because it returns the inode num-
ber of the current working directory—the hidden directory. The system call

dg_mstat(“.”, &stat_buffer)

translates the notion of “current working directory” to the multilevel directory when
the current working directory is a hidden directory.

Mounting unlabeled file systems requires the files to be labeled. Symbolic
links aggravate this problem. Does the MAC label the target of the link control, or
does the MAC label the link itself? DG/UX uses a notion of inherited labels (called
implicit labels) to solve this problem. The following rules control the way objects are
labeled.

1. Roots of file systems have explicit MAC labels. If a file system without
labels is mounted on a labeled file system, the root directory of the
mounted file system receives an explicit label equal to that of the mount
point. However, the label of the mount point, and of the underlying tree, is
no longer visible, and so its label is unchanged (and will become visible
again when the file system is unmounted).

2. An object with an implicit MAC label inherits the label of its parent.

3. When a hard link to an object is created, that object must have an
explicit label; if it does not, the object’s implicit label is converted
to an explicit label. A corollary is that moving a file to a different
directory makes its label explicit.

4. If the label of a directory changes, any immediate children with implicit
labels have those labels converted to explicit labels before the parent
directory’s label is changed.

5. When the system resolves a symbolic link, the label of the object is the
label of the target of the symbolic link. However, to resolve the link, the
process needs access to the symbolic link itself.

Rules 1 and 2 ensure that every file system object has a MAC label, either implicit or
explicit. But when a file object has an implicit label, and two hard links from differ-
ent directories, it may have two labels. Let /x/y/z and /x/a/b be hard links to the same
object. Suppose y has an explicit label IMPL_HI and a an explicit label IMPL_B.
Then the file object can be accessed by a process at IMPL_HI as /x/y/z and by a pro-
cess at IMPL_B as /x/a/b. Which label is correct? Two cases arise.

Suppose the hard link is created while the file system is on a DG/UX B2 sys-
tem. Then the DG/UX system converts the target’s implicit label to an explicit one
(rule 3). Thus, regardless of the path used to refer to the object, the label of the object
will be the same.
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Suppose the hard link exists when the file system is mounted on the DG/UX
B2 system. In this case, the target had no file label when it was created, and one
must be added. If no objects on the paths to the target have explicit labels, the tar-
get will have the same (implicit) label regardless of the path being used. But if any
object on any path to the target of the link acquires an explicit label, the target’s
label may depend on which path is taken. To avoid this, the implicit labels of a
directory’s children must be preserved when the directory’s label is made explicit.
Rule 4 does this.

Because symbolic links interpolate path names of files, rather than store inode
numbers, computing the label of symbolic links is straightforward. If /x/y/z is a sym-
bolic link to /a/b/c, then the MAC label of ¢ is computed in the usual way. However,
the symbolic link itself is a file, and so the process must also have access to the link
file z.

5.2.2.2 Using MAC Labels

The DG/UX B2 system uses the Bell-LaPadula notion of dominance, with one
change. The system obeys the simple security condition (reading down is permitted),
but the implementation of the *-property requires that the process MAC label and the
object MAC label be equal, so writing up is not permitted, but writing is permitted in
the same compartment.

Because of this restriction on writing, the DG/UX system provides processes
and objects with a range of labels called a MAC tuple. A range is a set of labels
expressed by a lower bound and an upper bound. A MAC tuple consists of up to
three ranges (one for each of the regions in Figure 5-3).

EXAMPLE: A system has two security levels, TS and S, the former dominating the
latter. The categories are COMP, NUC, and ASIA. Examples of ranges are

[(S,{ COMP }), (TS, { COMP } )]
[(S, D), (TS, { COMP, NUC, ASIA } )]
[(S, { ASIA }), (TS, { ASIA, NUC } )]

The label ( TS, {COMP} ) is in the first two ranges. The label ( S, {NUC, ASIA} ) is
in the last two ranges. However,

[(S, {ASIA}), (TS, { COMP, NUC} )]
is not a valid range because not ( TS, { COMP, NUC } ) dom (S, { ASIA }).

An object can have a MAC tuple as well as the required MAC label. If both
are present, the tuple overrides the label. A process has read access when its MAC

label grants read access to the upper bound of the range. A process has write access
when its MAC label grants write access to any label in the MAC tuple range.
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EXAMPLE: Suppose an object’s MAC tuple is the single range
[(S, { ASIA }), (TS, { ASIA, COMP} )]

A subject with MAC label ( S, { ASIA } ) cannot read the object, because
(TS, { ASIA, COMP} ) dom (S, { ASIA })

It can write to the object, because (S, { ASIA }) dominates the lower bound and is
dominated by the upper bound. A subject with MAC label ( TS, { ASIA, COMP,
NUC } ) can read the object but cannot write the object. A subject with MAC label
(TS, { ASIA, COMP } ) can both read and write the object. A subject with MAC
label (TS, {EUR} ) can neither read nor write the object, because its label is incom-
parable to that of the object, and the dom relation does not hold.

A process has both a MAC label and a MAC tuple. The label always lies
within the range for the region in which the process is executing. Initially, the sub-
ject’s accesses are restricted by its MAC label. However, the process may extend its
read and write capabilities to within the bounds of the MAC tuple.

5.3 Summary

The influence of the Bell-LaPadula Model permeates all policy modeling in com-
puter security. It was the first mathematical model to capture attributes of a real sys-
tem in its rules. It formed the basis for several standards, including the Department of
Defense’s Trusted Computer System Evaluation Criteria (the TCSEC or the “Orange
Book” discussed in Chapter 18) [257].

5.4 Further Reading

The developers of the ADEPT-50 system presented a formal model of the security
controls that predated the Bell-LaPadula Model [568, 934]. Landwehr and col-
leagues [545] explored aspects of formal models for computer security. Multics
implemented the Bell-LaPadula Model [703]. Denning used the Bell-LaPadula
Model in SeaView [245, 248], a database designed with security features. The model
forms the basis for several other models, including the database model of Jajodia and
Sandhu [468] and the military message system model of Landwehr [548]. The latter
is an excellent example of how models are applied in practice.
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Dion [271] extended the Bell-LaPadula Model to allow system designers and
implementers to use that model more easily. Sidhu and Gasser [828] designed a local
area network to handle multiple security levels.

McLean challenged some of the assumptions of the Bell-LaPadula Model
[610,611]. Bell [60] and LaPadula [551] responded, discussing the different types of
modeling in physical science [560] and mathematics [690].

Feiertag, Levitt, and Robinson [310] developed a multilevel model that has
several differences from the Bell-LaPadula Model. Taylor [§96] elegantly compares
them. Smith and Winslett [843] use a mandatory model to model databases that dif-
fer from the Bell-LaPadula Model.

Gambel [344] discusses efforts to apply a confidentiality policy similar to
Bell-LaPadula to a system developed from off-the-shelf components, none of which
implemented the policy precisely.

Irvine and Volpano [461] cast multilevel security in terms of a type subsystem
for a polymorphic programming language.

5.5 Exercises

1. Why is it meaningless to have compartments at the UNCLASSIFIED level
(such as (UNCLASSIFIED, { NUC }) and ( UNCLASSIFIED, { EUR }))?

2. Given the security levels TOP SECRET, SECRET, CONFIDENTIAL, and
UNCLASSIFIED (ordered from highest to lowest), and the categories A,
B, and C, specify what type of access (read, write, both, or neither) is
allowed in each of the following situations. Assume that discretionary
access controls allow anyone access unless otherwise specified.

a. Paul, cleared for (TOP SECRET, { A, C }), wants to access a
document classified (SECRET, { B, C }).

b. Anna, cleared for (CONFIDENTIAL, { C }), wants to access a
document classified (CONFIDENTIAL, { B }).

c. Jesse, cleared for (SECRET, { C }), wants to access a document
classified (CONFIDENTIAL, { C }).

d. Sammi, cleared for (TOP SECRET, { A, C }), wants to access a
document classified (CONFIDENTIAL, { A }).

e. Robin, who has no clearances (and so works at the UNCLASSIFIED
level), wants to access a document classified (CONFIDENTIAL,
{B}.

3. Prove that any file in the DG/UX system with a link count greater than 1
must have an explicit MAC label.

4. Inthe DG/UX system, why is the virus prevention region below the user region?
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5. In the DG/UX system, why is the administrative region above the user region?

6. Declassification effectively violates the *-property of the Bell-LaPadula
Model. Would raising the classification of an object violate any properties
of the model? Why or why not?



Chapter 6

Integrity Policies

ISABELLA: Some one with child by him? My cousin Juliet?
Lucrto: Is she your cousin?

ISABELLA: Adoptedly; as school-maids change their names
By vain, though apt affection.

—Measure for Measure, 1, iv, 45-48.

An inventory control system may function correctly if the data it manages is
released; but it cannot function correctly if the data can be randomly changed. So
integrity, rather than confidentiality, is key. Integrity policies focus on integrity rather
than confidentiality, because most commercial and industrial firms are more con-
cerned with accuracy than disclosure. In this chapter we discuss the major integrity
security policies and explore their design.

6.1 Goals

Commercial requirements differ from military requirements in their emphasis on
preserving data integrity. Lipner [571] identifies five requirements:

1. Users will not write their own programs, but will use existing production
programs and databases.

2. Programmers will develop and test programs on a nonproduction system;
if they need access to actual data, they will be given production data via a
special process, but will use it on their development system.

3. A special process must be followed to install a program from the
development system onto the production system.

4. The special process in requirement 3 must be controlled and audited.

5. The managers and auditors must have access to both the system state and
the system logs that are generated.

These requirements suggest several principles of operation.

73
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First comes separation of duty. The principle of separation of duty states
that if two or more steps are required to perform a critical function, at least two
different people should perform the steps. Moving a program from the develop-
ment system to the production system is an example of a critical function. Sup-
pose one of the application programmers made an invalid assumption while
developing the program. Part of the installation procedure is for the installer to
certify that the program works “correctly,” that is, as required. The error is more
likely to be caught if the installer is a different person (or set of people) than the
developer. Similarly, if the developer wishes to subvert the production data with
a corrupt program, the certifier either must not detect the code to do the corrup-
tion, or must be in league with the developer.

Next comes separation of function. Developers do not develop new pro-
grams on production systems because of the potential threat to production data.
Similarly, the developers do not process production data on the development sys-
tems. Depending on the sensitivity of the data, the developers and testers may
receive sanitized production data. Further, the development environment must be
as similar as possible to the actual production environment.

Last comes auditing. Commercial systems emphasize recovery and
accountability. Auditing is the process of analyzing systems to determine what
actions took place and who performed them. Hence, commercial systems must
allow extensive auditing and thus have extensive logging (the basis for most
auditing). Logging and auditing are especially important when programs move
from the development system to the production system, since the integrity mech-
anisms typically do not constrain the certifier. Auditing is, in many senses, exter-
nal to the model.

Even when disclosure is at issue, the needs of a commercial environment
differ from those of a military environment. In a military environment, clearance
to access specific categories and security levels brings the ability to access infor-
mation in those compartments. Commercial firms rarely grant access on the basis
of “clearance”; if a particular individual needs to know specific information, he
or she will be given it. While this can be modeled using the Bell-LaPadula
Model, it requires a large number of categories and security levels, increasing the
complexity of the modeling. More difficult is the issue of controlling this prolif-
eration of categories and security levels. In a military environment, creation of
security levels and categories is centralized. In commercial firms, this creation
would usually be decentralized. The former allows tight control on the number of
compartments, whereas the latter allows no such control.

More insidious is the problem of information aggregation. Commercial
firms usually allow a limited amount of (innocuous) information to become pub-
lic, but keep a large amount of (sensitive) information confidential. By aggregat-
ing the innocuous information, one can often deduce much sensitive information.
Preventing this requires the model to track what questions have been asked, and
this complicates the model enormously. Certainly the Bell-LaPadula Model lacks
this ability.
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6.2 Biba Integrity Model

In 1977, Biba [88] studied the nature of the integrity of systems. In his model, a
system consists of a set § of subjects, a set O of objects, and a set I of integrity
levels.! The levels are ordered. The relation < c I X I holds when the second
integrity level either dominates or is the same as the first. The function i:S U
O—I returns the integrity level of an object or a subject.

Some comments on the meaning of “integrity level” will provide intuition
behind the constructions to follow. The higher the level, the more confidence one
has that a program will execute correctly (or detect problems with its inputs and
stop executing). Data at a higher level is more accurate and/or reliable (with
respect to some metric) than data at a lower level. Again, this model implicitly
incorporates the notion of “trust”; in fact, the term “trustworthiness” is used as a
measure of integrity level. For example, a process at a level higher than that of an
object is considered more “trustworthy” than that object.

Integrity labels, in general, are not also security labels. They are assigned
and maintained separately, because the reasons behind the labels are different.
Security labels primarily limit the flow of information; integrity labels primarily
inhibit the modification of information. They may overlap, however, with sur-
prising results (see Exercise 1).

Biba’s model is the dual of the Bell-LaPadula Model. Its rules are as follows.

1. s e Scanread o € O if and only if i(s) < i(0).
2. s € Scan write to 0 € O if and only if i(0) < i(s).
3. 51 € S canexecute s, € Sif and only if i(sy) < i(sq).

Note that rules 1 and 2 imply that if both read and write are allowed, i(s) = i(0). Also,
by replacing the notion of “integrity level” with “integrity compartments,” and add-
ing the notion of discretionary controls, one obtains the full dual of Bell-LaPadula.

EXAMPLE: Pozzo and Gray [730, 731] implemented Biba’s strict integrity model on
the distributed operating system LOCUS [724]. Their goal was to limit execution
domains for each program to prevent untrusted software from altering data or other
software. Their approach was to make the level of trust in software and data explicit.
They have different classes of executable programs. Their credibility ratings (Biba’s
integrity levels) assign a measure of trustworthiness on a scale from O (untrusted) to
n (highly trusted), depending on the source of the software. Trusted file systems con-
tain only executable files with the same credibility level. Associated with each user
(process) is a risk level that starts out set to the highest credibility level at which that
user can execute. Users may execute programs with credibility levels at least as great

'The original model did not include categories and compartments. The changes required to add
them are straightforward.
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as the user’s risk level. To execute programs at a lower credibility level, a user must
use the run-untrusted command. This acknowledges the risk that the user is taking.

6.3 Clark-Wilson Integrity Model

In 1987, David Clark and David Wilson developed an integrity model [177] radically
different from previous models. This model uses transactions as the basic operation,
which models many commercial systems more realistically than previous models.

One main concern of a commercial environment, as discussed above, is the
integrity of the data in the system and of the actions performed on that data. The data
is said to be in a consistent state (or consistent) if it satisfies given properties. For
example, let D be the amount of money deposited so far today, W the amount of
money withdrawn so far today, YB the amount of money in all accounts at the end of
yesterday, and 7B the amount of money in all accounts so far today. Then the consis-
tency property is

D+YB-W=TB

Before and after each action, the consistency conditions must hold. A well-formed
transaction is a series of operations that transition the system from one consistent
state to another consistent state. For example, if a depositor transfers money from
one account to another, the transaction is the transfer; two operations, the deduction
from the first account and the addition to the second account, make up this transac-
tion. Each operation may leave the data in an inconsistent state, but the well-formed
transaction must preserve consistency.

The second feature of a commercial environment relevant to an integrity pol-
icy is the integrity of the transactions themselves. Who examines and certifies that
the transactions are performed correctly? For example, when a company receives an
invoice, the purchasing office requires several steps to pay for it. First, someone must
have requested a service, and determined the account that would pay for the service.
Next, someone must validate the invoice (was the service being billed for actually
performed?). The account authorized to pay for the service must be debited, and the
check must be written and signed. If one person performs all these steps, that person
could easily pay phony invoices; however, if at least two different people perform
these steps, both must conspire to defraud the company. Requiring more than one
person to handle this process is an example of the principle of separation of duty.

Computer-based transactions are no different. Someone must certify that the
transactions are implemented correctly. The principle of separation of duty requires
that the certifier and the implementors be different people. In order for the transac-
tion to corrupt the data (either by illicitly changing the data or by leaving the data in
an inconsistent state), two different people must either make similar mistakes or col-
lude to certify the well-formed transaction as correct.
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6.3.1 The Model

The Clark-Wilson model defines data subject to its integrity controls as constrained
data items, or CDIs. Data not subject to the integrity controls are called uncon-
strained data items, or UDIs. For example, in a bank, the balances of accounts are
CDlIs since their integrity is crucial to the operation of the bank, whereas the gifts
selected by the account holders when their accounts were opened would be UDISs,
because their integrity is not crucial to the operation of the bank. The set of CDIs and
the set of UDIs partition the set of all data in the system being modeled.

A set of integrity constraints (similar in spirit to the consistency constraints
discussed above) constrain the values of the CDIs. In the bank example, the consis-
tency constraint presented earlier would also be an integrity constraint.

The model also defines two sets of procedures. Integrity verification proce-
dures, or IVPs, test that the CDIs conform to the integrity constraints at the time the
IVPs are run. In this case, the system is said to be in a valid state. Transformation
procedures, or TPs, change the state of the data in the system from one valid state to
another; TPs implement well-formed transactions.

Return to the example of bank accounts. The balances in the accounts are
CDIs; checking that the accounts are balanced, as described above, is an IVP. Depos-
iting money, withdrawing money, and transferring money between accounts are TPs.
To ensure that the accounts are managed correctly, a bank examiner must certify that
the bank is using proper procedures to check that the accounts are balanced, to
deposit money, to withdraw money, and to transfer money. Furthermore, those proce-
dures may apply only to deposit and checking accounts; they might not apply to
other types of accounts—for example, to petty cash. The Clark-Wilson model cap-
tures these requirements in two certification rules:

Certification rule 1 (CR1): When any IVP is run, it must ensure that all CDIs are in
a valid state.

Certification rule 2 (CR2): For some associated set of CDIs, a TP must transform
those CDIs in a valid state into a (possibly different) valid state.

CR2 defines as certified a relation that associates a set of CDIs with a particu-
lar TP. Let C be the certified relation. Then, in the bank example,

(balance, account;), (balance, account,), ..., (balance, account,) € C.

CR2 implies that a TP may corrupt a CDI if it is not certified to work on that CDI.
For example, the TP that invests money in the bank’s stock portfolio would corrupt
account balances even if the TP were certified to work on the portfolio, because the
actions of the TP make no sense on the bank accounts. Hence, the system must pre-
vent TPs from operating on CDIs for which they have not been certified. This leads
to the following enforcement rule:
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Enforcement rule 1 (ER1): The system must maintain the certified relations, and
must ensure that only TPs certified to run on a CDI manipulate that CDI.

Specifically, ER1 says that if a TP f operates on a CDI o, then (f, 0) € C. How-
ever, in a bank, a janitor is not allowed to balance customer accounts. This restriction
implies that the model must account for the person performing the TP, or user. The
Clark-Wilson model uses an enforcement rule for this:

Enforcement rule 2 (ER2): The system must associate a user with each TP and set
of CDIs. The TP may access those CDIs on behalf of the associated user. If the user
is not associated with a particular TP and CDI, then the TP cannot access that CDI on
behalf of that user.

This defines a set of triples (user; TP, { CDI set }) to capture the association of
users, TPs, and CDIs. Call this relation allowed A. Of course, these relations must be
certified:

Certification rule 3 (CR3): The allowed relations must meet the requirements
imposed by the principle of separation of duty.

Because the model represents users, it must ensure that the identification of a
user with the system’s corresponding user identification code is correct. This suggests:

Enforcement rule 3 (ER3): The system must authenticate each user attempting to
execute a TP.

An interesting observation is that the model does not require authentication
when a user logs into the system, because the user may manipulate only UDIs. But if
the user tries to manipulate a CDI, the user can do so only through a TP; this requires
the user to be certified as allowed (per ER2), which requires authentication of the
user (per ER3).

Most transaction-based systems log each transaction so that an auditor can
review the transactions. The Clark-Wilson model considers the log simply as a CDI,
and every TP appends to the log; no TP can overwrite the log. This leads to:

Certification rule 4 (CR4): All TPs must append enough information to reconstruct
the operation to an append-only CDI.

When information enters a system, it need not be trusted or constrained. For
example, when one deposits money into an automated teller machine (ATM), one
need not enter the correct amount. However, when the ATM is opened and the cash
or checks counted, the bank personnel will detect the discrepancy and fix it before
they enter the deposit amount into one’s account. This is an example of a UDI (the
stated deposit amount) being checked, fixed if necessary, and certified as correct



6.3 Clark-Wilson Integrity Model 79

before being transformed into a CDI (the deposit amount added to one’s account).
The Clark-Wilson model covers this situation with certification rule 5:

Certification rule 5 (CRS): Any TP that takes as input a UDI may perform only
valid transformations, or no transformations, for all possible values of the UDI. The
transformation either rejects the UDI or transforms it into a CDI.

The final rule enforces the separation of duty needed to maintain the integrity
of the relations in rules ER2 and ER3. If a user could create a TP and associate some
set of entities and herself with that TP (as in ER3), she could have the TP perform
unauthorized acts that violated integrity constraints. The final enforcement rule pre-
vents this:

Enforcement rule 4 (ER4): Only the certifier of a TP may change the list of entities
associated with that TP. No certifier of a TP, or of an entity associated with that TP,
may ever have execute permission with respect to that entity.

This rule requires that all possible values of the UDI be known, and that the
TP be implemented so as to be able to handle them. This issue arises again in both
vulnerabilities analysis and secure programming.

This model contributed two new ideas to integrity models. First, it captured
the way most commercial firms work with data. The firms do not classify data using
a multilevel scheme, and they enforce separation of duty. Second, the notion of certi-
fication is distinct from the notion of enforcement, and each has its own set of rules.
Assuming correct design and implementation, a system with a policy following the
Clark-Wilson model will ensure that the enforcement rules are obeyed. But the certi-
fication rules require outside intervention, and the process of certification is typically
complex and prone to error or to incompleteness (because the certifiers make
assumptions about what can be trusted). This is a weakness in some sense, but it
makes explicit assumptions that other models do not.

6.3.2 Comparison with the Requirements

We now consider whether the Clark-Wilson model meets the five requirements in
Section 6.1. We assume that production programs correspond to TPs and that pro-
duction data (and databases) are CDIs.

Requirement 1. If users are not allowed to perform certifications of TPs, but
instead only “trusted personnel” are, then CR5 and ER4 enforce
this requirement. Because ordinary users cannot create certified
TPs, they cannot write programs to access production databases.
They must use existing TPs and CDIs—that is, production
programs and production databases.
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Requirement 2. This requirement is largely procedural, because no set of technical
controls can prevent a programmer from developing and testing
programs on production systems. (The standard procedural
control is to omit interpreters and compilers from production
systems.) However, the notion of providing production data via
a special process corresponds to using a TP to sanitize, or
simply provide, production data to a test system.

Requirement 3. Installing a program from a development system onto a
production system requires a TP to do the installation and
“trusted personnel” to do the certification.

Requirement 4. CR4 provides the auditing (logging) of program installation.
ER3 authenticates the “trusted personnel” doing the installation.
CRS5 and ER4 control the installation procedure (the new
program being a UDI before certification and a CDI, as well as a
TP in the context of other rules, after certification).

Requirement 5. Finally, because the log is simply a CDI, management and
auditors can have access to the system logs through appropriate
TPs. Similarly, they also have access to the system state.

Thus, the Clark-Wilson model meets Lipner’s requirements.

6.3.3 Comparison with Other Models

The contributions of the Clark-Wilson model are many. We compare it with the Biba
model to highlight these new features.

Recall that the Biba model attaches integrity levels to objects and subjects. In
the broadest sense, so does the Clark-Wilson model, but unlike the Biba model, each
object has two levels: constrained or high (the CDIs) and unconstrained or low (the
UDIs). Similarly, subjects have two levels: certified (the TPs) and uncertified (all
other procedures). Given this similarity, can the Clark-Wilson model be expressed
fully using the Biba model?

The critical distinction between the two models lies in the certification rules.
The Biba model has none; it asserts that “trusted” subjects exist to ensure that the
actions of a system obey the rules of the model. No mechanism or procedure is pro-
vided to verify the trusted entities or their actions. But the Clark-Wilson model pro-
vides explicit requirements that entities and actions must meet; in other words, the
method of upgrading an entity is itself a TP that a security officer has certified. This
underlies the assumptions being made and allows for the upgrading of entities within
the constructs of the model (see ER4 and CRY5). As with the Bell-LaPadula Model, if
the Biba model does not have tranquility, trusted entities must change the objects’
integrity levels, and the method of upgrading need not be certified.

Handling changes in integrity levels is critical in systems that receive input from
uncontrolled sources. For example, the Biba model requires that a trusted entity, such
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as a security officer, pass on every input sent to a process running at an integrity level
higher than that of the input. This is not practical. However, the Clark-Wilson model
requires that a trusted entity (again, perhaps a security officer) certify the method of
upgrading data to a higher integrity level. Thus, the trusted entity would not certify
each data item being upgraded; it would only need to certify the method for upgrading
data, and the data items could be upgraded. This is quite practical.

Can the Clark-Wilson model emulate the Biba model? The relations described
in ER2 capture the ability of subjects to act on objects. By choosing TPs appropri-
ately, the emulation succeeds (although the certification rules constrain trusted sub-
jects in the emulation, whereas the Biba model imposes no such constraints). The
details of the construction are left as an exercise for the reader (see Exercise 6).

6.4 Summary

Integrity models are gaining in variety and popularity. The problems they address
arise from industries in which environments vary wildly. They take into account con-
cepts (such as separation of privilege) from beyond the scope of confidentiality secu-
rity policies. This area will continue to increase in importance as more and more
commercial firms develop models or policies to help them protect their data.

6.5 Further Reading

Nash and Poland discuss realistic situations in which mechanisms are unable to
enforce the principle of separation of duty [661]. Other studies of this principle
include its use in role-based access control [537, 835], databases [697], and multi-
level security [328]. Notargiacomo, Blaustein, and McCollum [696] present a gener-
alization of Clark-Wilson suitable for trusted database management systems that
includes dynamic separation of duty. Polk describes an implementation of Clark-
Wilson under the UNIX operating system [722].

Integrity requirements arise in many contexts. Saltman [771] provides an infor-
mative survey of the requirements for secure electronic voting. Chaum’s classic paper
on electronic payment [165] raises issues of confidentiality and shows that integrity
and anonymity can coexist. Integrity in databases is crucial to their correctness [42,
304, 374]. The analysis of trust in software is also an issue of integrity [22, 650].

Chalmers compares commercial policies with governmental ones [157]. Lee
[554] discusses an alternative to Lipner’s use of mandatory access controls for imple-
menting commercial policies.
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6.6

Exercises

. Suppose a system implementing Biba’s model used the same labels for

integrity levels and categories as for security levels and categories. Under
what conditions could one subject read an object? Write to an object?

. In Pozzo and Gray’s modification of LOCUS, what would be the effect of

omitting the run-untrusted command? Do you think this enhances or
degrades security?

. In the Clark-Wilson model, must the TPs be executed serially, or can they

be executed in parallel? If the former, why; if the latter, what constraints
must be placed on their execution?

. Prove that applying a sequence of transformation procedures to a system

in a valid state results in the system being in a (possibly different) valid
state.

. The relations certified (see ER1) and allowed (see ER2) can be collapsed

into a single relation. Please do so and state the new relation. Why doesn’t
the Clark-Wilson model do this?

. Show that the enforcement rules of the Clark-Wilson model can emulate

the Biba model.
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Hybrid Policies

JULIET: Come, vial.

What if this mixture do not work at all?

Shall I be marry’d then tomorrow morning?

No, no! this shall forbid it, lie thou there.

—The Tragedy of Romeo and Juliet, 1V, iii, 20-22.

Few organizations limit their security objectives to confidentiality or integrity only;
most desire both, in some mixture. This chapter presents two such models. The Chi-
nese Wall model is derived from the British laws concerning conflict of interest. The
Clinical Information Systems security model is derived from medical ethics and laws
about dissemination of patient data. Two other models present alternative views of
information management. Originator controlled access control lets the creator deter-
mine (or assign) who should access the data and how. Role-based access control for-
malizes the more common notion of “groups” of users.

7.1 Chinese Wall Model

The Chinese Wall model [133] is a model of a security policy that refers equally to
confidentiality and integrity. It describes policies that involve a conflict of interest in
business, and is as important to those situations as the Bell-LaPadula Model is to the
military. For example, British law requires the use of a policy similar to this, and cor-
rect implementation of portions of the model provides a defense in cases involving
certain criminal charges [586, 587]. The environment of a stock exchange or invest-
ment house is the most natural environment for this model. In this context, the goal
of the model is to prevent a conflict of interest in which a trader represents two cli-
ents, and the best interests of the clients conflict, so the trader could help one gain at
the expense of the other.

Consider the database of an investment house. It consists of companies’
records about investment and other data that investors are likely to request. Analysts
use these records to guide the companies’ investments, as well as those of individu-
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als. Suppose Anthony counsels Bank of America in its investments. If he also coun-

sels Citibank, he has a potential conflict of interest, because the two banks’

investments may come into conflict. Hence, Anthony cannot counsel both banks.
The following definitions capture this:

Definition 7-1. The objects of the database are items of information related
to a company.

Definition 7-2. A company dataset (CD) contains objects related to a single
company.

Definition 7-3. A conflict of interest (COI) class contains the datasets of
companies in competition.

Let COI(O) represent the COI class that contains object O, and let CD(O) be
the company dataset that contains object O. The model assumes that each object
belongs to exactly one COI class.

Anthony has access to the objects in the CD of Bank of America. Because the
CD of Citibank is in the same COI class as that of Bank of America, Anthony cannot
gain access to the objects in Citibank’s CD. Thus, this structure of the database pro-
vides the required ability. (See Figure 7-1.)

This implies a temporal element. Suppose Anthony first worked on Bank of
America’s portfolio and was then transferred to Citibank’s portfolio. Even though he is
working only on one CD in the bank COI class at a time, much of the information he
learned from Bank of America’s portfolio will be current. Hence, he can guide

Bank COI Class Gasoline Company COI Class
Bank of America Shell Oil | | Standard Oil
a s e
Citibank | |Bank of the West Union ’76 ARCO
c b u n

Figure 7-1 The Chinese Wall model database. It has two COI classes. The one
for banks contains three CDs. The other one, for gasoline companies, contains
four CDs. Each (COI, CD) pair is represented by a lowercase letter (for example,
(Bank COl, Citibank) is c). Susan may have access to no more than one CD

in each COI, so she could access Citibank’s CD and ARCO’s CD, but not
Citibank’s CD and Bank of America’s CD.
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Citibank’s investments using information about Bank of America—a conflict of inter-
est. This leads to the following rule, where PR(S) is the set of objects that S has read.

*  CW-Simple Security Condition, Preliminary Version: S can read O if and
only if either of the following is true.

1. There is an object O “such that S has accessed O” and CD(O") =
CD(0).
2. For all objects O, O“ € PR(S) = COI(O") # COI(O).

Initially, PR(S) = &, and the initial read request is assumed to be granted. Given
these assumptions, in the situation above, Bank of America’s COI class and
Citibank’s COI class are the same, so the second part of the CW-simple security con-
dition applies, and Anthony cannot access an object in the former, having already
accessed an object in the latter.

Two immediate consequences of this rule affect subject rights. First, once a
subject reads any object in a COI class, the only other objects in that COI class that
the subject can read are in the same CD as the read object. So, if Susan accesses
some information in Citibank’s CD, she cannot later access information in Bank of
America’s CD.

Second, the minimum number of subjects needed to access every object in a
COI class is the same as the number of CDs in that COI class. If the gasoline com-
pany COI class has four CDs, then at least four analysts are needed to access all
information in the COI class. Thus, any trading house must have at least four ana-
lysts to access all information in that COI class without creating a conflict of interest.

In practice, companies have information they can release publicly, such as
annual stockholders’ reports and filings before government commissions. The Chi-
nese Wall model should not consider this information restricted, because it is avail-
able to all. Hence, the model distinguishes between sanitized data and unsanitized
data; the latter falls under the CW-simple security condition, preliminary version,
whereas the former does not. The CW-simple security condition can be reformulated
to include this notion.

*  CW-Simple Security Condition: S can read O if and only if any of the
following holds.

1. There is an object O “such that S has accessed O” and CD(0O ") =
CD(0).

2. For all objects O°, O” € PR(S) = COI(O") # COI(0).
3. O is a sanitized object.

Suppose Anthony and Susan work in the same trading house. Anthony can read
objects in Bank of America’s CD, and Susan can read objects in Citibank’s CD. Both
can read objects in ARCO’s CD. If Anthony can also write to objects in ARCO’s CD,
then he can read information from objects in Bank of America’s CD and write to objects
in ARCO’s CD, and then Susan can read that information; so, Susan can indirectly
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obtain information from Bank of America’s CD, causing a conflict of interest. The
CW-simple security condition must be augmented to prevent this.

*  CW-*-Property: A subject S may write to an object O if and only if both of
the following conditions hold.

1. The CW-simple security condition permits S to read O.
2. For all unsanitized objects O°, S can read O" = CD(O") = CD(0).

In the example above, Anthony can read objects in both Bank of America’s CD and
ARCO’s CD. Thus, condition 1 is met. However, assuming that Bank of America’s
CD contains unsanitized objects (a reasonable assumption), then because Anthony
can read those objects, condition 2 is false. Hence, Anthony cannot write to objects
in ARCO’s CD.

7.1.1 Bell-LaPadula and Chinese Wall Models

The Bell-LaPadula Model and the Chinese Wall model are fundamentally different.
Subjects in the Chinese Wall model have no associated security labels, whereas sub-
jects in the Bell-LaPadula Model do have such labels. Furthermore, the Bell-LaPadula
Model has no notion of “past accesses,” but this notion is central to the Chinese Wall
model’s controls.

To emulate the Chinese Wall model using Bell-LaPadula, we assign a security
category to each (COI, CD) pair. We define two security levels, S (for sanitized) and
U (for unsanitized). By assumption, S dom U. Figure 7-2 illustrates this mapping for
the system in Figure 7—1. Each object is transformed into two objects, one sanitized
and one unsanitized.

Each subject in the Chinese Wall model is then assigned clearance for the
compartments that do not contain multiple categories corresponding to CDs in the
same COI class. For example, if Susan can read the Bank of America and ARCO
CDs, her processes would have clearance for compartment (U, {a, n}). There are
three possible clearances from the bank COI class, and four possible clearances from
the gasoline company COI class, combining to give 12 possible clearances for sub-
jects. Of course, all subjects can read all sanitized data.

The CW-simple security condition clearly holds. The CW-*-property also
holds, because the Bell-LaPadula *-property ensures that the category of input
objects is a subset of the category of output objects. Hence, input objects are either
sanitized or in the same category (that is, the same CD) as that of the subject.

This construction shows that at any time the Bell-LaPadula Model can capture
the state of a system using the Chinese Wall model. But the Bell-LaPadula Model
cannot capture changes over time. For example, suppose Susan falls ill, and Anna
needs to access one of the datasets to which Susan has access. How can the system
know if Anna is allowed to access that dataset? The Chinese Wall model tracks the
history of accesses, from which Anna’s ability to access the CD can be determined.
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(U{a}) (WU,{b) Ui (U.sh Wdu) (U, (n})

Y vy vy
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Sdah)  Sqbh  (Seh S.gs)  Sifeh Sfuy)  Sind

Figure 7-2 The relevant parts of the Bell-LaPadula lattice induced by the
transformation applied to the system in Figure 7—1. For example, a subject with
security clearance in class (U, {a,s}) can read objects with labels (U, {a}) and
(U, {s}). The Bell-LaPadula Model defines other compartments (such as U,

{a, b}), but because these would allow access to different CDs in the same COI
class, the Chinese Wall model requires that compartment to be empty.

But if the corresponding category is not in Anna’s clearances, the Bell-LaPadula
Model does not retain the history needed to determine whether her accessing the cat-
egory would violate the Chinese Wall constraints.

A second, more serious problem arises when one considers that subjects in the
Chinese Wall model may choose which CDs to access; in other words, initially a sub-
ject is free to access all objects. The Chinese Wall model’s constraints grow as the
subject accesses more objects. However, from the initial state, the Bell-LaPadula
Model constrains the set of objects that a subject can access. This set cannot change
unless a trusted authority (such as a system security officer) changes subject clear-
ances or object classifications. The obvious solution is to clear all subjects for all
categories, but this means that any subject can read any object, which violates the
CW-simple security condition.

Hence, the Bell-LaPadula Model cannot emulate the Chinese Wall model
faithfully. This demonstrates that the two policies are distinct.

However, the Chinese Wall model can emulate the Bell-LaPadula Model; the
construction is left as an exercise for the reader. (See Exercise 1.)

7.1.2 Clark-Wilson and Chinese Wall Models

The Clark-Wilson model deals with many aspects of integrity, such as validation and
verification, as well as access control. Because the Chinese Wall model deals exclu-
sively with access control, it cannot emulate the Clark-Wilson model fully. So, con-
sider only the access control aspects of the Clark-Wilson model.
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The representation of access control in the Clark-Wilson model is the second
enforcement rule, ER2. That rule associates users with transformation procedures
and CDIs on which they can operate. If one takes the usual view that “subject” and
“process” are interchangeable, then a single person could use multiple processes to
access objects in multiple CDs in the same COI class. Because the Chinese Wall
model would view processes independently of who was executing them, no con-
straints would be violated. However, by requiring that a “subject” be a specific indi-
vidual and including all processes executing on that subject’s behalf, the Chinese
Wall model is consistent with the Clark-Wilson model.

7.2 Clinical Information Systems Security Policy

Medical records require policies that combine confidentiality and integrity, but in a very

different way than for brokerage firms. Conflict of interest is not a critical problem.

Patient confidentiality, authentication of both records and the personnel making entries

in those records, and assurance that the records have not been changed erroneously are

critical. Anderson [29] presents a model for such policies that illuminates the combi-

nation of confidentiality and integrity to protect patient privacy and record integrity.
Anderson defines three types of entities in the policy.

Definition 7-4. A patient is the subject of medical records, or an agent for
that person who can give consent for the person to be treated.

Definition 7-5. Personal health information is information about a patient’s
health or treatment enabling that patient to be identified.

In more common parlance, the “personal health information” is contained in a
medical record. We will refer to “medical records” throughout, under the assumption
that all personal health information is kept in the medical records.

Definition 7-6. A clinician is a health-care professional who has access to
personal health information while performing his or her job.

The policy also assumes that personal health information concerns one individ-
ual at a time. Strictly speaking, this is not true. For example, obstetrics/gynecology
records contain information about both the father and the mother. In these cases,
special rules come into play, and the policy does not cover them.

The policy is guided by principles similar to the certification and enforcement
rules of the Clark-Wilson model. These principles are derived from the medical ethics
of several medical societies, and from the experience and advice of practicing clinicians.!

I The principles are numbered differently in Anderson’s paper.



7.2 Clinical Information Systems Security Policy 89

The first set of principles deals with access to the medical records themselves.
It requires a list of those who can read the records, and a list of those who can append
to the records. Auditors are given access to copies of the records, so the auditors can-
not alter the original records in any way. Clinicians by whom the patient has con-
sented to be treated can also read and append to the medical records. Because
clinicians often work in medical groups, consent may apply to a set of clinicians. The
notion of groups abstracts this set well. Thus:

Access Principle 1: Each medical record has an access control list naming the indi-
viduals or groups who may read and append information to the record. The system
must restrict access to those identified on the access control list.

Medical ethics require that only clinicians and the patient have access to the
patient’s medical record. Hence:

Access Principle 2: One of the clinicians on the access control list (called the respon-
sible clinician) must have the right to add other clinicians to the access control list.

Because the patient must consent to treatment, the patient has the right to
know when his or her medical record is accessed or altered. Furthermore, if a clini-
cian who is unfamiliar to the patient accesses the record, the patient should be noti-
fied of the leakage of information. This leads to another access principle:

Access Principle 3: The responsible clinician must notify the patient of the names
on the access control list whenever the patient’s medical record is opened. Except for
situations given in statutes, or in cases of emergency, the responsible clinician must
obtain the patient’s consent.

Erroneous information should be corrected, not deleted, to facilitate auditing
of the records. Auditing also requires that all accesses be recorded, along with the
date and time of each access and the name of each person accessing the record.

Access Principle 4: The name of the clinician, the date, and the time of the access of
a medical record must be recorded. Similar information must be kept for deletions.

The next set of principles concern record creation and information deletion.
When a new medical record is created, the clinician creating the record should have
access, as should the patient. Typically, the record is created as a result of a referral.
The referring clinician needs access to obtain the results of the referral, and so is
included on the new record’s access control list.

Creation Principle: A clinician may open a record, with the clinician and the patient
on the access control list. If the record is opened as a result of a referral, the referring
clinician may also be on the access control list.

How long the medical records are kept varies with the circumstances. Nor-
mally, medical records can be discarded after 8 years, but in some cases—notably
cancer cases—the records are kept longer.
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Deletion Principle: Clinical information cannot be deleted from a medical record
until the appropriate time has passed.

Containment protects information, so a control must ensure that data copied
from one record to another is not available to a new, wider audience. Thus, informa-
tion from a record can be given only to those on the record’s access control list.

Confinement Principle: Information from one medical record may be appended to a
different medical record if and only if the access control list of the second record is a
subset of the access control list of the first.

A clinician may have access to many records, possibly in the role of an advi-
sor to a medical insurance company or department. If this clinician were corrupt, or
could be corrupted or blackmailed, the secrecy of a large number of medical records
would be compromised. Patient notification of the addition limits this threat.

Aggregation Principle: Measures for preventing the aggregation of patient data
must be effective. In particular, a patient must be notified if anyone is to be added to
the access control list for the patients’s record and if that person has access to a large
number of medical records.

Finally, systems must implement mechanisms for enforcing these principles.

Enforcement Principle: Any computer system that handles medical records must
have a subsystem that enforces the preceding principles. The effectiveness of this
enforcement must be subject to evaluation by independent auditors.

7.2.1 Bell-LaPadula and Clark-Wilson Models

Anderson notes that the Confinement Principle imposes a lattice structure on the
entities in this model, much as the Bell-LaPadula Model imposes a lattice structure
on its entities. Hence, the Bell-LaPadula protection model is a subset of the Clinical
Information Systems security model. But the Bell-LaPadula Model focuses on the
subjects accessing the objects (because there are more subjects than security labels),
whereas the Clinical Information Systems model focuses on the objects being
accessed by the subjects (because there are more patients, and medical records, than
clinicians). This difference does not matter in traditional military applications, but it
might aid detection of “insiders” in specific fields such as intelligence.

The Clark-Wilson model provides a framework for the Clinical Information
Systems model. Take the CDIs to be the medical records and their associated access
control lists. The TPs are the functions that update the medical records and their
access control lists. The IVPs certify several items:

* A person identified as a clinician is a clinician (to the level of assurance
required by the system).

e A clinician validates, or has validated, information in the medical record.
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*  When someone (the patient and/or a clinician) is to be notified of an event,
such notification occurs.

*  When someone (the patient and/or a clinician) must give consent, the
operation cannot proceed until the consent is obtained.

Finally, the requirement of auditing (certification rule CR4) is met by making all records
append-only, and notifiying the patient whenever the access control list changes.

7.3 Originator Controlled Access Control

Mandatory and discretionary access controls (MACs and DACs) do not handle envi-
ronments in which the originators of documents retain control over them even after
those documents are disseminated. Graubert [375] developed a policy called ORG-
CON or ORCON (for “ORiginator CONtrolled”) in which a subject can give another
subject rights to an object only with the approval of the creator of that object.

EXAMPLE: The Secretary of Defense of the United States drafts a proposed policy
document and distributes it to her aides for comment. The aides are not allowed to
distribute the document any further without permission from the secretary. The sec-
retary controls dissemination; hence, the policy is ORCON. The trust in this policy is
that the aides will not release the document illicitly—that is, without the permission
of the secretary.

In practice, a single author does not control dissemination; instead, the organi-
zation on whose behalf the document was created does. Hence, objects will be
marked as ORCON on behalf of the relevant organization.

Suppose a subject s € § marks an object 0 € O as ORCON on behalf of orga-
nization X. Organization X allows o to be disclosed to subjects acting on behalf of a
second organization, ¥, subject to the following restrictions.

a. The object o cannot be released to subjects acting on behalf of other
organizations without X’s permission.
b. Any copies of o must have the same restrictions placed on it.

Discretionary access controls are insufficient for this purpose, because the owner
of an object can set any permissions desired. Thus, X cannot enforce condition (b).

Mandatory access controls are theoretically sufficient for this purpose, but in
practice have a serious drawback. Associate a separate category C containing o, X,
and Y and nothing else. If a subject y € Y wishes to read o, x € X makes a copy o~ of
0. The copy o “is in C, so unless z € Zis also in category C, y cannot give z access to
o’. This demonstrates adequacy.
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Suppose a member w of an organization W wants to provide access to a docu-
ment d to members of organization Y, but the document is not to be shared with mem-
bers of organization X or Z. So, d cannot be in category C because if it were,
members x € X and z € Z could access d. Another category containing d, W, and Y
must be created. Multiplying this by several thousand possible relationships and doc-
uments creates an unacceptably large number of categories.

A second problem with mandatory access controls arises from the abstraction.
Organizations that use categories grant access to individuals on a “need to know” basis.
There is a formal, written policy determining who needs the access based on common
characteristics and restrictions. These restrictions are applied at a very high level
(national, corporate, organizational, and so forth). This requires a central clearinghouse
for categories. The creation of categories to enforce ORCON implies local control of
categories rather than central control, and a set of rules dictating who has access to each
compartment.

ORCON abstracts none of this. ORCON is a decentralized system of access
control in which each originator determines who needs access to the data. No cen-
tralized set of rules controls access to data; access is at the complete discretion of the
originator. Hence, the MAC representation of ORCON is not suitable.

A solution is to combine features of the MAC and DAC models. The rules are

1. The owner of an object cannot change the access controls of the object.

2. When an object is copied, the access control restrictions of that source are
copied and bound to the target of the copy.

3. The creator (originator) can alter the access control restrictions on a per-
subject and per-object basis.

The first two rules are from mandatory access controls. They say that the system con-
trols all accesses, and no one may alter the rules governing access to those objects.
The third rule is discretionary and gives the originator power to determine who can
access the object. Hence, this hybrid scheme is neither MAC nor DAC.

The critical observation here is that the access controls associated with the
object are under the control of the originator and not the owner of the object. Posses-
sion equates to only some control. The owner of the object may determine to whom
he or she gives access, but only if the originator allows the access. The owner may
not override the originator.

7.4 Role-Based Access Control

The ability, or need, to access information may depend on one’s job functions.

EXAMPLE: Allison is the bookkeeper for the Department of Mathematics. She is
responsible for balancing the books and keeping track of all accounting for that
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department. She has access to all departmental accounts. She moves to the univer-
sity’s Office of Admissions to become the head accountant (with a substantial raise).
Because she is no longer the bookkeeper for the Department of Mathematics, she no
longer has access to those accounts. When that department hires Sally as its new
bookkeeper, she will acquire full access to all those accounts. Access to the accounts
is a function of the job of bookkeeper, and is not tied to any particular individual.

This suggests associating access with the particular job of the user.

Definition 7-7. A role is a collection of job functions. Each role r is autho-
rized to perform one or more transactions (actions in support of a job func-
tion). The set of authorized transactions for r is written trans(r).

Definition 7-8. The active role of a subject s, written actr(s), is the role that s
is currently performing.

Definition 7-9. The authorized roles of a subject s, written authr(s), is the set
of roles that s is authorized to assume.

Definition 7-10. The predicate canexec(s, t) is true if and only if the subject s
can execute the transaction ¢ at the current time.

Three rules reflect the ability of a subject to execute a transaction.

Axiom 7-1. Let S be the set of subjects and 7" the set of transactions. The rule
of role assignment is (Vs € S)(Vt € T)[ canexec(s, t) — actr(s) # D ].

This axiom simply says that if a subject can execute any transaction, then that
subject has an active role. This binds the notion of execution of a transaction to the
role rather than to the user.

Axiom 7-2. Let S be the set of subjects. Then the rule of role authorization is
(Vs e 9| actr(s) < authr(s) ].

This rule means that the subject must be authorized to assume its active role.
It cannot assume an unauthorized role. Without this axiom, any subject could assume
any role, and hence execute any transaction.

Axiom 7-3. Let S be the set of subjects and T the set of transactions. The rule
of transaction authorization is (Vs € S)(Vt € T)[ canexec(s, t) > t €
trans(actr(s)) 1.

This rule says that a subject cannot execute a transaction for which its current
role is not authorized.
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The forms of these axioms restrict the transactions that can be performed.
They do not ensure that the allowed transactions can be executed. This suggests that
role-based access control (RBAC) is a form of mandatory access control. The axioms
state rules that must be satisfied before a transaction can be executed. Discretionary
access control mechanisms may further restrict transactions.

EXAMPLE: Some roles subsume others. For example, a trainer can perform all
actions of a trainee, as well as others. One can view this as containment. This sug-
gests a hierarchy of roles, in this case the trainer role containing the trainee role. As
another example, many operations are common to a large number of roles. Instead of
specifying the operation once for each role, one specifies it for a role containing all
other roles. Granting access to a role R implies that access is granted for all roles
containing R. This simplifies the use of the RBAC model (and of its implementation).

If role r; contains role r;, we write r; > r;. Using our notation, the implications
of containment of roles may be expressed as

(Vs e S| r; e authr(s) A r;> rp I € authr(s) |
EXAMPLE: RBAC can model the separation of duty rule. Our goal is to specify sep-
aration of duty centrally; then it can be imposed on roles through containment, as
discussed in the preceding example. The key is to recognize that the users in some

roles cannot enter other roles. That is, for two roles r; and r, bound by separation of
duty (so the same individual cannot assume both roles):

(Vs e S) [ r; € authr(s) — ry & authr(s) |

Capturing the notion of mutual exclusion requires a new predicate.
Definition 7-11. Let r be a role, and let s be a subject such that r € authr(s).
Then the predicate meauth(r) (for mutually exclusive authorizations) is the set

of roles that s cannot assume because of the separation of duty requirement.

Putting this definition together with the above example, the principle of sepa-
ration of duty can be summarized as

(Vr,ry € R)[ ry € meauth(r)) — [ (Vs e S) [ r| € authr(s) = ry & authr(s)]]]

7.5 Summary

The goal of this chapter was to show that policies typically combine features of both
integrity and confidentiality policies. The Chinese Wall model accurately captures
requirements of a particular business (brokering) under particular conditions (the



7.7 Exercises 95

British law). The Clinical Information Systems model does the same thing for medi-
cal records. Both models are grounded in current business and clinical practice.

ORCON and RBAC take a different approach, focusing on which entities will
access the data rather than on which entities should access the data. ORCON allows
the author (individual or corporate) to control access to the document; RBAC
restricts access to individuals performing specific functions. The latter approach can
be fruitfully applied to many of the models discussed earlier.

7.6  Further Reading

Meadows [616] discusses moving the Chinese Wall into a multilevel security context.
Lin [566] challenges an assumption of the model, leading to a different formulation.

Very little has been written about policy models that are useful for policies in
specific fields other than government. Anderson’s clinical model is an excellent
example of such a policy model, as is the Chinese Wall. Foley and Jacob discuss
computer-supported collaborative working confidentiality policies in the guise of
specification [329]. Wiemer and Murray discuss policy models in the context of shar-
ing information with foreign governments [941].

McCollum, Messing, and Notargiacomo [603] have suggested an interesting
variation of ORCON, called “Owner-Retained Access Control.” Unlike ORCON,
this model keeps a list of the originators and owners. Like ORCON, the intersection
of all sets controls access. Chandramouli [158] provides a framework for implement-
ing many access control policies in CORBA and discusses an RBAC policy as an
example. He also presents a little language for describing policies of interest.

7.7 Exercises

1. Develop a construction to show that a system implementing the Chinese
Wall model can support the Bell-LaPadula Model.

2. Show that the Clinical Information System model’s principles implement
the Clark-Wilson enforcement and certification rules.

3. Consider using mandatory access controls and compartments to
implement an ORCON control. Assume that there are k different
organizations. Organization i will produce n(i, j) documents to be shared
with organization j.

a. How many compartments are needed to allow any organization to
share a document with any other organization?
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b. Now assume that organization i will need to share n,,(i, iy, ..., i)
documents with organizations iy, ..., i,,. How many compartments
will be needed?

4. Someone once observed that “the difference between roles and groups is
that a user can shift into and out of roles, whereas that user has a group
identity (or identities) that are fixed throughout the session.”

a. Consider a system such as a Berkeley-based UNIX system, in which
users have secondary group identities that remain fixed during their
login sessions. What are the advantages of roles with the same
administrative functions as the groups?

b. Consider a system such as a System V-based UNIX system, in which
a process can have exactly one group identity. To change groups,
users must execute the newgrp command. Do these groups differ
from roles? Why or why not?

5. The models in this chapter do not discuss availability. What unstated
assumptions about that service are they making?

6. A physician who is addicted to a pain-killing medicine can prescribe the
medication for herself. Please show how RBAC in general, and Definition
7-11 specifically, can be used to govern the dispensing of prescription
drugs to prevent a physician from prescribing medicine for herself.



Chapter 8
Basic Cryptography

YORK: Then, York, be still awhile, till time do serve:
Watch thou and wake when others be asleep,

To pry into the secrets of the state;

—The Second Part of King Henry the Sixth, 1, i, 249-260.

Cryptography is a deep mathematical subject. Because this book focuses on system
security, we view cryptography as a supporting tool. Viewed in this context, the
reader needs only a brief overview of the major points of cryptography relevant to
that use. This chapter provides such an overview.

Cryptographic protocols provide a cornerstone for secure communication.
These protocols are built on ideas presented in this chapter and are discussed at
length later on.

8.1  What Is Cryptography?

The word cryptography comes from two Greek words meaning “secret writing” and
is the art and science of concealing meaning. Cryptanalysis is the breaking of codes.
The basic component of cryptography is a cryptosystem.

Definition 8—1. A cryptosystem is a 5-tuple (E, D, M, K, C), where M is
the set of plaintexts, K the set of keys, C'is the set of ciphertexts, E: M x K
— C'is the set of enciphering functions, and D: C x K — M is the set of
deciphering functions.

EXAMPLE: The Caesar cipher is the widely known cipher in which letters are
shifted. For example, if the key is 3, the letter A becomes D, B becomes E, and so
forth, ending with Z becoming C. So the word “HELLO” is enciphered as
“KHOOR.” Informally, this cipher is a cryptosystem with:

M = { all sequences of Roman letters }

97
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I ={ilianinteger such that 0 <i <25}
E={E, ke Kandforallme M, E(m)=(m+ k) mod 26 }

Representing each letter by its position in the alphabet (with A in position 0),
“HELLO” is 74 11 11 14; if k = 3, the ciphertextis 10 7 14 14 17, or “KHOOR.”

D={D,lke Kandforall ce C,Dyc)=(26+ c—k) mod 26 }
Each D, simply inverts the corresponding E;.

C=M
because ZE is clearly a set of onto functions.

The goal of cryptography is to keep enciphered information secret. Assume
that an adversary wishes to break a ciphertext. Standard cryptographic practice is to
assume that she knows the algorithm used to encipher the plaintext, but not the spe-
cific cryptographic key (in other words, she knows ) and E). She may use three
types of attacks:

1. In a ciphertext only attack, the adversary has only the ciphertext. Her goal is
to find the corresponding plaintext. If possible, she may try to find the key, too.

2. In a known plaintext attack, the adversary has the ciphertext and the
plaintext that was enciphered. Her goal is to find the key that was used.

3. In a chosen plaintext attack, the adversary may ask that specific plaintexts
be enciphered. She is given the corresponding ciphertexts. Her goal is to
find the key that was used.

A good cryptosystem protects against all three types of attacks.

Attacks use both mathematics and statistics. The statistical methods make
assumptions about the statistics of the plaintext language and examine the ciphertext
to correlate its properties with those assumptions. Those assumptions are collectively
called a model of the language. Figure 8—1 presents a character-based, or 1-gram,
model of English text; others are 2-gram models (reflecting frequencies of pairs of
letters), Markov models, and word models. In what follows, we use the 1-gram
model and assume that the characters are chosen independently of one another.

8.2 Classical Cryptosystems

Classical cryptosystems (also called single-key or symmetric cryptosystems) are
cryptosystems that use the same key for encipherment and decipherment. In these
systems, for all E; € Cand k e K, there is a D; € D such that D, = E,~.
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a 0.080 h 0.060 n 0.070 t 0.090
b 0.015 i 0.065 o 0.080 u 0.030
¢ 0.030 j 0.005 p 0.020 v 0.010
d 0.040 k 0.005 g 0.002 w 0.015
e 0.130 I 0.035 r 0.065 x 0.005
f 0.020 m 0.030 s 0.060 y 0.020
g 0.015 z 0.002

Figure 8-1 Table of character frequencies in the English language, from
Denning [242], Figure 2.3, p. 65.

EXAMPLE: The Caesar cipher discussed earlier had a key of 3, so the enciphering
function was E5. To decipher “KHOOR,” we used the same key in the decipherment
function D3. Hence, the Caesar cipher is a classical cipher.

There are two basic types of classical ciphers: transposition ciphers and sub-
stitution ciphers.

8.2.1 Transposition Ciphers

A transposition cipher rearranges the characters in the plaintext to form the cipher-
text. The letters are not changed.

EXAMPLE: The rail fence cipher is composed by writing the plaintext in two rows,
proceeding down, then across, and reading the ciphertext across, then down. For
example, the plaintext “HELLO, WORLD” would be written as:

HLOOL
ELWRD

resulting in the ciphertext “HLOOLELWRD.”

Mathematically, the key to a transposition cipher is a permutation function.
Because the permutation does not alter the frequency of plaintext characters, a trans-
position cipher can be detected by comparing character frequencies with a model of
the language. If, for example, character frequencies for 1-grams match those of a
model of English, but 2-gram frequencies do not match the model, then the text is
probably a transposition cipher.

Attacking a transposition cipher requires rearrangement of the letters of the
ciphertext. This process, called anagramming, uses tables of n-gram frequencies to iden-
tify common n-grams. The cryptanalyst arranges the letters in such a way that the
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characters in the ciphertext form some n-grams with highest frequency. This process is
repeated, using different n-grams, until the transposition pattern is found.

EXAMPLE: Consider the ciphertext “HLOOLELWRD.” According to a Konheim’s
digram table [527], the digram “HE” occurs with frequency 0.0305! in English. Of
the other possible digrams beginning with “H,” the frequency of “HO” is the next
highest, at 0.0043, and the digrams “HL,” “HW,” “HR,” and “HD” have frequencies
of less than 0.0010. Furthermore, the frequency of “WH” is 0.0026, and the digrams
“EH,” “LH,” “OH,” “RH,” and “DH” occur with frequencies of 0.0002 or less. This
suggests that “E” follows “H.” We arrange the letters so that each letter in the first
block of five letters (from “H” up to but not including the “E”) is adjacent to the cor-
responding letter in the second block of five letters, as follows.

HE
LL
ow
OR
LD

Reading the letters across and down produces “HELLOWORLD.” Note that the

shape of the arrangement is different from that in the previous example. However,
the two arrangements are equivalent, leading to the correct solution.

8.2.2 Substitution Ciphers

A substitution cipher changes characters in the plaintext to produce the ciphertext.
EXAMPLE: The Caesar cipher discussed earlier had a key of 3, altering each letter in
the plaintext by mapping it into the letter three characters later in the alphabet (and
circling back to the beginning of the alphabet if needed). This is a substitution cipher.

A Caesar cipher is susceptible to a statistical ciphertext-only attack.

EXAMPLE: Consider the ciphertext “KHOOR ZRUOG.” We first compute the fre-
quency of each letter in the ciphertext:

G 01 HO1T KO1T OO03 R 02 U 01 Z 01

! This means that in Konheim’s sample, 3.05% of the digrams were “HE.”
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i) i) i) i)

0  0.0482 7 0.0442 13 0.0520 19 0.0315
1 0.0364 8  0.0202 14 0.0535 20  0.0302
2 0.0410 9  0.0267 15 0.0226 21 0.0517
3  0.0575 10  0.0635 16 0.0322 22 0.0380
4 0.0252 11 0.0262 17 0.0392 23 0.0370
5  0.0190 12 0.0325 18 0.0299 24 0.0316
6  0.0660 25  0.0430

Figure 8-2 The value of ¢(i) for 0 < i < 25 using the model in Figure 8-1.

We now apply the character-based model. Let ¢(i) be the correlation of the frequency
of each letter in the ciphertext with the character frequencies in English (see Figure
8—1). Let f{c) be the frequency of character ¢ (expressed as a fraction). The formula
for this correlation for this ciphertext (with all arithmetic being mod 26) is

#(i) = Zp < o < 25/(0)plc =) = 0.1p(6 — i) + 0.1p(7 — i) + 0.1p(10 — i) +
0.3p(14 - ) + 0.2p(17 = i) + 0.1p(20 — i) + 0.1p(25 - ©)

This correlation should be a maximum when the key k translates the ciphertext into
English. Figure 8-2 shows the values of this function for the values of i. Trying the
most likely key first, we obtain as plaintext “EBIIL TLOIA” when i = 6, “AXEEH
PHKEW” when i = 10, “HELLO WORLD” when i = 3, and “WTAAD LDGAS”
when i = 14.

The example above emphasizes the statistical nature of this attack. The statis-
tics indicated that the key was most likely 6, when in fact the correct key was 3. So
the attacker must test the results. The statistics simply reduce the number of trials in
most cases. Only three trials were needed, as opposed to 13 (the expected number of
trials if the keys were simply tried in order).

EXAMPLE: Using Konheim’s model of single-character frequencies [527], the most
likely keys (in order) are i = 6, i = 10, i = 14, and i = 3. Konheim’s frequencies are
different than Denning’s, and this accounts for the change in the third most probable
key.

8.2.2.1 Vigenére Cipher

A longer key might obscure the statistics. The Vigenere cipher chooses a sequence of
keys, represented by a string. The key letters are applied to successive plaintext
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ABCDEFGHI J KLMNOPQRSTUVWXYZ
A ABCDEFGHI J KLMNOPQRSTUVWXYZ
B BCDEFGHI JKLMNOPQRSTUVWXYZA
Cc CDEFGHI J KLMNOPQRSTUVWXYZAB
D DEFGHI J KLMNOPQRSTUVWXYZABZC
E EFGHI J KLMNOPQRSTUVWXYZABCD
F FGHI J KLMNOPQRSTUVWXYZABC CDE
G GHI J KLMNOPQRSTUVWXYZABCDETF
H HI J KLMNOPQRSTUVWXYZABCDETFG®G
/I 1 JKLMNOPQRSTUVWXYZABCDETFGH
J JKLMNOPQRSTUVWXYZABCDETFGHI
K KLMNOPQRSTUVWXYZABCDEFGHI J
L LMNOPQRSTUVWXYZABCDEFGHI JK
M MNOPQRSTUVWXYZABCDEFGHI J KL
N NOPQRSTUVWXYZABCDEFGHI JKLM
O OPQRSTUVWXYZABCDEFGHI JKLMN
P PQRSTUVWXYZABCDEFGHI JKLMNDO
Q QRSTUVWXYZABCDEFGHI JKLMNOP
R RSTUVWXYZABCDEFGHI JKLMNOPAQ
S STUVWXYZABCDEFGHI JKLMNOPAQR
T TUVWXYZABCDEFGHI JKLMNOPAQRS
U UVWXYZABCDEFGHI JKLMNOPQRST
Vv VWXYZABCDEFGHI JKLMNOPQRSTWU
W WwWXYZABCDEFGHI J KLMNOPQRSTUYV
X XYZABCDEFGHI J KLMNOPQRSTUVMW
Y YZABCDEFGHI J KLMNOPQRSTUV WX
Z ZABCDEFGHI JKLMNOPQRSTUVWXY

Figure 8-3 The Vigenére tableau.

characters, and when the end of the key is reached, the key starts over. The length of
the key is called the period of the cipher. Figure 8-3 shows a tableau, or table, to
implement this cipher efficiently. Because this requires several different key letters,
this type of cipher is called polyalphabetic.
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EXAMPLE: The first line of a limerick is enciphered using the key “BENCH,” as follows.

Key B ENCHBENC HBENC HBENCH BENCHBENCH
Plaintext A LIMERICK PACKS LAUGHS ANATOMICAL
Ciphertext B PVOLSMPM WBGXU SBYTJZ BRNVVNMPCS

The index of coincidence measures the differences in the frequencies of the
letters in the ciphertext. It is defined as the probability that two randomly chosen let-
ters from the ciphertext will be the same. Let F,. be the frequency of cipher character
¢, and let N be the length of the ciphertext. It can be shown (see Exercise 7) that the

25

. .. . 1 .
index of coincidence IC is IC = mz F,(F;-1). Figure 8—4 shows the
1=

expected values of IC for several periods. The lower the index of coincidence, the
less variation in the characters of the ciphertext and (from our model of English) the
longer the period of the cipher.

For many years, the Vigeneére cipher was considered unbreakable. Then a
Prussian cavalry officer named Kasiski noticed that repetitions occur when charac-
ters of the key appear over the same characters in the ciphertext. The number of char-
acters between the repetitions is a multiple of the period.

EXAMPLE: Let the message be THE BOY HAS THE BAG and let the key be VIG.
Then:

Key VIGVIGVIGVIGVIG
Plaintext THEBOYHASTHEBAG
Ciphertext OPKWWECIYOPKWIM

In the ciphertext, the string OPK appears twice. Both are caused by the key sequence
VIG enciphering the same ciphertext, THE. The ciphertext repetitions are nine char-
acters apart. Hence, 9 is a multiple of the period (which is 3 here).

We examine the ciphertext for multiple repetitions and tabulate their length
and the number of characters between successive repetitions. The period is likely to

Period 1 2 3 4 5 10 Large
Expected IC 0.066 0.052 0.047 0.045 0.044 0.041 0.038

Figure 8—4 Indices of coincidences for different periods. From Denning [242],
Table 2.2, p. 78.
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be a factor of the number of characters between these repetitions. From the repeti-
tions, we establish the probable period, using the index of coincidence to check our
deduction. We then tabulate the characters for each key letter separately and solve
each as a Caesar cipher.

EXAMPLE: Consider the Vigenere cipher

ADQYS MIUSB OXKKT MIBHK IZOOO EQOOG IFBAG KAUMF
VVTAA CIDTW MOCIO EQOOG BMBFV ZGGWP CIEKQ HSNEW
VECNE DLAAV RWKXS VNSVP HCEUT OQOIOF MEGJS WTPCH
AJMOC HIUIX

Could this be a Caesar cipher (which is a Vigenere cipher with a key length of 1)? We
find that the index of coincidence is 0.043, which indicates a key of length 5 or more.
So we assume that the key is of length greater than 1, and apply the Kasiski method.
Repetitions of two letters or more are as follows.

e 5 15 10 2,5

00 22 o7 5 5

OEQOOG 24 54 30 2,35

BV 39 63 24 2,22, 3
AR 43 87 44 2,2, 11
MOC 50 122 72 2,2,2,3,3
Qo0 56 105 49 7,7

PC 69 117 48 2,2,2,2 3
NE 77 83 6 2.3

sV 94 97 3 3

CH 118 124 6 2.3

The longest repetition is six characters long; this is unlikely to be a coincidence. The
gap between the repetitions is 30. The next longest repetition, MOC, is three charac-
ters long and has a gap of 72. The greatest common divisor of 30 and 72 is 6. Of the
11 repetitions, six have gaps with a factor of 6. The only factors that occur more in
the gaps are 2 (in eight gaps) and 3 (in seven gaps). As a first guess, let us try 6.

To verify that this is reasonable, we compute the index of coincidence for each
alphabet. We first arrange the message into six columns.
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— >0 OomMzIMMME®O-4-A>» " O0IX— >
CCesSTCmHMsSUSXOPZTMS>»C TMXXCO
—TZHAZA<KXr<QOswWOZTPZTWO - 40P
X O TMmMPOPUVUX>MITTOOOT>ONZ®m<
O0OO0OINM»O0ONO<O0O0 " <O0OO00-"0Ww
II - ~-0<<ZZ~-NO® - UO<XOOWXTZ

Each column represents one alphabet. The indices of coincidence are as follows.

Alphabet #1: IC = 0.069 Alphabet #4: IC = 0.056
Alphabet #2: IC = 0.078 Alphabet #5: IC = 0.124
Alphabet #3: IC = 0.078 Alphabet #6: IC = 0.043

All indices of coincidence indicate a single alphabet except for the ICs associated
with alphabets #4 (period between 1 and 2) and #6 (period between 5 and 10). Given
the statistical nature of the measure, we will assume that these are skewed by the dis-
tribution of characters and proceed on the assumption that there are six alphabets,
and hence a key of length 6.
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Counting characters in each column (alphabet) yields:

Columnr BCDEFGHIJKLMNOPQRSTUVWIXY Z
#1 31004011301 0013001120000%0@O0
#2 1002221001301 000001040400°0
#3 1 2000000201140004013021000
#4 2110220100001 0431000000211
#5 10500021 200000500030020000
#6 0111002231101 21000000301°01

An unshifted alphabet has the following characteristics (L meaning low fre-
quency, M meaning moderate frequency, and H meaning high frequency).

HMMMHMMHHMMMMHEHEMLHHHMTLTLTLTULL

We now compare the frequency counts in the six alphabets above with the fre-
quency count of the unshifted alphabet. The first alphabet matches the characteristics
of the unshifted alphabet (note the values for A, E, and I in particular). Given the gap
between B and I, the third alphabet seems to be shifted with I mapping to A. A simi-
lar gap occurs in the sixth alphabet between O and V, suggesting that V maps to A.
Substituting into the ciphertext (bold letters are plaintext) produces

ADIYS RIUKB OCKKL MIGHK AZOTO EIOOL IFTAG PAUEF
VATAS CIITW EOCNO EIOOL BMTEFV EGGOP CNEKI HSSEW
NECSE DDAAA RWCXS ANSNP HHEUL OQONOF EEGOS WLPCM
AJEOC MIUAX

In the last line, the group AJE suggests the word ARE. Taking this as a
hypothesis, the second alphabet maps A into S. Substituting back produces

ALIYS RICKB OCKSL MIGHS AZOTO MIOOL INTAG PACEF
VATIS CIITE EOCNO MIOOL BUTEFV EGOOP CNESI HSSEE
NECSE LDAAA RECXS ANANP HHECL QONON EEGOS ELPCM
AREOC MICAX

The last block suggests MICAL, because AL is a common ending for adjec-
tives. This means that the fourth alphabet maps O into A, and the cipher becomes
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ALIMS RICKP OCKSL AIGHS ANOTO MICOL INTOG PACET

VATIS QIITE ECCNO MICOL BUTTV EGOOD CNESI VSSEE
NSCSE LDOAA RECLS ANAND HHECL EONON ESGOS ELDCM
ARECC MICAL

In English, a Q is always followed by a U, so the I in the second group of the
second line must map to U. The fifth alphabet maps M to A. The cipher is solved:

ALIME RICKP ACKSL AUGHS ANATO MICAL INTOS PACET
HATIS QUITE ECONO MICAL BUTTH EGOOD ONESI VESEE
NSOSE LDOMA RECLE ANAND THECL EANON ESSOS ELDOM
ARECO MICAL

With proper spacing and punctuation, we have

A LIMERICK PACKS LAUGHS ANATOMICAL
INTO SPACE THAT IS QUITE ECONOMICAL
BUT THE GOOD ONES I'VE SEEN
SO SELDOM ARE CLEAN,
AND THE CLEAN ONES SO SELDOM ARE COMICAL.

The key is ASIMOV.

It is worth noting that the Vigenere cipher is easy to break by hand. However,
the principles of attack hold for more complex ciphers that can be implemented only
by computer. A good example is the encipherments that several older versions of
WordPerfect used [75, 78]. These allowed a user to encipher a file with a password.
Unfortunately, certain fields in the enciphered file contained information internal to
WordPerfect, and these fields could be predicted. This allowed an attacker to derive
the password used to encipher the file, and from that the plaintext file itself.

8.2.2.2 One-Time Pad

The one-time pad is a variant of the Vigenere cipher. The technique is the same. The
key string is chosen at random, and is at least as long as the message, so it does not
repeat. Technically, it is a threshold scheme [815], and is provably impossible to
break [115]. The implementation issues of the pad, including random generation of
the key and key distribution, do not concern us here (although a later chapter will
touch on them).
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8.2.3 Data Encryption Standard

The Data Encryption Standard (DES) [662] was designed to encipher sensitive but
nonclassified data. It is bit-oriented, unlike the other ciphers we have seen. It uses
both transposition and substitution and for that reason is sometimes referred to as a
product cipher. Its input, output, and key are each 64 bits long. The sets of 64 bits are
referred to as blocks.

The cipher consists of 16 rounds, or iterations. Each round uses a separate key
of 48 bits. These round keys are generated from the key block by dropping the parity
bits (reducing the effective key size to 56 bits), permuting the bits, and extracting 48
bits. A different set of 48 bits is extracted for each of the 16 rounds (see Figure 8-5).
If the order in which the round keys is used is reversed, the input is deciphered.

The rounds are executed sequentially, the input of one round being the output
of the previous round. The right half of the input, and the round key, are run through
a function f that produces 32 bits of output; that output is then xor’ed into the left
half, and the resulting left and right halves are swapped (see Figure 8-0).

The function f provides the strength of the DES. The right half of the input (32
bits) is expanded to 48 bits, and this is xor’ed with the round key. The resulting 48
bits are split into eight sets of six bits each, and each set is put through a substitution

CO DO
@ @
PC-2 =—— KI1
Cl D1

G ED sl

Figure 8-5 DES key schedule generation. PC-1 and PC-2 are permutation
tables; LSH is a table of left shifts (rotations).
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Figure 8-6 DES message encipherment and decipherment.

table called the S-box. Each S-box produces four bits of output. They are catenated
into a single 32-bit quantity, which is permuted. The resulting 32 bits constitute the
output of the f function (see Figure 8-7).

When the DES was first announced, it was criticized as too weak. First, Diffie
and Hellman [268] argued that a key length of 56 bits was simply too short, and they
designed a machine that could break a DES-enciphered message in a matter of days.
Although their machine was beyond the technology of the time, they estimated that it
could soon be built for about $20,000,000. Second, the reasons for many of the deci-
sions in the design of the DES—most notably, those involving the S-boxes—were
classified. Many speculated that the classification hid “trapdoors,” or ways to invert
the cipher without knowing the key.

Some properties of the DES were worrisome. First, it had four weak keys
(keys that were their own inverses) and 12 semiweak keys (keys whose inverses were
other keys). Second, let k, m, and ¢ be the complement of the key k, the plaintext m,
and the ciphertext c, respectively. Let DES;(m) be the encipherment of plaintext m
under key k. Then the complementation property states that

DES(m) = ¢ = DESg(m) = ¢
Third, some of the S-boxes exhibited irregular properties. The distribution of odd and

even numbers was nonrandom, raising concerns that the DES did not randomize the
input sufficiently. Several output bits of the fourth S-box seemed to depend on some
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R, | (32 bits) K; (48 bits)
R;_; (48 bits) 6 bits into each

@@@h@h@gh
o

32 bits

Figure 8—=7 The ffunction.

of the output bits of the third S-box. This again suggested that there was a structure
to the S-boxes, and because some of the design decisions underlying the S-boxes
were unknown, the reasons for the structure were unknown. The structure made
hardware implementation of the DES simpler [907]. It distributed the dependence of
each output bit on each input bit rapidly, so that after five rounds each output bit
depended on every key and input bit [625]. It could have been needed to prevent the
cipher from being broken easily. It also could enable a trapdoor to allow the cipher to
be broken easily. There was considerable speculation that the NSA had weakened the
algorithm, although a congressional investigation did not reflect this [59].

In 1990, a breakthrough in cryptanalysis answered many of these questions.
Biham and Shamir applied a technique called differential cryptanalysis to the DES
[90, 91, 92]. This technique required them to generate 247 pairs of chosen plaintext
and ciphertext, considerably fewer than the trial-and-error approach others had used.
During the development of this technique, they found several properties of the DES
that appeared to answer some of the questions that had been raised.

First, for a known plamtext attack, differential cryptanalysis requires 26
plamtext and ciphertext pairs for a 15-round version of the DES. For the full 16
rounds, 2°% known plaintext and ciphertext pairs are needed, which is more than suf-
ficient for a trial-and-error approach. (Matsui subsequently 1mpr0ved this using a
variant attack called linear cryptanalysis [596]; this attack requires 2% known plain-
text and ciphertext pairs on the average.) Second, small changes in the S-boxes
weakened the cipher (so that the required number of chosen plaintext and ciphertext
pairs was reduced). Third, making every bit of the round keys independent (for an
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effective key length of 16 x 48 = 768 bits) did not make the DES resistant to differen-
tial cryptanalysis, which suggests that the designers of the DES knew about differen-
tial analysis. Coppersmith later confirmed this [209].

The DES is used in several modes [663]. Using it directly is called electronic code
book (ECB) mode, and is very rare. Modes in which it can be used to generate a pseudo-
one-time pad are cipher feed back (CFB) mode (see Section 10.2.1.2) and output feed
back (OFB) mode (see Section 10.2.1.1). Its most common modes of use are cipher block
chaining (CBC) mode (see Section 10.2.2), encrypt-decrypt-encrypt (EDE) mode, and
triple DES mode (the EDE and triple DES modes are described in Section 10.2.2.1).

The CBC mode is an iterative mode in which a block of ciphertext depends not
only on its input but also on the preceding ciphertext block. In addition to a 64-bit key, it
requires a 64-bit initialization vector. Figure 8—8 shows this mode. It has the self-healing
property. This property says that if one block of ciphertext is altered, the error propagates
for at most two blocks. Figure 8-9 shows how a corrupted block affects others.

init vec my my init vec €o Cq
| |
f ? ( I;ESD ( I;;ESD
C DES> C DES> | |
7 ! v v
Co C1 my my

Figure 8-8 Cipher block chaining mode. The left diagram shows
encipherment; each ciphertext is “fed back” into the cipher stream. The right
diagram shows decipherment.

Incorrect ciphertext: ef7c4cb2bdce6f3b f6266e3a97afle2c
746ab%9a6308f4256 33e60b451b09603d
Corresponding plaintext: efca6lel9r4836f1 3231333336353837
3231343336353837 3231343336353837
The real plaintext: 3231343336353837 3231343336353837
3231343336353837 3231343336353837

Figure 8-9 Example of the self-healing property. The ciphertext at the top was
stored incorrectly (the italicized 4c should be 4b). Its decipherment is shown

next, with the incorrect octets italicized. The plaintext used to create the
ciphertext is shown at the bottom.
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The EDE mode is used by many financial institutions. It requires two
64-bit keys k and k”. The ciphertext ¢ corresponding to some data m is ¢ = DES;,
(DESk/_l(DES «(m))). Triple DES uses three keys k, k*, and k™", and the second step is
an encipherment, not a decipherment: ¢ = DES;(DES;(DES)--(m))).

In 1998, a design for a computer system and software that could break any
DES-enciphered message in a few days was published [358]. This design comple-
mented several challenges to break specific DES messages. Those challenges had
been solved using computers distributed throughout the Internet. By 1999, it was
clear that the DES no longer provided the same level of security as it had 10 years
earlier, and the search was on for a new, stronger cipher (to be called the Advanced
Encryption Standard, or AES) to fill the needs that the DES no longer filled.

The DES is one of the most important classical cryptosystems in the history of
cryptography. It provided the impetus for many advances in the field and laid the the-
oretical and practical groundwork for many other ciphers. While analyzing it,
researchers developed differential and linear cryptanalysis. Cryptographers devel-
oped other ciphers to avoid real, or perceived, weaknesses; cryptanalysts broke many
of these ciphers and found weaknesses in others. Many of the features of the DES are
used in other ciphers. Hence, even though it is nearing the end of its useful lifetime,
it is well worth understanding.

In late 2001, the National Institute of Standards and Technology announced
the selection of Rijndael as the Advanced Encryption Standard [672], the successor
to the DES. Like the DES, the AES is a product cipher. Unlike the DES, the AES can
use keys of 128, 192, or 256 bits and operates on blocks of 128 bits. It was specifi-
cally designed to withstand the attacks to which the DES showed weaknesses [228].
Time will show how rapidly it supplants the DES, but the lessons learned from the
DES have borne fruit.

8.24 Other Classical Ciphers

Several algorithms have been proposed to overcome the weaknesses in the DES.
NewDES (which, despite its name, is not a variant of DES but a new algorithm) has a
block size of 64 bits and a key length of 120 bits [803]. However, it can be broken
using an attack similar to differential cryptanalysis [796]. FEAL is another block
cipher, with a block size of 64 bits and a key size of 64 bits [642, §22]. FEAL-4
(FEAL with four rounds) and FEAL-8 (FEAL with eight rounds) fell to differential
cryptanalysis with 20 [658] and 10,000 [357] chosen plaintexts, respectively. Biham
and Shamir broke FEAL-N, which uses N rounds, for N < 32 by differential crypt-
analysis more quickly than by trial-and-error [91]. It was proposed that the key be
lengthened to 128 bits, but the 128-bit key proved as easy to break as FEAL-N with
the original 64-bit key. REDOC-II [226] has an 80-bit block and a 160-bit key. It has
10 rounds, and although a single round was successfully cryptanalyzed [89], the use
of 10 rounds appears to withstand differential cryptanalysis.
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LOKIB9 [137], proposed as an alternative to the DES, was vulnerable to differ-
ential cryptanalysis [89]. Its successor, LOKI91 [138], uses a 64-bit key and a 64-bit
block size. Differential cryptanalysis fails to break this cipher [516]. Khufu [623] has a
block size of 64 bits and a key size of 512 bits. When used with 24 or 32 rounds, it
resists chosen plaintext attacks. Its S-boxes are computed from the keys. Khafre [623],
similar in design to Khufu, uses fixed S-boxes, but it has been broken [89].

IDEA is an eight-round mpher that uses 64-bit blocks and 128-bit keys [541].
It uses three operations: exclusive or’s, addition modulo 216 and multiplication mod-
ulo 2'0 4+ 1. It appears to withstand known attacks but is too new for any definitive
statement to be made about its security [796]. It is used in noncommercial soft-
ware—notably, in the electronic mail program PGP [965]—but is patented and
requires licensing for use in commercial software.

8.3 Public Key Cryptography

In 1976, Diffie and Hellman [267] proposed a new type of cryptography that distinguished
between encipherment and decipherment keys.2 One of the keys would be publicly known;
the other would be kept private by its owner. Classical cryptography requires the sender
and recipient to share a common key. Public key cryptography does not. If the encipher-
ment key is public, to send a secret message simply encipher the message with the recip-
ient’s public key. Then send it. The recipient can decipher it using his private key.
(Chapter 9, “Key Management,” discusses how to make public keys available to others.)

Because one key is public, and its complementary key must remain secret, a
public key cryptosystem must meet the following three conditions.

1. It must be computationally easy to encipher or decipher a message given
the appropriate key.

2. It must be computationally infeasible to derive the private key from the
public key.

3. It must be computationally infeasible to determine the private key from a
chosen plaintext attack.

The RSA cipher provides both secrecy and authentication.

2 James Ellis, a cryptographer working for the British government’s Communications-
Electronics Security Group, said “he showed proof of concept in a January 1970 CESG report
titled ‘The Possibility of Secure Non-Secret Digital Encryption.”” Two of his colleagues found
practical implementations. This work remained classified until 1997 ([244], p. 299).
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8.3.1 RSA

RSA [756] is an exponentiation cipher. Choose two large prime numbers p and g,
and let n = pq. The totient ¢(n) of n is the number of numbers less than » with no fac-
tors in common with 7.

EXAMPLE: Let n = 10. The numbers that are less than 10 and are relatively prime to
(have no factors in common with) n are 1, 3, 7, and 9. Hence, ¢(10) = 4. Similarly, if
n =21, the numbers that are relatively prime to n are 1, 2, 4, 5, 8, 10, 11, 13, 16, 17,
19, and 20. So ¢(21) = 12.

Choose an integer e < n that is relatively prime to ¢(n). Find a second integer d
such that ed mod ¢(n) = 1. The public key is (e, n), and the private key is d.
Let m be a message. Then:

c=mmodn

and

m = c% mod n

EXAMPLE: Let p =7 and ¢ = 11. Then n =77 and ¢(n) = 60. Alice chooses ¢ = 17, so
her private key is d = 53. In this cryptosystem, each plaintext character is represented
by a number between 00 (A) and 25 (Z); 26 represents a blank. Bob wants to send
Alice the message “HELLO WORLD.” Using the representation above, the plaintext
is0704 11 11 142622 14 17 11 03. Using Alice’s public key, the ciphertext is

07! mod 77 = 28
047 mod 77 = 16
11" mod 77 = 44

03'7 mod 77 =75
or 28 1644 44 42 38 2242 19 44 75.
In addition to confidentiality, RSA can provide data and origin authentication.

If Alice enciphers her message using her private key, anyone can read it, but if any-
one alters it, the (altered) ciphertext cannot be deciphered correctly.

30ur examples will use small numbers for pedagogical purposes. Actual RSA primes should be
at least 512 bits each, giving a modulus of at least 1,024 bits. In practice, RSA is combined with
cryptographic hash functions to prevent rearrangement of blocks (see Section 10.1.2).
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EXAMPLE: Suppose Alice wishes to send Bob the message “HELLO WORLD” in
such a way that Bob will be sure that Alice sent it. She enciphers the message with

her private key and sends it to Bob. As indicated above, the plaintext is represented as
0704 111114262214 17 11 03. Using Alice’s private key, the ciphertext is

07°3 mod 77 = 35
043 mod 77 = 09
1153 mod 77 = 44

033 mod 77 = 05

or 3509 44 44 93 12 24 94 04 05. In addition to origin authenticity, Bob can be sure
that no letters were altered.

Providing both confidentiality and authentication requires enciphering with
the sender’s private key and the recipient’s public key.

EXAMPLE: Suppose Alice wishes to send Bob the message “HELLO WORLD” in
confidence and authenticated. Again, assume that Alice’s private key is 53. Take
Bob’s public key to be 37 (making his private key 13). The plaintext is represented as
0704 111114262214 17 11 03. The encipherment is

(07°3 mod 77)3” mod 77 = 07
(043 mod 77)3” mod 77 = 37
(113 mod 77)%” mod 77 = 44

(0333 mod 77)3” mod 77 = 47
or 07 37 44 44 14 59 22 14 61 44 47.

The recipient uses the recipient’s private key to decipher the message and the
sender’s public key to authenticate it.

EXAMPLE: Bob receives the ciphertext above, 07 37 44 44 14 59 22 14 61 44 47.
The decipherment is

(073 mod 77)' mod 77 = 07
(37"3 mod 77)! mod 77 = 04
(4413 mod 77)' mod 77 = 11

4713 mod 77)'" mod 77 = 03

or 0704 11 11 14 26 22 14 17 11 03. This corresponds to the message “HELLO
WORLD” from the preceding example.
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The use of a public key system provides a technical type of nonrepudiation of
origin. The message is deciphered using Alice’s public key. Because the public key is
the inverse of the private key, only the private key could have enciphered the message.
Because Alice is the only one who knows this private key, only she could have enci-
phered the message. The underlying assumption is that Alice’s private key has not been
compromised, and that the public key bearing her name really does belong to her.

In practice, no one would use blocks of the size presented here. The issue is
that, even if n is very large, if one character per block is enciphered, RSA can be bro-
ken using the techniques used to break classical substitution ciphers (see Sections
8.2.2 and 10.1.3). Furthermore, although no individual block can be altered without
detection (because the attacker presumably does not have access to the private key),
an attacker can rearrange blocks and change the meaning of the message.

EXAMPLE: A general sends a message to headquarters asking if the attack is on.
Headquarters replies with the message “ON” enciphered using an RSA cipher with a
1,024-bit modulus, but each letter is enciphered separately. An attacker intercepts the
message and swaps the order of the blocks. When the general deciphers the message,
it will read “NO,” the opposite of the original plaintext.

Moreover, if the attacker knows that headquarters will send one of two mes-
sages (here, “NO” or “ON”), the attacker can use a technique called “forward
search” or “precomputation” to break the cipher (see Section 10.1.1). For this reason,
plaintext is usually padded with random data to make up a block. This can eliminate
the problem of forward searching, because the set of possible plaintexts becomes too
large to precompute feasibly.

A different general sends the same request as in the example above. Again,
headquarters replies with the message “ON” enciphered using an RSA cipher with a
1,024-bit modulus. Each letter is enciphered separately, but the first six bits of each
block contain the number of the block, the next eight bits contain the character, and
the remaining 1,010 bits contain random data. If the attacker rearranges the blocks,
the general will detect that block 2 arrived before block 1 (as a result of the number
in the first six bits) and rearrange them. The attacker also cannot precompute the
blocks to determine which contains “O,” because she would have to compute 21010
blocks, which is computationally infeasible.

8.4 Cryptographic Checksums

Alice wants to send Bob a message of n bits. She wants Bob to be able to verify that
the message he receives is the same one that was sent. So she applies a mathematical
function, called a checksum function, to generate a smaller set of k bits from the
original n bits. This smaller set is called the checksum or message digest. Alice then
sends Bob both the message and the checksum. When Bob gets the message, he
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recomputes the checksum and compares it with the one Alice sent. If they match, he
assumes that the message has not been changed.

EXAMPLE: The parity bit in the ASCII representation is often used as a single-bit
checksum. If odd parity is used, the sum of the 1-bits in the ASCII representation of
the character, and the parity bit, is odd. Assume that Alice sends Bob the letter “A.”
In ASCII, the representation of “A” using odd parity is p0111101 in binary, where p
represents the parity bit. Because five bits are set, the parity bit is O for odd parity.
When Bob gets the message 00111101, he counts the 1-bits in the message.
Because this number is odd, Bob knows that the message has arrived unchanged.

Definition 8-2. A cryptographic checksum function (also called a strong
hash function or a strong one-way function) h: A — B is a function that has the
following properties.

1. For any x € A, h(x) is easy to compute.
2. For any y € B, it is computationally infeasible to find x € A such that 4(x) = y.

3. It is computationally infeasible to find x, x“€ A, such that x # x“and
h(x) = h(x"). (Such a pair is called a collision.)

The third requirement is often stated as:

4. Given any x € A, it is computationally infeasible to find another x "€ A
such that x # x“and h(x ") = h(x).

However, properties 3 and 4 are subtlely different. It is considerably harder to find an
x~meeting the conditions in property 4 than it is to find a pair x and x " meeting the
conditions in property 3. To explain why, we need to examine some basics of crypto-
graphic checksum functions.

Given that the checksum contains fewer bits than the message, several mes-
sages must produce the same checksum. The best checksum functions have the same
number of messages produce each checksum. Furthermore, given any message, the
checksum it produces can be determined only by computing the checksum. Such a
checksum function acts as a random function.

The size of the output of the cryptographic checksum is an important consid-
eration owing to a mathematical principle called the pigeonhole principle.

Definition 8-3. The pigeonhole principle states that if there are n containers
for n + 1 objects, at least one container will hold two objects. To understand
its application here, consider a cryptographic checksum function that com-
putes hashes of three bits and a set of files each of which contains five bits.
This yields 23=8 possible hashes for 23 = 32 files. Hence, at least four differ-
ent files correspond to the same hash.
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Now assume that a cryptographic checksum function computes hashes of 128
bits. The probability of finding a message corresponding to a given hash is 27128 put
the probability of finding two messages W1th the same hash (that is, with the Value of
neither message being constrained) is 276 (see Exercise 20).

Definition 8—4. A keyed cryptographic checksum function requires a crypto-
graphic key as part of the computation. A keyless cryptographic checksum
does not.

EXAMPLE: The DES in CBC mode can be used as a message authentication code if
64 bits or fewer are required. The message is enciphered, and the last n bits of the last
output are the cryptographic hash. Because the DES requires a cryptographic key,
this checksum function (called DES-MAC) is a keyed cryptographic checksum func-
tion. Because the DES is vulnerable to attack, so is this checksum technique. Fur-
thermore, because the hash i 1s at most 64 bits, finding two inputs that produce the
same output would require 232 messages.

Examples of keyless hash functions include MD2 [489]; MD4 [753]; MDS5
[754]; the Secure Hash Algorithm (SHA-1) which produces 160-bit checksums [664,
663]; Snefru (either 128-bit or 256-bit checksums) [622]; and HAVAL, which produces
checksums of 128, 160, 192, 224, and 256 bits [963]. Of these, Snefru is vulnerable to
differential cryptanalysis if four rounds or fewer are used [92], so Merkle recommends
using at least eight passes. Dobbertin devised a method of generating collisions in
MD4 [274]; a similar method also works against MD35 but is slower [273].

8.4.1 HMAC

HMAC is a generic term for an algorithm that uses a keyless hash function and a
cryptographic key to produce a keyed hash function [531]. This mechanism enables
Alice to validate that data Bob sent to her is unchanged in transit. Without the key,
anyone could change the data and recompute the message authentication code, and
Alice would be none the wiser.

The need for HMAC arose because keyed hash functions are derived from
cryptographic algorithms. Many countries restrict the import and export of software
that implements such algorithms. They do not restrict software implementing keyless
hash functions, because such functions cannot be used to conceal information.
Hence, HMAC builds on a keyless hash function using a cryptographic key to create
a keyed hash function.

Let & be a keyless hash function that hashes data in blocks of b bytes to pro-
duce a hash / bytes long. Let k be a cryptographic key. We assume that the length of k&
is no greater than b; if it is, use & to hash it to produce a new key of length b. Let k“be
the key k padded with bytes containing O to make b bytes. Let ipad be a sequence of
bytes containing the bits 00110110 and repeated b times; let opad be a similar
sequence with the bits 01011100. The HMAC-/ function with key k for message m is
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HMAC-h(k, m) = h(k” ® opad | h(k” ® ipad || m))

where @ is exclusive or and Il is concatenation.

Bellare, Canetti, and Krawczyk [65] analyze the security of HMAC and con-
clude that the strength of HMAC depends on the strength of the hash function /. Var-
ious HMAC functions are used in Internet security protocols (see Chapter 10).

8.5 Summary

For our purposes, three aspects of cryptography require study. Classical cryptogra-
phy uses a single key shared by all involved. Public key cryptography uses two keys,
one shared and the other private. Both types of cryptosystems can provide secrecy
and origin authentication (although classical cryptography requires a trusted third
party to provide both). Cryptographic hash functions may or may not use a secret key
and provide data authentication.

All cryptosystems are based on substitution (of some quantity for another) and
permutation (scrambling of some quantity). Cryptanalysis, the breaking of ciphers,
uses statistical approaches (such as the Kasiski method and differential cryptanalysis)
and mathematical approaches (such as attacks on the RSA method). As techniques of
cryptanalysis improve, our understanding of encipherment methods also improves and
ciphers become harder to break. The same holds for cryptographic checksum func-
tions. However, as computing power increases, key length must also increase. A 56-bit
key was deemed secure by many in 1976; it is clearly not secure now.

8.6 Further Reading

Cryptography is a vast, rich subject. Kahn’s book The Codebreakers [482, 485] is
required reading for anyone interested in this field. Kahn has written other excellent
historical books on codebreaking during World War II [483, 484]. Helen Fouché
Gaines presents techniques for cryptanalysis of many classical ciphers using tradi-
tional, pencil-and-paper analysis [343]. Sinkov applies basic mathematics to many of
these classical ciphers [836]. Schneier describes many old, and new, algorithms in a
clear, easy-to-understand manner [796]; his book is excellent for implementers. The
underpinnings of these algorithms, and others, lie in statistics and mathematics. For
classical cryptography, Konheim’s book [527] is superb once the reader has mastered
his notation. Unlike other books, it focuses on cryptanalysis of classical ciphers
using statistical attacks. Meyer and Matyas [626] and Biham and Shamir [92] discuss
the strengths and weaknesses of the DES. Seberry and Pieprzyk [805] and Simmons
[834] discuss modern cryptography and its applications. Koblitz [521], Coutinho
[215], and Goldreich [365] discuss modern mathematics, cryptographic theory, and
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cryptosystems. Menezes, Van Oorschot, and Vanstone’s book [619] is a valuable ref-
erence. Trapp and Washington [902] present a good overview of AES-128, the ver-
sion of the AES that uses 128-bit keys.

The Diffie-Hellman scheme [267] was the first public key cryptosystem pro-
posed, and it is still in use today.

8.7 Exercises

1. A cryptographer once stated that cryptography could provide complete
security, and that any other computer security controls were unnecessary.
Why is he wrong? (Hint: Think of an implementation of a cryptosystem,
and ask yourself what aspect(s) of the implementation can cryptography
not protect.)

2. Decipher the following ciphertext, which was enciphered using the Caesar
cipher: TEBKFKQEBZLROPBLCERJXKBSBKQP.

3. If one-time pads are provably secure, why are they so rarely used in
practice?

4. Prove that the DES key consisting of all 0-bits and the DES key consisting
of all 1-bits are both weak keys. What are the other two weak keys? (Note:
Differences in the parity bits, which the PC-1 permutation drops, do not
count; the keys must differ in the 56 bits that are used to generate the key
schedule.)

5. Prove that the DES cipher satisfies the complementation property (see
page 109).

6. Let k be the encipherment key for a Caesar cipher. The decipherment key
differs; it is 26 — k. One of the characteristics of a public key system is that
the encipherment and decipherment keys are different. Why then is the
Caesar cipher a classical cryptosystem, not a public key cryptosystem? Be
specific.

7. The index of coincidence was defined as “the probability that two
randomly chosen letters from the ciphertext will be the same.” Derive the
formula in Section 8.2.2.1 for the index of coincidence from this
definition.

8. The following message was enciphered with a Vigenere cipher. Find the
key and decipher it.

TSMVM MPPCW CZUGX HPECP RFAUE I0BQW PPIMS FXIPC TSQPK
SZNUL OPACR DDPKT SLVFW ELTKR GHIZS FNIDF ARMUE NOSKR

GDIPH WSGVL EDMCM SMWKP 1YOJS TLVFA HPBJI RAQIW HLDGA
IYOUX
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. In the example enciphering HELLO WORLD using the RSA cipher (the

second example in Section 8.3.1), the modulus was chosen as 77, even
though the magnitude of the cleartext blocks is at most 25. What problems
in transmission and/or representation might this cause?

Prove the following:

a. Ifpisaprime, ¢(p)=p-1.
b. If p and g are two distinct primes, 0(pg) = (p — 1)(g — 1).

Fermat’s Little Theorem says that, for integers a and » such that a and n
are relatively prime, a®™ mod n = 1. Use this to show that deciphering of
an enciphered message produces the original message with the RSA
cryptosystem. Does enciphering of a deciphered message produce the
original message also?

Consider the RSA cryptosystem. Show that the ciphertexts corresponding
to the messages 0, 1 and n — 1 are the messages themselves. Are there other
messages that produce the same ciphertext as plaintext?

It is often said that breaking RSA is equivalent to factoring the modulus, 7.

a. Prove that if n can be factored, one can determine the private key d
from the modulus n and the public key e.

b. Show that it is not necessary to factor » in order to determine the
private key d from the modulus » and the public key e. (Hint: Look
closely at the equation for computing the private key from » and e.)

c. Show that it is not necessary to factor n in order to determine the
plaintext m from a given ciphertext c, the public key e, and the
modulus n. (Hint: Look closely at the equation for computing
the ciphertext c.)

Prove the fundamental laws of modular arithmetic:

a. (a+b)modn=(amodn+ b modn) modn
b. ab mod n = ((a mod n)(b mod n)) mod n

How would you use the law ab mod n = ((a mod n)(b mod n)) mod n to
reduce to 13 the number of multiplications required to compute 35”7 mod
83 from 76 multiplications? Can you reduce it any further?

The section on public key cryptosystems discussed nonrepudiation of
origin in the context of public key cryptosystems. Consider a secret key
system (in which a shared key is used). Bob has a message that he claims
came from Alice, and to prove it he shows both the cleartext message and
the ciphertext message. The ciphertext corresponds to the plaintext
enciphered under the secret key that Alice and Bob share. Explain why this
does not satisfy the requirements of nonrepudiation of origin. How might
you modify a classical cryptosystem to provide nonrepudiation?
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Suppose Alice and Bob have RSA public keys in a file on a server. They
communicate regularly using authenticated, confidential messages. Eve
wants to read the messages but is unable to crack the RSA private keys of
Alice and Bob. However, she is able to break into the server and alter the
file containing Alice’s and Bob’s public keys.

a. How should Eve alter that file so that she can read confidential
messages sent between Alice and Bob, and forge messages from
either?

b. How might Alice and/or Bob detect Eve’s subversion of the public
keys?

Is the identity function, which outputs its own input, a good cryptographic
checksum function? Why or why not?

Is the sum program, which exclusive or’s all words in its input to generate
a one-word output, a good cryptographic checksum function? Why or why
not?

Assume that a cryptographic checksum function computes hashes of 128
bits. Prove that the probability of finding two messages with the same hash
(that is, with the value of neither message being constrained) is 2764,

The example involving the DES-MAC cryptographic hash function stated
that a birthday attack would find collisions given 2 2 messages. Alice
wants to take advantage of this to swindle Bob. She draws up two
contracts, one that Bob has agreed to sign and the other that Bob would not
sign. She needs to generate a version of each that has the same checksum.
Suggest how she might do this. (Hint: Adding blank spaces, or inserting a
character followed by a backspace, will not affect the meaning of either
contract.)
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Key Management

VALENTINE: Why then, I would resort to her by night.
DUKE: Ay, but the doors be lock’d and keys kept safe,
That no man hath recourse to her by night.

VALENTINE: What lets but one may enter at her window?
—The Two Gentlemen of Verona, 111, i, 110-113.

Key management refers to the distribution of cryptographic keys; the mechanisms
used to bind an identity to a key; and the generation, maintenance, and revoking of
such keys. We assume that identities correctly define principals—that is, a key bound
to the identity “Bob” is really Bob’s key. Alice did not impersonate Bob’s identity to
obtain it. Chapter 13, “Representing Identity,” discusses the problem of identifiers
naming principals; Chapter 11, “Authentication,” discusses a principal authenticating
herself to a single system. This chapter assumes that authentication has been com-
pleted and that identity is assigned. The problem is to propagate that authentication
to other principals and systems.

We first discuss authentication and key distribution. Next comes key genera-
tion and the binding of an identity to a key using certificates. Next, we discuss key
storage and revocation. We conclude with digital signatures.

A word about notation. The statement

X—>Y:{Z)k

means that entity X sends entity ¥ a message Z enciphered with key k. Subscripts to
keys indicate to whom the keys belong, and are written where multiple keys are in use.
For example, ky;., and kg, refer to keys belonging to Alice and Bob, respectively. If
Alice and Bob share a key, that key will be written as k4 ;.. pop When the sharers are not
immediately clear from the context. In general, k represents a secret key (for a classical
cryptosystem), e a public key, and d a private key (for a public key cryptosystem). If
multiple messages are listed sequentially, they are concatenated and sent. The operator
a Il b means that the bit sequences a and b are concatenated.

123
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9.1 Session and Interchange Keys

We distinguish between a session key and an interchange key [921].

Definition 9-1. An interchange key is a cryptographic key associated with a
principal to a communication. A session key is a cryptographic key associated
with the communication itself.

This distinction reflects the difference between a communication and a user
involved in that communication. Alice has a cryptographic key used specifically to
exchange information with Bob. This key does not change over interactions with
Bob. However, if Alice communicates twice with Bob (and “communication” can be
with, for example, an e-mail or a Web browser), she does not want to use the same
key to encipher the messages. This limits the amount of data enciphered by a single
key and reduces the likelihood of an eavesdropper being able to break the cipher. It
also hinders the effectiveness of replay attacks. Instead, she will generate a key for
that single session. That key enciphers the data only; it does not authenticate either
principal, and it is discarded when the session ends. Hence, the name “session key.”

Session keys also prevent forward searches [830]. A forward search attack
occurs when the set of plaintext messages is small. The adversary enciphers all plain-
texts using the target’s public key. When ciphertext is intercepted, it is compared
with the precomputed texts. This quickly gives the corresponding plaintext. A ran-
domly generated session key, used once, would prevent this attack. (See Exercise 1
for another approach.)

EXAMPLE: Suppose Alice is a client of Bob’s stockbrokering firm. She needs to send
Bob one of two messages: BUY or SELL. The attacker, Cathy, enciphers both mes-
sages with Bob’s public key. When Alice sends her message, Cathy compares it with
her messages and sees which one it matches.

An interchange key is associated with a principal. Alice can use the key she
shares with Bob to convince Bob that the sender is Alice. She uses this key for all
sessions. It changes independently of session initiation and termination.

9.2 Key Exchange

The goal of key exchange is to enable Alice to communicate secretly to Bob, and
vice versa, using a shared cryptographic key. Solutions to this problem must meet the
following criteria.
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1. The key that Alice and Bob are to share cannot be transmitted in the clear.
Either it must be enciphered when sent, or Alice and Bob must derive it
without an exhange of data from which the key can be derived. (Alice and
Bob can exchange data, but a third party cannot derive the key from the
data exchanged.)

2. Alice and Bob may decide to trust a third party (called “Cathy” here).

3. The cryptosystems and protocols are publicly known. The only secret data
is to be the cryptographic keys involved.

Classical cryptosystems and public key cryptosystems use different protocols.

9.2.1 Classical Cryptographic Key Exchange
and Authentication

Suppose Alice and Bob wish to communicate. If they share a common key, they can
use a classical cryptosystem. But how do they agree on a common key? If Alice
sends one to Bob, Eve the eavesdropper will see it and be able to read the traffic
between them.

To avoid this bootstrapping problem, classical protocols rely on a trusted third
party, Cathy. Alice and Cathy share a secret key, and Bob and Cathy share a (differ-
ent) secret key. The goal is to provide a secret key that Alice and Bob share. The fol-
lowing simple protocol provides a starting point [796].

1. Alice — Cathy: { request for session key to Bob }k ;..
2. Cathy — Alice: { ksession }kAlice Il { ksession }kBob
3. Alice — Bob: { kg,gion VhBop

Bob now deciphers the message and uses kg, ;,,, to communicate with Alice.

This particular protocol is the basis for many more sophisticated protocols.
However, Bob does not know to whom he is talking. Assume that Alice sends Bob a
message (such as “Deposit $500 in Dan’s bank account today”) enciphered under
kgossion 1T Eve records the second message in the exchange above, and the message
enciphered under kg, ;,,,» she can send Bob the message { kg.si0on 1£pop f0llowed by
the message enciphered under kg, ;,,,- Bob will not know who is sending it.

Avoiding problems such as this replay attack adds considerable complexity.
Key exchange protocols typically add, at a minimum, some sort of authentication
and defense against replay attack. One of the best-known such protocols is the
Needham-Schroeder protocol [682].

1. Alice — Cathy : { Alice Il Bob Il rand; }
2. Cathy — Alice : { Alice Il Bob Il rand| | kg, g0, | {Alice Il kgogsiont Kpop }
kAlice
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3. Alice — Bob : { Alice Il kg,g5i0n } kBob
4. Bob — Alice : { rand, } kypgsion
5. Alice = Bob : { randy — 1 }kypssion

In this protocol, rand; and rand, are two numbers generated at random, except that
they cannot repeat between different protocol exchanges. These numbers are called
nonces. (If Alice begins the protocol anew, her rand; in the first exchange will not
have been used there before.) The basis for the security of this protocol is that both
Alice and Bob trust Cathy.

When Bob receives the third message and deciphers it, he sees that the mes-
sage names Alice. Since he could decipher the message, the message was enciphered
using a key he shares only with Cathy. Because he trusts Cathy not to have shared the
key kp,, With anyone else, the message must have been enciphered by Cathy. This
means that Cathy is vouching that she generated kg, S0 Bob could communicate
with Alice. So Bob trusts that Cathy sent the message to Alice, and that Alice for-
warded it to him.

However, if Eve recorded the message, she could have replayed it to Bob. In
that case, Eve would not have known the session key, so Bob sets out to verify that
his unknown recipient does know it. He sends a random message enciphered by
kossion to Alice. If Eve intercepts the message, she will not know what to return;
should she send anything, the odds of her randomly selecting a message that is correct
is very low and Bob will detect the attempted replay. But if Alice is indeed initiating
the communication, when she gets the message she can decipher it (because she knows
kession)» apply some fixed function to the random data (here, decrement it by 1), and
encipher the result and return it to Bob. Then Bob will be sure he is talking to Alice.

Alice needs to convince herself that she is talking to Bob, also. When she receives
the second message from Cathy, she deciphers it and checks that Alice, Bob, and
rand, are present. This tells her that Cathy sent the second message (because it was
enciphered with k4 ;... which only she and Cathy know) and that it was a response to
the first message (because rand, is in both the first and second messages). She obtains
the session key and forwards the rest to Bob. She knows that only Bob has kg, ;.
because only she and Bob can read the messages containing that key. So when she
receives messages enciphered with that key, she will be sure that she is talking to Bob.

The Needham-Schroeder protocol assumes that all cryptographic keys are
secure. In practice, session keys will be generated pseudorandomly. Depending on
the algorithm used, it may be possible to predict such keys. Denning and Sacco [250]
assumed that Eve could obtain a session key and subverted the protocol. Assume that
the protocol above took place. Then:

1. Eve = Bob : { Alice Il kg0 } kpop
2. Bob — Alice : { rand; } kg, [intercepted by Eve]
3. Eve =» Bob: { randy— 1 }kg,gion

Now Bob thinks he is talking to Alice. He is really talking to Eve.
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Denning and Sacco suggest using timestamps to enable Bob to detect this
replay. Applying their method to the Needham-Schroeder protocol yields

1. Alice — Cathy : { Alice Il Bob Il rand; }

2. Cathy — Alice : { Alice Il Bob Il rand Il kg,gg;0n |l
{Alice I T'll ksession} kBob } kAlice

3. Alice = Bob : { Alice | Tl kgp45i0n } kBob

4. Bob — Alice : { rand, } kgpg5ion

5. Alice = Bob : { rand, — 1 }kg,s5i0n

where T is a timestamp. When Bob gets the message in step 3, he rejects it if the
timestamp is too old (too old being determined from the system in use). This modifi-
cation requires synchronized clocks. Denning and Sacco note that a principal with a
slow clock is vulnerable to a replay attack. Gong [368] adds that a party with a fast
clock is also vulnerable, and simply resetting the clock does not eliminate the vulner-
ability.

The Otway-Rees protocol [706] corrects these problerns1 by avoiding the use
of timestamps.

1. Alice — Bob : num Il Alice Il Bob Il { rand || num |l Alice || Bob }kyj;..

2. Bob — Cathy : num Il Alice Il Bob, Il { rand; |l num |l Alice || Bob }ky;c. |l
{rand, |l num || Alice Il Bob }kg,,,

3. Cathy — Bob : num |l { rand; | kypg5i0n Yeajice | { randy | kgpggion } ko

4. Bob — Alice : num |l { randy Il kypggi0n Yeajice

The purpose of the integer num is to associate all messages with a particular
exchange. Again, consider the elements of the protocol.

When Alice receives the fourth message from Bob, she checks that the num
agrees with the num in the first message that she sent to Bob. If so, she knows that
this is part of the exchange. She also trusts that Cathy generated the session key
because only Cathy and Alice know kyj;.., and the random number rand; agrees with
what Alice put in the enciphered portion of the message. Combining these factors,
Alice is now convinced that she is talking to Bob.

When Bob receives the message from Cathy, he determines that the num cor-
responds to the one he received from Alice and sent to Cathy. He deciphers that por-
tion of the message enciphered with his key, and checks that rand, is what he sent.
He then knows that Cathy sent the reply, and that it applies to the exchange with
Alice.

Because no timestamps are used, the synchronization of the system clocks is
irrelevant. Now suppose that Eve acquired an old session key and the message in 3.

! Needham and Schroeder also supply a modification [683]; see Exercise 5.
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She forwards that message to Alice. Alice immediately rejects it if she has no ongo-
ing key exchanges with Bob. If she does, and num does not match, she rejects Eve’s
message. The only way Eve could impersonate Bob is if she acquired kg, for an
ongoing exchange, recorded the third message, and resent the relevant portion to
Alice before Bob could do so. In that case, however, Eve could simply listen to the
traffic, and no replay would be involved.

9.2.2 Kerberos

Kerberos [526, 872] uses the Needham-Schroeder protocol as modified by Denning
and Sacco. A client, Alice, wants to use a server S. Kerberos requires her to use two
servers to obtain a credential that will authenticate her to S. First, Alice must authen-
ticate herself to the Kerberos system; then she must obtain a ticket to use S (see next
paragraph). (This separates authentication of the user to the issuer of tickets and the
vouching of identity to S.)

The basis of Kerberos is a credential known as the ticker. It contains’

Tytice,Barnum = Barnum Il { Alice Il Alice address Il valid time Il k4sico Barnum YkBarnum

In this ticket, kBarnum is the key that Barnum shares with the authentication server,
and Ky jice Barnum 18 the session key that Alice and Barnum will share. The valid time
is the time interval durlng which the ticket is valid, which is typically several hours.
The ticket is the issuer’s voucher for the identity of the requester of the service.

The authenticator contains the identity of the sender of a ticket and is used
when Alice wants to show Barnum that the party sending the ticket is the same as the
party to whom the ticket was issued. It contains

Aplice.Barnum = {Alice Il generation time Il k2 }kyjice Barnum

where Ky jice. Barnum 18 the session key that Alice and Barnum share, k7 is an alternative
session key, and the authenticator was created at generation time. Alice generates an
authenticator whenever she sends a ticket. She sends both the ticket and the authenti-
cator in the same message.

Alice’s goal is to print a file using the service Guttenberg. The authentication
server is Cerberus and the ticket-granting server is Barnum. The Kerberos (Version
5) protocol proceeds as follows.

1. Alice — Cerberus: Alice Il Barnum
2. Cerberus — Alice : { kAlice,Barnum} kAlice Il TAlice,Barnum

2 See Kohl and Neuman [526], Section 5.3.1, for a complete description of a ticket. We include
only the parts that are relevant to our discussion.

3 See Kohl and Neuman [526], Section 5.3.2, for a complete description of an authenticator. We
include only the parts that are relevant to our discussion.
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At this point, Alice deciphers the first part of the message to obtain the key she will
use to communicate with Barnum. Kerberos uses the user’s password as the key, so if
Alice enters her password incorrectly, the decipherment of the session key will fail.
These steps occur only at login; once Alice has the ticket for the ticket-granting
server Barnum, she caches it and uses it:

3. Alice — Barnum : Guttenberg Il A gjice Barnum | Tatice, Barnum

4. Barnum — Alice : Alice |l {kAlice,Guttenberg} kAlice,Barnum | TAlice,Guttenberg
5. Alice — GUttenberg :AAlice,Guttenberg I TAlice,Guttenberg

6. Guttenberg — Alice : { 7+ 1} kAlice,Guttenberg

In these steps, Alice first constructs an authenticator and sends it, with the ticket and
the name of the server, to Barnum. Barnum validates the request by comparing the
data in the authenticator with the data in the ticket. Because the ticket is enciphered
using the key Barnum shares with Cerberus, he knows that it came from a trusted
source. He then generates an appropriate session key and sends Alice a ticket to pass
on to Guttenberg. Step 5 repeats step 3, except that the name of the service is not
given (because Guttenberg is the desired service). Step 6 is optional; Alice may ask
that Guttenberg send it to confirm the request. If it is sent, 7 is the timestamp.

Bellovin and Merritt [72] discuss several potential problems with the Ker-
beros protocol. In particular, Kerberos relies on clocks being synchronized to prevent
replay attacks. If the clocks are not synchronized, and if old tickets and authentica-
tors are not cached, replay is possible. In Kerberos 5, authenticators are valid for 5
minutes, so tickets and authenticators can be replayed within that interval. Also,
because the tickets have some fixed fields, a dictionary attack can be used to deter-
mine keys shared by services or users and the ticket-granting service or the authenti-
cation service, much as the WordPerfect cipher was broken (see the end of Section
8.2.2.1). Researchers at Purdue University used this technique to show that the ses-
sion keys generated by Kerberos 4 were weak; they reported deciphering tickets, and
finding session keys, within minutes [277].

9.2.3 Public Key Cryptographic Key Exchange
and Authentication

Conceptually, public key cryptography makes exchanging keys very easy.
1. Alice = Bob : { kyusion } €Bob

where ep,;, is Bob’s public key. Bob deciphers the message and obtains the session
key kg,g5ion- NOW he and Alice can communicate securely, using a classical crypto-
system.

As attractive as this protocol is, it has a similar flaw to our original classical
key exchange protocol. Eve can forge such a message. Bob does not know who the
message comes from.
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One obvious fix is to sign the session key.
1. Alice — Bob : Alice, { { kyog5ion } Qatice } €Bob

where dy ;.. is Alice’s private key. When Bob gets the message, uses his private key
to decipher the message. He sees the key is from Alice. Alice uses her public key to
obtain the session key. Schneier [796] points out that Alice could also include a mes-
sage enciphered with kg,

These protocols assume that Alice has Bob’s public key ep,,;,. If not, she must
get it from a public server, Peter. With a bit of ingenuity, Eve can arrange to read
Bob’s messages to Alice, and vice versa.

Alice — Peter : { send me Bob’s public key } [ intercepted by Eve |
Eve — Peter : { send me Bob’s public key }

Peter — Eve : e,

Eve — Alice : eg,,

Alice — Bob : { kg,giion } €Eve [ intercepted by Eve ]

Eve — Bob : { ksession } €Bob

A i e

Eve now has the session key and can read any traffic between Alice and Bob.
This is called a man-in-the-middle attack and illustrates the importance of identifica-
tion and authentication in key exchange protocols. The man-in-the-middle attack
works because there is no binding of identity to a public key. When presented with a
public key purportedly belonging to Bob, Alice has no way to verify that the public
key in fact belongs to Bob. This issue extends beyond key exchange and authentica-
tion. To resolve it, we need to look at the management of cryptographic keys.

9.3 Cryptographic Key Infrastructures

Because classical cryptosystems use shared keys, it is not possible to bind an identity
to a key. Instead, two parties need to agree on a shared key. Section 9.2, “Key
Exchange,” presents protocols that do this.

Public key cryptosystems use two keys, one of which is to be available to all.
The association between the cryptographic key and the principal is critical, because
it determines the public key used to encipher messages for secrecy. If the binding is
erroneous, someone other than the intended recipient could read the message.

For purposes of this discussion, we assume that the principal is identified by a
name of some acceptable sort (Chapter 13, “Representing Identity,” discusses this
issue in more detail) and has been authenticated to the entity that generates the cryp-
tographic keys. The question is how some (possibly different) principal can bind the
public key to the representation of identity.
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An obvious idea is for the originator to sign the public key with her private
key, but this merely pushes the problem to another level, because the recipient would
only know that whoever generated the public key also signed it. No identity is
present.

Kohnfelder [517] suggests creating a message containing a representation of
identity, the corresponding public key, and a timestamp, and having a trusted author-
ity sign it.

Caiice = { eajice | Alice Il T } dCathy
This type of structure is called a certificate.

Definition 9-2. A certificate is a token that binds an identity to a crypto-
graphic key.

When Bob wants to communicate with Alice, he obtain’s Alice’s certificate
Cylice- Assuming that he knows Cathy’s public key, he can decipher the certificate.
He first checks the timestamp 7 to see when the certificate was issued. (From this, he
can determine if the certificate is too old to be trusted; see below.) He looks at the
subject entity (Alice, to whom the certificate was issued). The public key in the cer-
tificate belongs to that subject, so Bob now has Alice’s public key. He knows that
Cathy signed the certificate and therefore that Cathy is vouching to some degree that
the public key belongs to Alice. If he trusts Cathy to make such a determination, he
accepts the public key as valid and belonging to Alice.

One immediate problem is that Bob must know Cathy’s public key to validate
the certificate. Two approaches deal with this problem. The first, by Merkle, elimi-
nates Cathy’s signature; the second structures certificates into signature chains.

9.3.1 Certificate Signature Chains

The usual form of certification is for the issuer to encipher a hash of the identity of the
subject (to whom the certificate is issued), the public key, and information such as time
of issue or expiration using the issuer’s private key. To validate the certificate, a user
uses the issuer’s public key to decipher the hash and check the data in the certificate.
The user trying to validate the certificate must obtain the issuer’s public key. If the
issuer has a certificate, the user can get that key from the issuer’s certificate. This
pushes the problem to another level: how can the issuer’s certificate be validated?

Two approaches to this problem are to construct a tree-like hierarchy, with the
public key of the root known out of band, or to allow an arbitrary arrangement of cer-
tifiers and rely on each individual’s knowledge of the certifiers. First, we examine
X.509, which describes certificates and certification in general. We then look at the
PGP certification structure.
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X.509: Certification Signature Chains

X.509—the Directory Authentication Framework [460] is the basis for many other pro-
tocols. It defines certificate formats and certification validation in a generic context.
Soon after its original issue in 1988, I’ Anson and Mitchell [454] found problems with
both the protocols and the certificate structure. These problems were corrected in the
1993 version, referred to as X.509v3.

The X.509v3 certificate has the following components [865].

1.

10.

11.

Version. Each successive version of the X.509 certificate has new fields
added. If fields 8, 9, and 10 (see below) are present, this field must be 3; if
fields 8 and 9 are present, this field is either 2 or 3; and if none of fields 8,
9, and 10 are present, the version number can be 1, 2, or 3.

Serial number. This must be unique among the certificates issued by this
issuer. In other words, the pair (issuer’s Distinguished Name, serial
number) must be unique.

. Signature algorithm identifier. This identifies the algorithm, and any

parameters, used to sign the certificate.

. Issuer’s Distinguished Name. This is a name that uniquely identifies the

issuer. See Chapter 13, “Representing Identity,” for a discussion.

Validity interval. This gives the times at which the certificate becomes
valid and expires.

. Subject’s Distinguished Name. This is a name that uniquely identifies the

subject to whom the certificate is issued. See Chapter 13, “Representing
Identity,” for a discussion.

Subject’s public key information. This identifies the algorithm, its
parameters, and the subject’s public key.

. Issuer’s unique identifier (Version 2 and 3 certificates only). Under some

circumstances, issuer Distinguished Names may be recycled (for example,
when the Distinguished Name refers to a role, or when a company closes
and a second company with the same Distinguished Name opens). This field
allows the issuer to disambiguate among entities with the same issuer name.

Subject’s unique identifier (Version 2 and 3 certificates only). This field is
like field 8, but for the subject.

Extensions (Version 3 certificates only). X.509v3 defines certain
extensions in the areas of key and policy information, certification path
constraints, and issuer and subject information. For example, if an issuer
has multiple certification keys, the “authority key identifier” allows the
certificate to indicate which key should be used. The “basic constraints”
extension indicates if the certificate holder can issue certificates.

Signature. This field identifies the algorithm and parameters used to sign
the certificate, followed by the signature (an enciphered hash of fields 1 to
10) itself.
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To validate the certificate, the user obtains the issuer’s public key for the particular
signature algorithm (field 3) and deciphers the signature (field 11). She then uses the
information in the signature field (field 11) to recompute the hash value from the
other fields. If it matches the deciphered signature, the signature is valid if the
issuer’s public key is correct. The user then checks the period of validity (field 5) to
ensure that the certificate is current.

Definition 9-3. A certification authority (CA) is an entity that issues cer-
tificates.

If all certificates have a common issuer, then the issuer’s public key can be
distributed out of band. However, this is infeasible. For example, it is highly unlikely
that France and the United States could agree on a single issuer for their organiza-
tions’ and citizens’ certificates. This suggests multiple issuers, which complicates
the process of validation.

Suppose Alice has a certificate from her local CA, Cathy. She wants to com-
municate with Bob, whose local CA is Dan. The problem is for Alice and Bob to val-
idate each other’s certificates.

Assume that X<<Y>> represents the certificate that X generated for the subject
Y (X is the CA that issued the certificate). Bob’s certificate is Dan<<Bob>>. If Cathy
has issued a certificate to Dan, Dan has a certificate Cathy<<Dan>>; similarly, if Dan
has issued a certificate to Cathy, Cathy has a certificate Dan<<Cathy>>. In this case,
Dan and Cathy are said to be cross-certified.

Definition 9-4. Two CAs are cross-certified if each has issued a certificate
for the other.

Because Alice has Cathy’s (trusted) public key, she can obtain Cathy<<Dan>>
and form the signature chain

Cathy<<Dan>> Dan<<Bob>>

Because Alice can validate Dan’s certificate, she can use the public key in that certif-
icate to validate Bob’s certificate. Similarly, Bob can acquire Dan<<Cathy>> and
validate Alice’s certificate.

Dan<<Cathy>> Cathy<<Alice>>

Signature chains can be of arbitrary length. The only requirement is that each
certificate can be validated by the one before it in the chain. (X.509 suggests organiz-
ing CAs into a hierarchy to minimize the lengths of certificate signature chains, but
this is not a requirement.)

Certificates can be revoked, or canceled. A list of such certificates enables a
user to detect, and reject, invalidated certificates. Section 9.4.2 discusses this.
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PGP Certificate Signature Chains

PGP is an encipherment program widely used to provide privacy for electronic mail
throughout the Internet, and to sign files digitally. It uses a certificate-based key man-
agement infrastructure for users’ public keys. Its certificates and key management
structure differ from X.509’s in several ways. Here, we describe OpenPGP’s struc-
ture [150]; but much of this discussion also applies to other versions of PGP.

An OpenPGP certificate is composed of packets. A packet is a record with a tag
describing its purpose. A certificate contains a public key packet followed by zero or
more signature packets. An OpenPGP public key packet has the following structure.

1.

Version. This is either 3 or 4. Version 3 is compatible with all versions of
PGP; Version 4 is not compatible with old (Version 2.6) versions of PGP.

Time of creation. This specifies when the certificate was created.

Validity period (Version 3 only). This gives the number of days that the
certificate is valid. If it is 0, the certificate does not expire.

. Public key algorithm and parameters. This identifies the algorithm used

and gives the parameters for the cryptosystem used. Version 3 packets
contain the modulus for RSA (see Section 9.3.2). Version 4 packets
contain the parameters appropriate for the cryptosystem used.

. Public key. This gives the public key. Version 3 packets contain the

exponent for RSA. Version 4 packets contain the public key for the
cryptosystem identified in field 4.

The information in an OpenPGP signature packet is different for the two ver-
sions. Version 3 contains the following.

1.
2.

Version. This is 3.

Signature type. This describes the specific purpose of the signature and
encodes a level of trust (see Section 13.5.2, “Trust”). For example,
signature type Ox11 says that the signer has not verified that the public key
belongs to the named subject.

. Creation time. This specifies the time at which the fields following were

hashed.

Key identifier of the signer. This specifies the key used to generate the
signature.

. Public key algorithm. This identifies the algorithm used to generate the

signature.

Hash algorithm. This identifies the algorithm used to hash the signature
before signing.

. Part of signed hash value. After the data is hashed, field 2 is given the time

at which the hash was computed, and that field is hashed and appended to
the previous hash. The first two bytes are placed into this field. The idea is



9.3 Cryptographic Key Infrastructures 135

that the signature can be rejected immediately if the first two bytes hashed
during the validation do not match this field.

8. Signature. This contains the encipherment of the hash using the signer’s
private key.

A Version 4 signature packet is considerably more complex, but as a Version 3 signa-
ture packet does, it binds a signature to an identifier and data. The interested reader is
referred to the OpenPGP specifications [150].

PGP certificates differ from X.509 certificates in several important ways.
Unlike X.509, a single key may have multiple signatures. (All Version 4 PGP keys
are signed by the owner; this is called self-signing.) Also unlike X.509, a notion of
“trust” is embedded in each signature, and the signatures for a single key may have
different levels of trust. The users of the certificates can determine the level of trust
for each signature and act accordingly.

EXAMPLE: Suppose Alice needs to communicate with Bob. She obtains Bob’s pub-
lic key PGP certificate, Ellen,Fred,Giselle,Bob<<Bob>> (where the X.509 notation
is extended in the obvious way). Alice knows none of the signers, so she gets
Giselle’s PGP certificate, Henry,Irene,Giselle<<Giselle>>, from a certificate server.
She knows Henry vaguely, so she obtains his certificate, Ellen,Henry<<Henry>>,
and verifies Giselle’s certificate. She notes that Henry’s signature is at the “casual”
trust level, so she decides to look elsewhere for confirmation. She obtains Ellen’s
certificate, Jack,Ellen<<Ellen>>, and immediately recognizes Jack as her husband.
She has his certificate and uses it to validate Ellen’s certificate. She notes that his sig-
nature is at the “positive” trust level, so she accepts Ellen’s certificate as valid and
uses it to validate Bob’s. She notes that Ellen signed the certificate with “positive”
trust also, so she concludes that the certificate, and the public key it contains, are
trustworthy.

In the example above, Alice followed two signature chains:

Henry<<Henry>> Henry<<Giselle>> Giselle<<Bob>>
and

Jack<<Ellen>> Ellen<<Bob>>

(where the unchecked signatures have been dropped). The trust levels affected how
Alice checked the certificate.

A subtle distinction arises here between X.509 and PGP certificates. X.509
certificates include an element of trust, but the trust is not indicated in the certificate.
PGP certificates indicate the level of trust, but the same level of trust may have dif-
ferent meanings to different signers. Chapter 13, “Representing Identity,” will exam-
ine this issue in considerable detail.
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9.3.2 Summary

The deployment and management of public keys is complex because of the different
requirements of various protocols. Most protocols use some form of the X.509v3
certificates, although the extensions vary. The infrastructure that manages public
keys and certification authorities is called a public key infrastructure. Several such
infrastructures are in place, such as the PGP Certificate Servers and the commercial
certificate issuers for World Wide Web browsers.

9.4 Storing and Revoking Keys

Key storage arises when a user needs to protect a cryptographic key in a way other
than by remembering it. If the key is public, of course, any certificate-based mecha-
nism will suffice, because the goal is to protect the key’s integrity. But secret keys
(for classical cryptosystems) and private keys (for public key cryptosystems) must
have their confidentiality protected as well.

9.4.1 Key Storage

Protecting cryptographic keys sounds simple: just put the key into a file, and use
operating system access control mechanisms to protect it. Unfortunately, as we will
discuss in Chapter 20, operating system access control mechanisms can often be
evaded or defeated, or may not apply to some users. On a single-user system, this
consideration is irrelevant, because no one else will have access to the system while
the key is on the system. On a multiuser system, other users have access to the sys-
tem. On a networked system, an attacker could trick the owner into downloading a
program that would send keystrokes and files to the attacker, thereby revealing the
confidential cryptographic key. We consider these systems.

On such systems, enciphering the file containing the keys will not work,
either. When the user enters the key to decipher the file, the key and the contents of
the file will reside in memory at some point; this is potentially visible to other users
on a multiuser system. The keystrokes used to decipher the file could be recorded
and replayed at a later date. Either will compromise the key.

A feasible solution is to put the key onto one or more physical devices, such
as a special terminal, ROM, or smart card [241, 291, 598]. The key never enters the
computer’s memory. Instead, to encipher a message, the user inserts the smart card
into a special device that can read from, and write to, the computer. The computer
sends it the message to be protected, and the device uses the key on the smart card to
encipher the message and send it back to the computer. At no point is the crypto-
graphic key exposed.

A variant relies on the observation that if the smart card is stolen, the thief
has the cryptographic key. Instead of having it on one card, the key is split over
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multiple devices (two cards, a card and the physical card reader, and so on.) Now,
if a thief steals one of the cards, the stolen card is useless because it does not con-
tain the entire key.

9.4.2 Key Revocation

Certificate formats contain a key expiration date. If a key becomes invalid before that
date, it must be revoked. Typically, this means that the key is compromised, or that
the binding between the subject and the key has changed.

We distinguish this from an expired certificate. An expired certificate has
reached a predesignated period after which it is no longer valid. That the lifetime has
been exceeded is the only reason. A revoked certificate has been canceled at the
request of the owner or issuer for some reason other than expiration.

There are two problems with revoking a public key. The first is to ensure that the
revocation is correct—in other words, to ensure that the entity revoking the key is
authorized to do so. The second is to ensure timeliness of the revocation throughout the
infrastructure. This second problem depends on reliable and highly connected servers
and is a function of the infrastructure as well as of the locations of the certificates and
the principals who have copies of those certificates. Ideally, notice of the revocation
will be sent to all parties when received, but invariably there will be a time lag.

The X.509 and Internet public key infrastructures (PKIs) use lists of certificates.

Definition 9-5. A certificate revocation list is a list of certificates that are no
longer valid.

A certificate revocation list contains the serial numbers of the revoked certifi-
cates and the dates on which they were revoked. It also contains the name of the
issuer, the date on which the list was issued, and when the next list is expected to be
issued. The issuer also signs the list [§65]. Under X.509, only the issuer of a certifi-
cate can revoke it.

PGP allows signers of certificates to revoke their signatures as well as allow-
ing owners of certificates, and their designees, to revoke the entire certificates. The
certificate revocation is placed into a PGP packet and is signed just like a regular
PGP certificate. A special flag marks it as a revocation message.

9.5 Digital Signatures

As electronic commerce grows, so does the need for a provably high degree of authen-
tication. Think of Alice’s signature on a contract with Bob. Bob not only has to know
that Alice is the other signer and is signing it; he also must be able to prove to a disin-
terested third party (called a judge) that Alice signed it and that the contract he presents
has not been altered since Alice signed it. Such a construct is called a digital signature.
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Definition 9-6. A digital signature is a construct that authenticates both the
origin and contents of a message in a manner that is provable to a disinterested
third party.

The “proof” requirement introduces a subtlety. Let m be a message. Suppose
Alice and Bob share a secret key k. Alice sends Bob m Il { m }k (that is, the message
and its encipherment under k). Is this a digital signature?

First, Alice has authenticated the contents of the message, because Bob deci-
phers { m }k and can check that the message matches the deciphered one. Because
only Bob and Alice know k, and Bob knows that he did not send the message, he con-
cludes that it has come from Alice. He has authenticated the message origin and
integrity. However, based on the mathematics alone, Bob cannot prove that he did
not create the message, because he knows the key used to create it. Hence, this is not
a digital signature.

Public key cryptography solves this problem. Let dyj;., and e4;., be Alice’s
private and public keys, respectively. Alice sends Bob the message m Il { m }dyj;c,-
As before, Bob can authenticate the origin and contents of m, but in this situation a
judge must determine that Alice signed the message, because only Alice knows the
private key with which the message was signed. The judge merely obtains ey;;., and
computes { { m }dyjice } €ajice- If the result is m, Alice signed it. This is in fact a dig-
ital signature.

A digital signature provides the service of nonrepudiation. If Alice claims she
never sent the message, the judge points out that the originator signed the message
with her private key, which only she knew. Alice at that point may claim that her pri-
vate key was stolen, or that her identity was incorrectly bound in the certificate (see
Chapter 13, “Representing Identity”’). The notion of “nonrepudiation” provided here
is strictly abstract. In fact, Alice’s key might have been stolen, and she might not
have realized this before seeing the digital signature. Such a claim would require
ancillary evidence, and a court or other legal agency would need to handle it. For the
purposes of this section, we consider the service of nonrepudiation to be the inability
to deny that one’s cryptographic key was used to produce the digital signature.

9.5.1 Classical Signatures

All classical digital signature schemes rely on a trusted third party. The judge must
trust the third party. Merkle’s scheme is typical [621].

Let Cathy be the trusted third party. Alice shares a cryptographic key ky ;..
with Cathy. Likewise, Bob shares kp,;, with Cathy. When Alice wants to send Bob a
contract m, she computes { m }ky;., and sends it to Bob. Bob sends it to Cathy, who
deciphers m, enciphers it with kg, and returns { m }kg,,;, to Bob. He can now deci-
pher it. To verify that Alice sent the message, the judge takes the disputed messages
{ m }kyjice and { m }kp,;, and has Cathy decipher them using Alice’s and Bob’s keys.
If they match, the sending is verified; if not, one of them is a forgery.
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9.5.2 Public Key Signatures

In our earlier example, we had Alice encipher the message with her private key to
produce a digital signature. We now examine a specific digital signature scheme
based on the RSA system (see Section 8.3.1).

We observe that using RSA to authenticate a message produces a digital sig-
nature. However, we also observe that the strength of the system relies on the proto-
col describing how RSA is used as well as on the RSA cryptosystem itself.

First, suppose that Alice wants to trick Bob into signing a message m. She
computes two other messages m; and m, such that m;m, mod ng,;, = m. She has Bob
sign m; and m,. Alice then multiplies the two signatures together and reduces mod
ngyp> and she has Bob’s signature on m. (See Exercise 6.) The defense is not to sign
random documents and, when signing, never sign the document itself; sign a crypto-
graphic hash of the document [796].

EXAMPLE: Let NAlice = 95, CAlice = 59, dAlice = 11, npob = 77, €Bob = 53, and dB()b =
17. Alice and Bob have 26 possible contracts, from which they are to select and sign
one. Alice first asks Bob to sign contract F (05):

057 mod 77 = 3
She then asks him to sign contract R (17):
17" mod 77 = 19

Alice now computes 05 x 17 mod 77 = 08. She then claims that Bob agreed to con-
tract I (08), and as evidence presents the signature 3 X 19 mod 77 = 57. Judge Janice
is called, and she computes

5793 mod 77 = 08

Naturally, she concludes that Bob is lying, because his public key deciphers the sig-
nature. So Alice has successfully tricked Bob.

A second problem [31] demonstrates that messages that are both enciphered
and signed should be signed first, then enciphered. Suppose Alice is sending Bob her
signature on a confidential contract m. She enciphers it first, then signs it:

dAlice

_ €Bob d d
c =|m mo nBob mo nAlice
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and sends the result to Bob. However, Bob wants to claim that Alice sent him the
contract M. Bob computes a number r such that M" mod np,;, = m. He then repub-
lishes his public key as (reg,;, ng,p). Note that the modulus does not change. Now,
he claims that Alice sent him M. The judge verifies this using his current public key.
The simplest way to fix this is to require all users to use the same exponent but vary
the moduli.

EXAMPLE: Smarting from Alice’s trick, Bob seeks revenge. He and Alice agree to
sign the contract G (06). Alice first enciphers it, then signs it:

(06°3 mod 77)"! mod 95 = 63

and sends it to Bob. Bob, however, wants the contract to be N (13). He computes an r
such that 13" mod 77 = 6; one such r is r = 59. He then computes a new public key
reg,p, mod ¢(npg,;) =59 X 53 mod 60 = 7. He replaces his current public key with
(7, 77), and resets his private key to 43. He now claims that Alice sent him contract
N, signed by her.

Judge Janice is called. She takes the message 63 and deciphers it:

(63°? mod 95)* mod 77 = 13
and concludes that Bob is correct.
This attack will not work if one signs first and then enciphers. The reason is

that Bob cannot access the information needed to construct a new public key,
because he would need to alter Alice’s public key. (See Exercise 7.)

9.6 Summary

Cryptographic infrastructure provides the mechanisms needed to use cryptography.
The infrastructure sees to the distribution of keys and the security of the procedures
and mechanisms implementing cryptographic algorithms and protocols.

Key exchange and authentication protocols, although distinct in principle, are
often combined because the first step in most communications is to prove identity.
Exchanging a session key in the process saves another exchange. Both public key
and classical cryptosystems can provide authentication and key exchange, provided
that the appropriate infrastructure is present.

A key element of such an infrastructure is a mechanism for binding crypto-
graphic keys to identity. This mechanism leads to the distinction between session
keys (generated once per session, and associated with that session) and interchange
keys (generated once per principal, and associated with that principal). It also leads
to certification, in which a representation of identity, along with other information
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such as expiration time, is cryptographically signed and distributed as a unit. The
name of the signer (issuer) is included so that the certificate can be verified.

The mechanism used to sign certificates and other documents is a digital signa-
ture. A disinterested third party, called a judge, must be able to confirm or disprove that
the (alleged) sender computed the digital signature of the (alleged) signed message.

Session keys require pseudorandom number generation. Of the many algo-
rithms in use, the best are mixing algorithms in which every bit of the output depends
on every bit of the input, and no bit can be predicted even if all previous bits are known.

The management of keys involves storing them and revoking them, both of
which involve system issues as well as cryptographic ones. Another aspect is the idea
of key recovery.

9.7 Further Reading

Ellison explores methods of binding an identity to a public key without using certifi-
cates [297].

The Internet Security Association and Key Management Protocol [599] deals
with key exchange and authentication on the Internet. Several key exchange proto-
cols are based on classical cryptosystems [146, 686]. Protocols based on public key
methods abound (see, for example, [682, 705, 895, 951]).

Key generation is based on random numbers generated from physical phe-
nomena [12, 234, 289, 307, 539, 740]. Generating keys pseudorandomly is tricky
[711]; the most common method, using polynomial congruential generators, is not
safe [128, 129, 532, 746]. Rabin [738] and Adleman, Pomerance, and Rumley [10]
discuss generating large prime numbers for use in RSA; their method relies upon
pseudorandom number generation.

Several papers discuss issues in public key infrastructure, including interoper-
ation [451, 452, 761], organization [558, 579], requirements [37, 762], and models
[207, 714]. Park and Sandhu [710] have proposed extensions for X.509v3 certifi-
cates. Adams and Lloyd [7] discuss many aspects of public key infrastructures.

Merkle [621] notes that certificates can be kept as data in a file. Changing any
certificate changes the file. This reduces the problem of substituting faked certificates
to a data integrity problem.

Key escrowing allows the recovery of data if the cryptographic key is not
accessible. The best known such system is the U.S. government’s Escrowed Encryp-
tion Standard (EES) [116, 251, 665, 667, 678] Beth, Knobloch, Otten, Simmons, and
Wichmann [86] identify five desirable properties of such a system; Ganesan [346]
developed Yaksha, which meets all of these. Denning and Branstad [246] discuss the
architecture of key escrow systems.

Several key escrow schemes explore different ways to control access. Burm-
ester et al. [145] present a protocol with a limited time span. Several authors discuss
the nontechnical aspects of the proposed U.S. key escrow system (for example, see
[628, 794, 866]). Clark [176] and Walker et al. [929] discuss the relationship
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between key recovery and key escrow. Others have proposed enhancements and
extensions of various Internet protocols for key recovery [53, 593, 798].

Translucent cryptography [66, 67] allows some fraction of the messages to be
read. This is not a key escrow system, because the keys are not available, but it does
serve the ends of such a system in that the messages can be read with a specified
probability.

Digital signature protocols abound. One standard, the DSS [666], uses a vari-
ant of E1 Gamal [294]; Rivest and others have criticized some of its features [755].
Others, especially those associated with the ITU’s X.500 series of recommendations,
recommend (but do not require) RSA. Grant’s book [372] discusses digital signa-
tures in general and presents many case studies.

The electronic commerce protocol SET [812, 813, 814] uses dual digital sig-
natures to tie components of messages together in such a way that neither the mes-
sages nor their association can be repudiated. Ford and Baum [330] discuss SET and
the supporting infrastructure. Ghosh [353] provides a balanced view of the dangers
of Internet commerce using the Web.

9.8 Exercises

1. Reconsider the case of Alice and her stockbroker, Bob. Suppose they
decide not to use a session key. Instead, Alice pads the message (BUY or
SELL) with random data. Explain under what conditions this approach
would be effective. Discuss how the length of the block affects your
answer.

2. Modify Kohnfelder’s scheme (see page 131) to allow a principal to issue
its own certificate. Identify one or more problems other principals might
have in relying on such a certificate. In particular, under what conditions
would this solve the problem of an imposter spoofing the sender?

3. An X.5009 certificate revocation list contains a field specifying when the
next such list is expected to be issued. Why is that field present?

4. Consider the following authentication protocol, which uses a classical
cryptosystem. Alice generates a random message r, enciphers it with the
key k she shares with Bob, and sends the enciphered message {r}k to Bob.
Bob deciphers it, adds 1 to r, and sends {r + 1}k back to Alice. Alice
deciphers the message and compares it with r. If the difference is 1, she
knows that her correspondent shares the same key k and is therefore Bob.
If not, she assumes that her correspondent does not share the key k and so
is not Bob. Does this protocol authenticate Bob to Alice? Why or why not?

5. Needham and Schroeder suggest the following variant of their protocol:

1. Alice — Bob : Alice
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2. Bob —Alice : { Alice, rands } kg,

3. Alice — Cathy : { Alice, Bob, rand;, { Alice, rands } kg, }

4. Cathy — Alice : { Alice, Bob, randy, kg,gion 1Alice, rands, kg,giion}
kBob } kAlice

5. Alice — Bob : { Alice, rands, kg, si0n } ko

6. Bob — Alice : { rand, } kgpgion

7. Alice — Bob : { randy — 1 }Ykgusgiom

Show that this protocol solves the problem of replay as a result of stolen
session keys.

. Consider an RSA digital signature scheme (see Section 9.5.2). Alice tricks
Bob into signing messages m and m, such that m = m;m, mod ng,,,. Prove
that Alice can forge Bob’s signature on m.

. Return to the example on page 140. Bob and Alice agree to sign the
contract G (06). This time, Alice signs the message first and then enciphers
the result. Show that the attack Bob used when Alice enciphered the
message and then signed it will now fail.






Chapter 10
Cipher Techniques

1AGO: So will I turn her virtue into pitch,
And out of her own goodness make the net
That shall enmesh them all.

—The Tragedy of Othello, 11, iii, 361-363.

Cryptographic systems are sensitive to environment. Using cryptosystems over a net-
work introduces many problems. This chapter presents examples of these problems
and discusses techniques for dealing with them. First comes a description of stream
and block ciphers, followed by a review of the organization of the network layers.
We then present several network protocols to show how these techniques are used in
practice.

The key point of this chapter is that the strength of a cryptosystem depends in
part on how it is used. A mathematically strong cryptosystem is vulnerable when
used incorrectly.

10.1 Problems

The use of a cipher without consideration of the environment in which it is to be used
may not provide the security that the user expects. Three examples will make this
point clear.

10.1.1 Precomputing the Possible Messages

Simmons discusses the use of a “forward search” to decipher messages enciphered
for confidentiality using a public key cryptosystem [830]. His approach is to focus on
the entropy (uncertainty) in the message. To use an example from Section 9.1
(page 124), Cathy knows that Alice will send one of two messages—BUY or
SELL—to Bob. The uncertainty is which one Alice will send. So Cathy enciphers
both messages with Bob’s public key. When Alice sends the message, Cathy intercepts

145
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it and compares the ciphertext with the two he computed. From this, she knows
which message Alice sent.

Simmons’ point is that if the plaintext corresponding to intercepted ciphertext
is drawn from a (relatively) small set of possible plaintexts, the cryptanalyst can
encipher the set of possible plaintexts and simply search that set for the intercepted
ciphertext. Simmons demonstrates that the size of the set of possible plaintexts may
not be obvious. As an example, he uses digitized sound. The initial calculations sug-
gest that the number of possible plaintexts for each block is 232, Using forward
search on such a set is clearly impractical, but after some analysis of the redundancy
in human speech, Simmons reduces the number of potential plaintexts to about
100,000. This number is small enough so that forward searches become a threat.

This attack is similar to attacks to derive the cryptographic key of symmetric
ciphers based on chosen plaintext (see, for example, Hellman’s time-memory
tradeoff attack [416]). However, Simmons’ attack is for public key cryptosystems
and does not reveal the private key. It only reveals the plaintext message.

10.1.2 Misordered Blocks

Denning [242] points out that in certain cases, parts of a ciphertext message can be
deleted, replayed, or reordered.

EXAMPLE: Consider RSA. As in the example on page 114, take p =7 and ¢ = 11.
Then n = 77 and ¢(n) = 60. Bob chooses e = 17, so his private key d = 53. In this
cryptosystem, each plaintext character is represented by a number from 00 (A) to 25
(Z), and 26 represents a blank.

Alice wants to send Bob the message LIVE (11 08 21 04). She enciphers this
message using his public key, obtaining 44 57 21 16, and sends the message. Cathy
intercepts it and rearranges the ciphertext: 16 21 57 44. When Bob receives it, he
deciphers the message and obtains EVIL.

Even if Alice digitally signed each part, Bob could not detect this attack. The
problem is that the parts are not bound to one another. Because each part is indepen-
dent, there is no way to tell when one part is replaced or added, or when parts are
rearranged.

One solution is to generate a cryptographic checksum of the entire message
(see Section 8.4) and sign that value.

10.1.3  Statistical Regularities

The independence of parts of ciphertext can give information relating to the structure
of the enciphered message, even if the message itself is unintelligible. The regularity
arises because each part is enciphered separately, so the same plaintext always pro-
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duces the same ciphertext. This type of encipherment is called code book mode,
because each part is effectively looked up in a list of plaintext-ciphertext pairs.

10.1.4  Summary

Despite the use of sophisticated cryptosystems and random keys, cipher systems may
provide inadequate security if not used carefully. The protocols directing how these
cipher systems are used, and the ancillary information that the protocols add to mes-
sages and sessions, overcome these problems. This emphasizes that ciphers and
codes are not enough. The methods, or protocols, for their use also affect the security
of systems.

10.2 Stream and Block Ciphers

Some ciphers divide a message into a sequence of parts, or blocks, and encipher each
block with the same key.

Definition 10-1. Let E be an encipherment algorithm, and let E;(b) be the
encipherment of message b with key k. Let a message m = b1b, ..., where
each b; is of a fixed length. Then a block cipher is a cipher for which E;(m) =

Ey(b)Ey(by) ...

EXAMPLE: The DES is a block cipher. It breaks the message into 64-bit blocks and
uses the same 56-bit key to encipher each block.

Other ciphers use a nonrepeating stream of key elements to encipher charac-
ters of a message.

Definition 10-2. Let E be an encipherment algorithm, and let E;(b) be the
encipherment of message b with key k. Let a message m = bb, ..., where
each b; is of a fixed length, and let k = kk,.... Then a stream cipher is a cipher
for which Ek(m) = Ekl(bl)EkZ(bZ) R

If the key stream k of a stream cipher repeats itself, it is a periodic cipher.

EXAMPLE: The Vigenere cipher (see Section 8.2.2.1) is a stream cipher. Take b; to be
a character of the message and k; to be a character of the key. This cipher is periodic,
because the key is of finite length, and should the key be shorter than the message,
the key is repeated.

The one-time pad is also a stream cipher but is not periodic, because the key
stream never repeats.
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10.2.1 Stream Ciphers

The one-time pad is a cipher that can be proven secure (see Section 8.2.2.2, “One-
Time Pad”). Bit-oriented ciphers implement the one-time pad by exclusive-oring
each bit of the key with one bit of the message. For example, if the message is 00101
and the key is 10010, the ciphertext is 0®1110@0111@010@1111€0 or 10111. But how
can one generate a random, infinitely long key?

10.2.1.1  Synchronous Stream Ciphers

To simulate a random, infinitely long key, synchronous stream ciphers generate bits
from a source other than the message itself. The simplest such cipher extracts bits
from a register to use as the key. The contents of the register change on the basis of
the current contents of the register.

Definition 10-3. An n-stage linear feedback shift register (LFSR) consists of
an n-bit register r = r...r,_; and an n-bit tap sequence t = t...t,_;. To obtain
a key bit, r,,_; is used, the register is shifted one bit to the right, and the new
bit rytg® @r,_1t,_1 is inserted.

EXAMPLE: Let the tap sequence for a four-stage LFSR be 1001, and let the initial
value of the register be 0010. The key bits extracted, and the values in the register, are

Current register Key New bit New register
0010 0 01©00©10©01 = 0e0D0@0 = 0 0001
0001 1 01©00©0011 = 00020D1 =1 1000
1000 0 1100000201 = 1@0@0@0 = 1 1100
1100 0 11@10©00@01 = 1®0@0@0 = 1 1110
1110 0 11810210201 = 1802080 = 1 1111
1111 1 11e10@10@11 = 1@0@0®1 =0 0111
0111 1 01210210211 = 0@0®0@1 =1 1011
1011 1 11@00©10@11 = 1®@0@0®1 =0 0101
0101 1 01210000211 = 000@0@1 =1 1010
1010 0 11@00©10@01 = 1®020@0 = 1 1101
1101 1 11910000211 = 190001 =0 0110
0110 0 0121001001 = 0202020 = 0 0011
0011 1 01@00210@11 = 000@0@1 =1 1001
1001 1 11@00200@11 = 1®0@0®1 =0 0100
0100 0 01©10©00©01 = 020D0@0 = 0 0010
0010 0 0120001001 = 0202020 = 0 0001
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and the cycle repeats. The key stream that this LFSR produces has a period of 15 and
is 010001111010110.

The LFSR method is an attempt to simulate a one-time pad by generating a
long key sequence from a little information. As with any such attempt, if the key is
shorter than the message, breaking part of the ciphertext gives the cryptanalyst infor-
mation about other parts of the ciphertext. For an LFSR, a known plaintext attack can
reveal parts of the key sequence. If the known plaintext is of length 2n, the tap
sequence for an n-stage LFSR can be determined completely.

Nonlinear feedback shift registers do not use tap sequences; instead, the new
bit is any function of the current register bits.

Definition 10-4. An n-stage nonlinear feedback shift register (NLFSR) con-
sists of an n-bit register r = r...r,_;. To obtain a key bit, r,,_; is used, the
register is shifted one bit to the right, and the new bit is set to f(rg...r,_),
where fis any function of n inputs.

EXAMPLE: Let the function f for a four-stage NLFSR be f(r,...r,_1) = (ry and r;) or
r3, and let the initial value of the register be 1100. The key bits extracted, and the val-
ues in the register, are

Current register Key New bit New register
1100 0 f(1,1,0,0)=(1and 0) or 0 =0 0110
0110 0 f0,1,1,0)=Oand 1) or0=0 0011
0011 1 f(0,0,1,1)=(Oand 1)or 1 =1 1001
1001 1 f(1,0,0,1)=land0)or 1 =1 1100
1100 0 f(1,1,0,0)=(1and 0) or 0 =0 0110
0110 0 f(0,1,1,0)=Oand 1) or0=0 0011
0011 1 f(0,0,1,1)=(Oand 1)or 1 =1 1001
1001 1 f(1,0,0,1)=land0)or 1 =1 1100
1100 0 f(1,1,0,0)=(1and 0) or 0 =0 0110
0110 0 f(0,1,1,0)=Oand 1) or0=0 0011

and the cycle repeats. The key stream that this NLFSR produces has a period of 4
and is 0011.

NLFSRs are not common because there is no body of theory about how to
build NLFSRs with long periods. By contrast, it is known how to design n-stage
LFSRs with a period of 2" — 1, and that period is maximal.

A second technique for eliminating linearity is called output feedback mode.
Let E be an encipherment function. Define k as a cryptographic key, and define r as a
register. To obtain a bit for the key, compute £ (r) and put that value into the register.
The rightmost bit of the result is exclusive-or’ed with one bit of the message. The
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process is repeated until the message is enciphered. The key k and the initial value in
r are the keys for this method. This method differs from the NLFSR in that the regis-
ter is never shifted. It is repeatedly enciphered.

A variant of output feedback mode is called the counter method. Instead of
using a register r, simply use a counter that is incremented for every encipherment.
The initial value of the counter replaces r as part of the key. This method enables one
to generate the ith bit of the key without generating the bits 0...i — 1. If the initial
counter value is i, set the register to i + i. In output feedback mode, one must gen-
erate all the preceding key bits.

10.2.1.2 Self-Synchronous Stream Ciphers

Self-synchronous ciphers obtain the key from the message itself. The simplest self-
synchronous cipher is called an autokey cipher and uses the message itself for the key.

EXAMPLE: The following is an autokey version of the Vigenére cipher, with the key
drawn from the plaintext.

key XTHEBOYHASTHEBA
plaintext =~ THEBOYHASTHEBAG
ciphertext QALFPNFHSLALFCT

Contrast this with the example on page 103. The key there is VIG, and the resulting
ciphertext contains two three-character repetitions.

The problem with this cipher is the selection of the key. Unlike a one-time
pad, any statistical regularities in the plaintext show up in the key. For example, the
last two letters of the ciphertext associated with the plaintext word THE are always
AL, because H is enciphered with the key letter T and E is enciphered with the key
letter H. Furthermore, if the analyst can guess any letter of the plaintext, she can
determine all successive plaintext letters.

An alternative is to use the ciphertext as the key stream. A good cipher will
produce pseudorandom ciphertext, which approximates a random one-time pad bet-
ter than a message with nonrandom characteristics (such as a meaningful English
sentence).

EXAMPLE: The following is an autokey version of the Vigenére cipher, with the key
drawn from the ciphertext.

key XQXBCQOVVNGNRTT
plaintext =~ THEBOYHASTHECAT
ciphertext QXBCQOVVNGNRTTM

This eliminates the repetition (ALF) in the preceding example.
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This type of autokey cipher is weak, because plaintext can be deduced from
the ciphertext. For example, consider the first two characters of the ciphertext, QX.
The X is the ciphertext resulting from enciphering some letter with the key Q. Deci-
phering, the unknown letter is H. Continuing in this fashion, the analyst can recon-
struct all of the plaintext except for the first letter.

A variant of the autokey method, cipher feedback mode, uses a shift register.
Let E be an encipherment function. Define k as a cryptographic key and r as a
register. To obtain a bit for the key, compute E;(r). The rightmost bit of the result is
exclusive-or’ed with one bit of the message, and the other bits of the result are dis-
carded. The resulting ciphertext is fed back into the leftmost bit of the register, which
is right shifted one bit. (See Figure 10-1.)

Cipher feedback mode has a self-healing property. If a bit is corrupted in trans-
mission of the ciphertext, the next n bits will be deciphered incorrectly. But after n
uncorrupted bits have been received, the shift register will be reinitialized to the value
used for encipherment and the ciphertext will decipher properly from that point on.

As in the counter method, one can decipher parts of messages enciphered in
cipher feedback mode without deciphering the entire message. Let the shift register
contain n bits. The analyst obtains the previous 7 bits of ciphertext. This is the value
in the shift register before the bit under consideration was enciphered. The decipher-
ment can then continue from that bit on.

10.2.2 Block Ciphers

Block ciphers encipher and decipher multiple bits at once, rather than one bit at a
time. For this reason, software implementations of block ciphers run faster than soft-
ware implementations of stream ciphers. Errors in transmitting one block generally
do not affect other blocks, but as each block is enciphered independently, using the
same key, identical plaintext blocks produce identical ciphertext blocks. This allows
the analyst to search for data by determining what the encipherment of a specific
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Figure 10—1 Diagram of cipher feedback mode. The register ris enciphered
with key k and algorithm E.The rightmost bit of the result is exclusive-or’ed
with one bit of the plaintext m;to produce the ciphertext bit c;. The register r
is right shifted one bit, and c; is fed back into the leftmost bit of r.
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plaintext block is. For example, if the word INCOME is enciphered as one block, all
occurrences of the word produce the same ciphertext.

EXAMPLE: Consider a banking database with two records:

MEMBER: HOLLY INCOME $100,000
MEMBER: HEIDI INCOME $100,000

Suppose the encipherment of this data under a block cipher is

ABCQZRME GHQMRSIB CTXUVYSS RMGRPFQN
ABCQZRME ORMPABRZ CTXUVYSS RMGRPFQN

If an attacker determines who these records refer to, and that CTXUVYSS is the
encipherment of the INCOME keyword, he will know that Holly and Heidi have the
same income.

To prevent this type of attack, some information related to the block’s position
is inserted into the plaintext block before it is enciphered. The information can be
bits from the preceding ciphertext block [311] or a sequence number [502]. The dis-
advantage is that the effective block size is reduced, because fewer message bits are
present in a block.

Cipher block chaining does not require the extra information to occupy bit
spaces, so every bit in the block is part of the message. Before a plaintext block is
enciphered, that block is exclusive-or’ed with the preceding ciphertext block. In
addition to the key, this technique requires an initialization vector with which to
exclusive-or the initial plaintext block. Taking E, to be the encipherment algorithm
with key k, and I to be the initialization vector, the cipher block chaining technique is

Co= Ek(mo ® 1)
C; = Ek(ml @ Ci—l) fori>0

10.2.2.1  Multiple Encryption

Other approaches involve multiple encryption. Using two keys k and k”to encipher a
message as ¢ = E; (E;(m)) looks attractive because it has an effective key length of
2n, whereas the keys to E are of length n. However, Merkle and Hellman [624] have
shown that this encryption technique can be broken using 2l encryptions, rather
than the expected Pl (see Exercise 3).

Using three encipherments improves the strength of the cipher. There are sev-
eral ways to do this. Tuchman [908] suggested using two keys k and k"

¢ = Ex(Dy (Ey(m)))
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This mode, called Encrypt-Decrypt-Encrypt (EDE) mode, collapses to a single enci-
pherment when k = k”. The DES in EDE mode is widely used in the financial com-
munity and is a standard (ANSI X9.17 and ISO 8732). It is not vulnerable to the
attack outlined earlier. However, it is vulnerable to a chosen plaintext and a known
plaintext attack. If b is the block size in bits, and 7 is the key length, the chosen plain-
text attack takes O(2") time, O(2") space, and requires 2" chosen plalntexts The
known plaintext attack requires p known plaintexts, and takes o™’ /p) time and
O(p) memory.

A second version of triple encipherment is the triple encryption mode [624].
In this mode, three keys are used in a chain of encipherments.

¢ = E(Ey(Ey--(m)))

The best attack agalnst this scheme is similar to the attack on double encipherment,
but requires O(2 2 time and O(2") memory. If the key length is 56 bits, this attack is
computationally infeasible.

10.3 Networks and Cryptography

Before we discuss Internet protocols, a review of the relevant properties of networks is
in order. The ISO/OSI model [894] provides an abstract representation of networks
suitable for our purposes. Recall that the ISO/OSI model is composed of a series of
layers (see Figure 10-2). Each host, conceptually, has a principal at each layer that
communicates with a peer on other hosts. These principals communicate with princi-
pals at the same layer on other hosts. Layer 1, 2, and 3 principals interact only with
similar principals at neighboring (directly connected) hosts. Principals at layers 4, 5, 6,
and 7 interact only with similar principals at the other end of the communication. (For
convenience, “host” refers to the appropriate principal in the following discussion.)

Each host in the network is connected to some set of other hosts. They
exchange messages with those hosts. If host nob wants to send a message to host
windsor, nob determines which of its immediate neighbors is closest to windsor
(using an appropriate routing protocol) and forwards the message to it. That host,
baton, determines which of its neighbors is closest to windsor and forwards the mes-
sage to it. This process continues until a host, sunapee, receives the message and
determines that windsor is an immediate neighbor. The message is forwarded to
windsor, its endpoint.

Definition 10-5. Let hosts C, ..., C,, be such that C; and C,, are directly
connected, for 0 <i < n. A communications protocol that has C and C,, as its
endpoints is called an end-to-end protocol. A communications protocol that
has C; and Cj,; as its endpoints is called a link protocol.
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Application layer | —  _ _ _ _ _ _ _ _ |  Application layer

Presentation layer | | @ — — . _ _ _ _ _ _ _ | | Presentation layer

Session layer - — — — — — — — — | | Session layer

Transport layer ||l @ — — — — _ _ _ _ _ _ | | Transport layer

Network layer - _»ANetwork layer || — gl | Network layer
Data link layer ~+ P! Data link layer ¢~ Data link layer
Physical layer V< Physical layer Y “— Physical layer

Figure 10—2 The ISO/OSI model. The dashed arrows indicate peer-to-peer
communication. For example, the transport layers are communicating with
each other. The solid arrows indicate the actual flow of bits. For example, the
transport layer invokes network layer routines on the local host, which invoke
data link layer routines, which put the bits onto the network. The physical layer
passes the bits to the next “hop,” or host, on the path. When the message
reaches the destination, it is passed up to the appropriate level.

The difference between an end-to-end protocol and a link protocol is that the
intermediate hosts play no part in an end-to-end protocol other than forwarding mes-
sages. On the other hand, a link protocol describes how each pair of intermediate
hosts processes each message.

EXAMPLE: The telnet protocol is an applications layer protocol that allows users to
obtain a virtual terminal on a remote host. Thus, it is an end-to-end protocol. IP is a
network layer protocol that guides messages from a host to one of its immediate
neighbors. Thus, it is a link protocol.

The protocols involved can be cryptographic protocols. If the cryptographic pro-
cessing is done only at the source and at the destination, the protocol is an end-to-end
protocol. If cryptographic processing occurs at each host along the path from source
to destination, the protocol is a link protocol. When encryption is used with either
protocol, we use the terms end-to-end encryption and link encryption, respectively.

EXAMPLE: If the messages between the telnet client and server are enciphered [915],
the encipherment and decipherment occur at the client and the server only. The pro-
tocol uses end-to-end encryption. The PPP Encryption Control Protocol [627] enci-
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phers messages between intermediate hosts. When a host gets the message, it
deciphers the message, determines which neighbor to send it to, reenciphers the mes-
sage using the key appropriate for that neighbor, and sends it to that neighbor. This
protocol uses link encryption.

In link encryption, each host shares a cryptographic key with its neighbor. (If
public key cryptography is used, each host has its neighbor’s public key. Link
encryption based on public keys is rare.) The keys may be set on a per-host basis or a
per-host-pair basis. Consider a network with four hosts called windsor, stripe, facer,
and seaview. Each host is directly connected to the other three. With keys distributed
on a per-host basis, each host has its own key, making four keys in all. Each host has
the keys for the other three neighbors, as well as its own. All hosts use the same key
to communicate with windsor. With keys distributed on a per-host-pair basis, each
host has one key per possible connection, making six keys in all. Unlike the per-host
situation, in the per-host-pair case, each host uses a different key to communicate with
windsor. The message is deciphered at each intermediate host, reenciphered for the
next hop, and forwarded. Attackers monitoring the network medium will not be able
to read the messages, but attackers at the intermediate hosts will be able to do so.

In end-to-end encryption, each host shares a cryptographic key with each des-
tination. (Again, if the encryption is based on public key cryptography, each host
has—or can obtain—the public key of each destination.) As with link encryption, the
keys may be selected on a per-host or per-host-pair basis. The sending host enciphers
the message and forwards it to the first intermediate host. The intermediate host for-
wards it to the next host, and the process continues until the message reaches its des-
tination. The destination host then deciphers it. The message is enciphered throughout
its journey. Neither attackers monitoring the network nor attackers on the intermedi-
ate hosts can read the message. However, attackers can read the routing information
used to forward the message.

These differences affect a form of cryptanalysis known as traffic analysis. A
cryptanalyst can sometimes deduce information not from the content of the message
but from the sender and recipient. For example, during the Allied invasion of Nor-
mandy in World War II, the Germans deduced which vessels were the command
ships by observing which ships were sending and receiving the most signals. The
content of the signals was not relevant; their source and destination were. Similar
deductions can reveal information in the electronic world.

EXAMPLE: ARS&C is an engineering firm developing the next generation of net-
work protocols. Each employee of ARS&C has his or her own workstation. All net-
work traffic is enciphered using end-to-end encryption. A competitor of the company
appears to be obtaining proprietary data. ARS&C has hired Alice to figure out who is
leaking the information.

Alice begins by monitoring all network traffic. She notices that the worksta-
tions are grouped into three different divisions: corporate management, sales, and
engineering. The leaks are coming from the engineering systems. She looks at the
sources and destinations of all connections to and from the engineering systems and
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notices that the connections from corporate management center on three systems:
curly, larry, and moe. The connections from larry always occur between midnight
and four in the morning; those from the other two occur during the day. Alice then
looks at the events of the days on which the connections take place. The connections
from curly and moe occur on the days of management reviews and are invariably to
the fip or www port. The connections from larry are more infrequent and are to the
telnet port. A few days after each connection, the competitor seems to have acquired
new proprietary information.

From this analysis, Alice suggests that the host larry is somehow involved in
the problem. She needs to check the systems that /arry connects to and see if the pro-
prietary data is on those systems. At no time has Alice read any of the traffic, because
it is encrypted; but from the traffic analysis, she has determined the system involved
in the compromise.

10.4 Example Protocols

Several widely used Internet protocols illustrate different facets of cryptographic
techniques. This section examines three such protocols, each at a different layer.
PEM is a privacy-enhanced electronic mail protocol at the applications layer and
demonstrates the considerations needed when designing such a protocol. Its tech-
niques are similar to those of PGP, another widely used security-enhanced electronic
mail protocol. SSL provides transport layer security. Application layer protocols
such as HTTP can use SSL to ensure secure connections. IPsec provides security
mechanisms at the network, or IP, layer.

10.4.1 Secure Electronic Mail: PEM

Electronic mail is a widely used mechanism for communication over the Internet. It
is also a good example of how practical considerations affect the design of security-
related protocols. We begin by describing the state of electronic mail and then show
how security services can be added.

Figure 10-3 shows a typical network mail service. The UA (user agent) inter-
acts directly with the sender. When the message is composed, the UA hands it to the
MTA (message transport, or transfer, agent). The MTA transfers the message to its
destination host, or to another MTA, which in turn transfers the message further. At
the destination host, the MTA invokes a user agent to deliver the message.

An attacker can read electronic mail at any of the computers on which MTAs
handling the message reside, as well as on the network itself. An attacker could also
modify the message without the recipient detecting the change. Because authentica-
tion mechanisms are minimal and easily evaded, a sender could forge a letter from
another and inject it into the message handling system at any MTA, from which it
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‘4— User Agents

Message Transfer
MTA | €| MTA | €| MTA |«— Agents

Figure 10-3 Message handling system. The user composes mail on the UA
(user agent). When she sends it, the message is passed to the MTA (message
transport, or transfer, agent). The MTA passes the message to other MTAs,
until it reaches the MTA associated with the destination host. That host
transfers it to the appropriate UA for delivery.

would be forwarded to the destination. Finally, a sender could deny having sent a let-
ter, and the recipient could not prove otherwise to a disinterested party. These four
types of attacks (violation of confidentiality, authentication, message integrity, and
nonrepudiation) make electronic mail nonsecure.

In 1985, the Internet Research Task Force on Privacy (also called the Privacy
Research Group) began studying the problem of enhancing the privacy of electronic
mail. The goal of this study was to develop electronic mail protocols that would pro-
vide the following services.

1. Confidentiality, by making the message unreadable except to the sender
and recipient(s)

2. Origin authentication, by identifying the sender precisely
3. Data integrity, by ensuring that any changes in the message are easy to detect
4. Nonrepudiation of origin (if possible)

The protocols were christened Privacy-enhanced Electronic Mail (or PEM).

10.4.1.1  Design Principles

Creating a viable protocol requires the developers to consider several design aspects.
Otherwise, acceptance and use of the protocol will be very limited.

Related protocols should not be changed. A protocol is designed to provide
specific services (in this case, the privacy enhancements discussed in the preceding
section). It should not require alteration of other protocols (such as those that transmit
electronic mail). The Privacy Research Group developed new protocols rather than
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modifying the mail transfer protocols. This also requires development of new soft-
ware rather than modification of existing software to implement the protocol
(although existing software can be modified to support it).

A corollary is compatibility. A general protocol (such as PEM) must be com-
patible with as many other protocols and programs as possible. The protocols must
work with a wide range of software, including software in all environments that con-
nect to the Internet.

Another important principle is independence. The privacy enhancements
should be available if desired but should not be mandatory. If a new protocol pro-
vides specific services, the user should be able to use the services desired, which may
(or may not) be all the ones that the protocol provides. For example, a sender might
care about sender authentication but not confidentiality. This also enables some users
to send privacy-enhanced electronic mail, and others to send unprotected electronic
mail, on the same system. Recipients can also read either type of mail.

Finally, two parties should be able to use the protocol to communicate without
prearrangement. Arranging a communications key out of band (such as in person or
over the telephone) can be time-consuming and prone to error. Furthermore, callers
must authenticate themselves to the recipients. This is difficult and is another error-
prone operation.

To summarize, the design goals of PEM were as follows.

Not to redesign existing mail system or protocols
To be compatible with a range of MTAs, UAs, and other computers
To make privacy enhancements available separately, so they are not required

Ll

To enable two parties to use the protocol to communicate without
prearrangement

10.4.1.2 Basic Design

PEM defines two types of keys. The message to be sent is enciphered with a data
encipherment key (DEK), corresponding to a session key. This key is generated ran-
domly and is used only once. It must be sent to the recipient, so it is enciphered with
an interchange key. The interchange keys of the sender and recipient must be
obtained in some way other than through the message.

This requires several assumptions. First, the interchange key must be available
to the respective parties. If symmetric ciphers are used, the keys must be exchanged
out of bands—for example, by telephone or courier. If public keys are used, the
sender needs to obtain the certificate of the recipient.

If Alice wants to send a confidential message to Bob, she obtains Bob’s inter-
change key kp,p,. She generates a random DEK £, ,, and enciphers the message m.
She then enciphers the DEK using the interchange key. She sends both to Bob.

Alice — Bob: { m }ksession{ ksession }kBob

Bob can then decipher the session key and from it obtain the message.
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If Alice wants to send an authenticated, integrity-checked message to Bob, she
first computes a cryptographic hash /(m) of the message, possibly using a random
session key (if the hash function requires one). The value that the hash function com-
putes is called a message integrity check (MIC). She then enciphers the MIC (and the
session key, if one was used) with her interchange key k,;;.. and sends it to Bob:

Alice — Bob: m { h(m) }kujice

Bob uses Alice’s interchange key to decipher the MIC, recomputes it from m, and
compares the two. If they do not match, either the message or the value of the hash
has been changed. In either case, the message cannot be trusted.

To send an enciphered, authenticated, integrity-checked message, combine the
operations discussed above, as follows.

Alice — Bob: { m }ksession{ h(m) }kAlice{ ksession }kBob

The nonrepudiation service comes from the use of public key cryptography. If
Alice’s interchange key is her private key, a third party can verify that she signed the
message by deciphering it with her public key. Alice cannot refute that her private
key was used to sign the message. (She can dispute that she signed it by claiming her
private key was compromised. Preventing this is beyond the scope of technical proto-
cols. In this context, “nonrepudiation” refers only to the inability to deny that the pri-
vate key was used to sign the message.)

10.4.1.3 Other Considerations

When the interchange keys are for public key cryptosystems, PEM suggests the use
of a certificate-based key management scheme (see Section 13.5, “Naming and Cer-
tificates”). However, it is not a requirement.

A major problem is the specification of Internet electronic mail. Among the
restrictions placed on it, the requirements that the letter contain only ASCII charac-
ters and that the lines be of limited length are the most onerous. Related to this is the
difference among character sets. A letter typed on an ASCII-based system will be
unreadable on an EBCDIC-based system.

A three-step encoding procedure overcomes these problems.

1. The local representations of the characters making up the letter are
changed into a canonical format. This format satisfies the requirements of
RFC 822—compliant mailers (specifically, all characters are seven-bit
ASCII characters, lines are less than 1,000 characters long, and lines end
with a carriage return followed by a newline [221] 1).

T3}

! The dot stuffing convention (so that a line containing a single “.” is not seen as a message

terminator) is not used (see Section 4.3.2.2 of RFC 1421 [569]).
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2. The message integrity check is computed and enciphered with the sender’s
interchange key. If confidentiality is required, the message is enciphered as
described above.

3. The message is treated as a stream of bits. Every set of six bits is mapped
into a character,” and after every 64 characters, a newline is inserted.

The resulting ASCII message has PEM headers (indicating algorithms and key)
prepended. PEM headers and body are surrounded by lines indicating the start and
end of the PEM message.

If the recipient has PEM-compliant software, she can read the message. Oth-
erwise, she cannot. If the message is authenticated and integrity-checked (but not
encrypted), she should be able to read the message even if she does not have PEM-
compliant software (remember that one of the design components is compatibility
with existing mail programs). The special mode MIC-CLEAR handles this case. In
this mode, the message check is computed and added, but the message is not trans-
formed into the representation of step 3. On receipt, the authentication and message
integrity check may fail because some MTAs add blank lines, change the end-of-line
character, or delete terminating white space from lines. Although this does not alter
the meaning of the message, it does change the content. Hence, PEM-compliant soft-
ware will report that the message has been altered in transit. But people can use nor-
mal mail reading programs to read the letter. (Whether they should trust it is another
matter. Given that the PEM software has reported changes, the recipients should at
least verify the contents in some way before trusting the letter.)

10.4.1.4 Conclusion

PEM demonstrates how system factors influence the use of cryptographic protocols.
While central to the design and implementation of PEM systems, the cryptographic
protocols require a supporting infrastructure. The need for compatibility guides
many design choices for this infrastructure. The environment of development also
affects the infrastructure.

Comparing PGP and PEM illustrates this. Both use the same cryptographic
protocols, but by default, PGP uses the IDEA cipher instead of the DES. PGP also
uses a different, nonhierarchical certificate management scheme described in Sec-
tions 9.3.1.2 and 13.5. Finally, PGP handles line termination characters differently.
Messages are labeled binary or text. If binary, line terminators are untransformed. If
text, they are canonicalized (if enciphering) or mapped into the end-of-line character
sequence for the current host (if deciphering).

% The character set is drawn from parts of the international alphabet IA5 common to most other
alphabets.
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10.4.2  Security at the Network Layer: IPsec

IPsec is a collection of protocols and mechanisms that provide confidentiality,
authentication, message integrity, and replay detection at the IP layer. Because cryp-
tography forms the basis for these services, the protocols also include a key manage-
ment scheme, which we will not discuss here.

Conceptually, think of messages being sent between two hosts as following a
path between the hosts. The path also passes through other intermediate hosts. IPsec
mechanisms protect all messages sent along a path. If the IPsec mechanisms reside
on an intermediate host (for example, a firewall or gateway), that host is called a
security gateway.

IPsec has two modes. Transport mode encapsulates the IP packet data area
(which is the upper layer packet) in an IPsec envelope, and then uses IP to send the
IPsec-wrapped packet. The IP header is not protected. Tunnel mode encapsulates
an entire IP packet in an IPsec envelope and then forwards it using IP. Here, the IP
header of the encapsulated packet is protected. (Figure 10—4 illustrates these
modes.) Transport mode is used when both endpoints support IPsec. Tunnel mode
is used when either or both endpoints do not support IPsec but two intermediate
hosts do.

EXAMPLE: Secure Corp. and Guards Inc. wish to exchange confidential information
about a pending fraud case. The hosts main.secure.com and fraud.guards.com both
support IPsec. The messages between the systems are encapsulated using transport
mode at the sender and processed into cleartext at the receiver.

Red Dog LLC is a third corporation that needs access to the data. The data is
to be sent to gotcha.reddog.com. Red Dog’s systems do not support [Psec, with one
exception. That exception is the host, firewall.reddog.com, that is connected to both
Red Dog’s internal network and the Internet. Because none of Red Dog’s other hosts
is connected to the Internet, all traffic to gotcha from Secure Corp. must pass through
firewall.reddog.com. So main.secure.com uses tunnel mode to send its [Psec packets
to Red Dog. When the packets arrive at firewall, the IPsec information is removed
and validated, and the enclosed IP packet is forwarded to gotcha. In this context,
firewall.reddog.com is a security gateway.

NNNAAAAAN PSRN
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Figure 104 The packet on the left is in transport mode, because the body of
the packet is encrypted but its header is not. The packet on the right is in
tunnel mode, because the packet header and the packet body are both
encrypted. The unencrypted IP header is used to deliver the encrypted packet
to a system on which it can be decrypted and forwarded.
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Two protocols provide message security. The authentication header (AH) pro-
tocol provides message integrity and origin authentication and can provide antireplay
services. The encapsulating security payload (ESP) protocol provides confidentiality
and can provide the same services as those provided by the AH protocol. Both proto-
cols are based on cryptography, with key management supplied by the Internet Key
Exchange (IKE) protocol (although other key exchange protocols, including manual
keying, may be used).

10.4.2.1 IPsec Architecture

IPsec mechanisms use a security policy database (SPD) to determine how to handle
messages. Legal actions are discarding the message, applying security services to the
message, and forwarding the message with no change. The action taken depends on
information in the IP and transport layer headers.

IPsec mechanisms determine the security services needed on the basis of the
SPD and the path that the packet takes.

When a packet arrives, the IPsec mechanism consults the SPD for the relevant
network interface. The SPD determines which entry applies on the basis of the
attributes of the packet. These attributes include the source and destination port and
address, the transport layer protocol involved, and other data.

EXAMPLE: An SPD has two entries for destination addresses 10.1.2.3 to 10.1.2.103.
The first applies to packets with destination port 25. The second applies to packets
transporting the protocol HTTP. If a packet arrives with destination address
10.1.2.50, and its destination port is 25, the first entry applies; if its destination port
is 80, the second entry applies.

Entries are checked in order. If one has a different policy for securing elec-
tronic mail depending on its destination, the more specific entries are placed where
they will be searched first. If no entry matches the incoming packet, it is discarded.

EXAMPLE: In the example above, the administrator wants to discard SMTP packets
coming from host 192.168.2.9 and forward packets from host 192.168.19.7 without
applying IPsec services. Assuming that the SPD entries are searched from first to
last, the SPD would have these three entries:

source 192.168.2.9, destination 10.1.2.3 to 10.1.2.103, port 25, discard
source 192.168.19.7, destination 10.1.2.3 to 10.1.2.103, port 25, bypass
destination 10.1.2.3 to 10.1.2.103, port 25, apply [Psec

The heart of applying IPsec is the security association.

Definition 10-6. A security association (SA) is an association between peers
for security services. The security association is unidirectional.
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A security association is a set of security enhancements to a channel along
which packets are sent. It is defined uniquely by the destination address, the security
protocol (AH or ESP), and a unique 32-bit security parameter index (SPI). It defines
the security protocol that is to be applied to packets sent over that association.

Each SA uses either ESP or AH, but not both. If both are required, two SAs
are created. Similarly, if IPsec is to provide security between two peers in both direc-
tions, two SAs are needed.

When IPsec services are to be applied, the SPD entry identifies one or more
security associations and parameters. The parameters describe how to determine
which security association(s) to use to process the packet. This leads to the security
association database (SAD), which consists of a set of selectors and corresponding
security associations.

EXAMPLE: Continuing the example above, focus on the case in which IPsec is to be
applied. The SPD entry for 10.1.2.101 could take the selector for the SAD from the
packet (so the selector might be the SA with the destination address 10.1.2.101) or
from the SPD entry (so the selector might be the SA with the destination addresses in
the range 10.1.2.3 to 10.1.2.103).

Each SAD entry contains information about the SA. Key fields are as follows.

* The AH algorithm identifier and keys are used when the SA uses the AH
protocol.

* The ESP encipherment algorithm identifier and keys are used when the SA
uses the confidentiality service of the ESP protocol.

* The ESP authentication algorithm identifier and keys are used when the
SA uses the authentication and data integrity services of the ESP protocol.

* The lifetime of the SA is either the time at which the SA must be deleted
and a new one formed or a count of the maximum number of bytes
allowed over this SA.

* The IPsec protocol mode is tunnel mode, transport mode, or a wildcard. If
it is a wildcard, either protocol mode is acceptable. Security gateways
need to support only tunnel mode, but host implementations must support
both modes.

An additional field checks for replay in inbound packets.

* The antireplay window field is used to detect replay (see Section 10.4.2.2).
If the SA does not use the antireplay feature, this field is not used.

Outbound packets have sequence numbers.

* The sequence number counter generates the AH or ESP sequence number.
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* The sequence counter overflow field stops further traffic over the SA if the
sequence counter overflows.

e Path Maximum Transmission Unit and aging variables detect time-outs.

When inbound traffic arrives, the destination address, security protocol, and
SPI are used to find the associated SA in the SAD. This verifies the properties that
the packet should have and enables the replay check (if desired). If the packet is to be
forwarded, the SPD determines the relevant services, the appropriate services are
supplied, and the packet is forwarded.

In some situations, multiple SAs may protect packets.

Definition 10-7. A security association bundle (SA bundle) is a sequence of
security associations that the IPsec mechanisms apply to packets.

Tunnel mode SAs can be nested. This is called iterated tunneling and occurs
when multiple hosts build tunnels through which they send traffic. The endpoints
may be the same, although support for iterated tunneling is required only when at
least one endpoint of the two tunnels is different. The tunnels may be entirely
nested.

EXAMPLE: Return to Secure Corp. and Red Dog LLC. The fraud group within
Secure has a host, frauds, that has IPsec mechanisms. The Red Dog fraud group has
a new system, equity, that also has IPsec mechanisms. Both Secure’s gateway to the
internet, gateway, and Red Dog’s gateway to the Internet, firewall, have IPsec mech-
anisms. Because the data is so sensitive, the fraud groups decide that they need to
protect their data within each company. The SA between the gateways is not enough.

The data transfer now has two SAs. The first goes from gateway.secure.com to
firewall.reddog.com and is in tunnel mode. The second, also in tunnel mode, begins
at frauds.secure.com, tunnels through the SA from gateway.secure.com to
firewall.reddog.com, and terminates at equity.reddog.com.

Iteration of transport mode SAs occurs when both the AH and ESP protocols
are used. This is called transport adjacency, and when it is used, application of the
ESP protocol should precede application of the AH protocol. The idea is that the ESP
protocol protects the higher-layer (transport) protocol and the AH protocol protects
the IP packet. Were the AH protocol to be applied first, the ESP protocol would not
protect the IP packet headers.

It is instructive to examine the appearance of the packets in the example above.
Figure 10-5 shows the packet layout as it travels between the two companies. Notice
that the packet generated by frauds is encapsulated in another IP packet with the IPsec
services applied to the inner packet. Both headers identify equity as the destination.
When the packet arrives at gateway, the original IP header is (probably) not visible to
gateway. In this case, the SAD and SPD use a special identifier to indicate that the
source is obscured. (See Exercise 8.) The appropriate SA directs the packet to be
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Figure 10-5 An IPsec-protected packet going through nested tunnels. The
filled rectangles represent headers. The rightmost IP header and the following
data constitute the original packet. The IPsec mechanisms add the ESP, AH,
and IP headers of frauds and forward the packet to gateway. This is the first SA
and is in tunnel mode. The host gateway adds the ESP, AH, and IP headers
shown, putting the packet into the second tunnel mode SA.

encapsulated and forwarded to firewall, so the added IP header identifies firewall as the
destination IP address. When the packet arrives at firewall, it uses the incoming
packet’s destination IP address (firewall), security protocol, and SPI to locate the SA.
This bundle tells firewall to authenticate and decrypt the contents of the packet. The
inner IP packet is then used to look up the appropriate action in the SPD, which (in this
case) is to bypass IPsec. The packet is then forwarded to equity, which repeats the pro-
cessing. The innermost IP packet is then forwarded to equity and processed.
We now examine the AH and ESP protocols.

10.4.2.2 Authentication Header Protocol

The goal of the authentication header (AH) protocol is to provide origin authentica-
tion, message integrity, and protection against replay, if desired. It protects static
fields of the IP packet header as well as the contents of the packet.

The important parameters included in the AH header are an indication of the
length of the header, the SPI of the SA under which this protocol is applied, a
sequence number used to prevent replay, and an Integrity Value Check aIve)? pad-
ded to a multiple of 32 bits (for IPv4) or 64 bits (for IPv6).

The AH protocol has two steps. The first checks that replay is not occurring.
The second checks the authentication data.

When a packet is sent, the sender assumes that antireplay is used unless it is
told otherwise. The sender first checks that the sequence number will not cycle. (If it
will, a new SA must be created; see the discussion above.) It adds 1 to the current
sequence number. The sender then calculates the IVC of the packet. The IVC includes
all fields in the IP header that will not change in transit or that can be predicted (such

3 This is another term for a message integrity check (MIC); we use the AH protocol
specification term here for consistency.
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as the destination field), the AH header (with the authentication data field set to O for
this computation), and any encapsulated or higher-layer data. Mutable fields in the IP
header (such as the type of service, flags, fragment offset, time to live, and header
checksum fields) are set to O for this computation.

When a packet arrives, the IPsec mechanism determines if the packet contains
an authentication header. If so, it uses the SPI and destination address to find the
associated SA in the SAD. If no such SA exists, the packet is discarded. Otherwise,
the key, IVC algorithm, and antireplay settings are obtained from the SAD entry.

If the antireplay service is desired, a “sliding window” mechanism checks that
the packet is new. Think of the SA as operating on a stream of packets. Conceptually,
the window contains slots for at least 32 packets. Each slot has the sequence number
of the packet for that slot. When a packet arrives, the mechanism checks that the
packet’s sequence number is at least that of the leftmost slot in the window. If the
packet’s sequence number is to the left of the window, the packet is discarded. The IVC
of the packet is then verified, and if it is incorrect, the packet is discarded. Otherwise,
if the packet’s sequence number lies within the window, but the slot with that
sequence number is occupied, the packet is discarded. If the slot is empty, the packet
is inserted into the slot. Finally, if the packet lies to the right of the window, the win-
dow is advanced to create a slot for the packet. The packet is then placed in that slot,
which is the rightmost slot in the window.

If the antireplay service is not used, the IVC is verified. The IVC is computed
in the same way as the sender (that is, appropriate fields are replaced by zeros) and is
compared with the IVC in the AH. If the two differ, the packet is discarded.

All implementations of the AH protocol must support HMAC_MDS5 and
HMAC_SHA-1. They may support others as well.

10.4.2.3 Encapsulating Security Payload Protocol

The goal of the encapsulating security payload (ESP) protocol is to provide confi-
dentiality, origin authentication, message integrity, protection against replay if
desired, and a limited form of traffic flow confidentiality. It protects only the trans-
port data or encapsulated IP data; it does not protect the IP header.

The important parameters included in the ESP header are the SPI of the SA
under which this protocol is applied, a sequence number used to prevent replay, a
generic “payload data” field, padding, the length of the padding, and an optional
authentication data field.

The data in the payload data field depends on the ESP services enabled. For
example, if an SA needs to resynchronize a cryptographic algorithm used in chaining
mode, the sender could include an initialization vector here. As more algorithms for
the ESP are defined, they may specify data to be included in this field.

Because the ESP protocol begins enciphering with the payload data field and
protects both header fields and data, the IPsec mechanism may need to pad the
packet in order to have the number of bits or bytes required by the cryptographic
algorithm. The padding field allows for this adjustment. The padding length field
contains the number of padding bytes; no more than 255 bytes of padding are allowed.
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At least one of the confidentiality and authentication services must be
selected. Furthermore, because packets may not arrive in order, any synchronization
material must be carried in the payload field. Otherwise, the packets that follow a
missing packet may be unintelligible.

When a packet is sent, the sender adds an ESP header, including any required
padding, to the payload (either the transport data or an encapsulated IP packet). The
sender enciphers the result (except for the SPI and sequence numbers). If authentica-
tion is desired, the authentication is computed as for the AH protocol, except that it is
over the ESP header and payload. It does not include the IP header that encapsulates
the ESP header and payload. The relevant SA dictates the cryptographic keys and
algorithms that are used.

When a packet arrives, the IPsec mechanism determines if the packet contains
an ESP header. If so, it uses the SPI and destination address to find the associated SA
in the SAD. If no such SA exists, the packet is discarded. Otherwise, the SA parame-
ters are obtained from the SAD entry.

If the authentication service is used, the antireplay feature and the MAC veri-
fication proceed as for the AH, again except that only the ESP and the payload are
used. Because the authentication data is inserted after encipherment, it is not enci-
phered and so can be used directly.

If the confidentiality service is used, the IPsec mechanisms decipher the enci-
phered portion of the ESP header. Any padding is processed, and the payload is
deciphered. If the SA specifies transport mode, the IP header and payload are treated
as the original IP packet. If the SA specifies tunnel mode, the encapsulated IP packet
is treated as the original IP packet.

Typical implementations of public key cryptosystems are far slower than
implementations of classical cryptosystems. Hence, implementations of ESP assume
a classical cryptosystem, although this is not required.

All implementations of ESP must support DES in CBC mode and the NULL
encipherment algorithms, as well as the HMAC_MDS, HMAC_SHA-1, and NULL
MACs. (The NULL encipherment algorithm and MAC mean that those algorithms
are not used. Both should never be NULL at the same time.) Implementations may
support other algorithms.

10.4.3 Conclusion

Each of the three protocols adds security to network communications. The “best”
protocol to use depends on a variety of factors.

To what do the requisite security services apply? If they are specific to one
particular application, such as remote logins, then using a program with application
layer security is appropriate. When a program that requires security services is used
in an environment that does not supply those services, or that the user does not trust
to supply the requisite services, the application should supply its own security.

If more generic services are needed, lower-layer security protocols can supply
security services to multiple applications and can do so whether or not the application
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has its own mechanisms for security services. Transport layer protocols such as SSL
are end-to-end security mechanisms. They are appropriate when the intermediate
hosts are not trusted, when the end hosts support the transport protocol, and when the
application uses a connection-oriented (transport) protocol. Network layer mecha-
nisms such as [Psec may provide security services on either an end-to-end or a link
basis. They are appropriate when securing connectionless channels or when the
infrastructure supports the network layer security mechanisms.

The application layer security protocol PEM provides security services for
electronic mail messages. Consider using SSL for this goal. SSL does not authenti-
cate the message fo the recipient; it merely authenticates the transport connection.
Specifically, if Alice sends Bob a message, PEM will authenticate that Alice com-
posed the message and that Bob received it unaltered (and possibly that the message
was kept confidential). SSL can authenticate that Alice sent the message to Bob, that
it arrived as sent, and possibly that it was confidential in transit. SSL does not verify
that Alice composed the message or that the message was confidential and
unchanged on Alice’s system or Bob’s system. In other words, SSL secures the con-
nection; PEM secures the electronic mail (the contents of the connection). Similarly,
IPsec protects the packets and their contents in transit, but authentication is of the
hosts and not of Alice or Bob.

10.5 Summary

If one uses a cryptosystem without considering the protocols directing its use, the secu-
rity service that the cryptosystem is to provide can be deficient. Precomputation attacks,
assumptions about message sizes, and statistical attacks can all compromise messages.

Stream and block ciphers have different orientations (bits and blocks, respec-
tively) that affect solutions to these problems. Stream ciphers emulate a one-time pad
either through an externally keyed source (such as an LFSR, which generates a
stream of key bits from an initial seed) or internally (such as the autokey ciphers or
through feedback modes). Block ciphers emulate “code books™ in which a set of bits
maps to a different set of bits. (In practice, the mapping is algorithmic.)

Over a network, cryptographic protocols and cryptosystems are the basis for
many security services, including confidentiality, authentication, integrity, and non-
repudiation. These services can be provided at different layers, depending on the
assumptions about the network and the needs of the servers and clients.

10.6 Further Reading

Seberry and Pieprzyk [805] and Denning [242] discuss the theory of linear feedback
shift registers. Schneier [796] presents a variant called Feedback Carry Shift Registers.
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Beker and Piper [62] discuss stream ciphers. Rueppel analyzes design criteria for
stream ciphers [766]. Several papers discuss the RC4 keystream generator’s strength
[326, 366, 640].

Bellovin [68] discusses security problems in many Internet protocols; Kent
[503] provides a different perspective. Two groups use different techniques to ana-
lyze the security of SSL [641, 924]. Oppliger [702], Stallings [865], and Doraswamy
and Harkins [279] present overviews of [Psec. Bellovin [70] discusses the crypto-
graphic security of IPsec. Bishop [105] examines the Network Time Protocol
NTPv2. Netscape Corporation’s SSL protocol [340] and the TLS protocol [265] pro-
vide security at the transport layer using a variety of cryptographic mechanisms
including Fortezza [676, 677]. Y1onen presents SSH, a protocol for secure remote
logins [959]. Vincenzetti, Taino, and Bolognesi add security mechanisms to Telnet
[915]. Vixie [917] and Bellovin [69] discuss issues related to the Directory Name
Services.

10.7 Exercises

1. Let the function ffor a four-stage NLFSR be f(r...r,,_;) = (ry and r;) or r3,
and let the initial value of the register be 1001. Derive the initial sequence
and cycle.

2. An n-stage LFSR produces a sequence with a period of length at most
2" — 1, but the register has n bits and thus may assume 2" values. Why
can the length of the period never be 2"*? Which register value is
excluded from the cycle, and why?

3. Consider double encryption, where ¢ = E-(E;(m)) and the keys k and k~
are each n bits long. Assume that each encipherment takes one time unit. A
cryptanalyst will use a known plaintext attack to determine the key from
two messages my and m; and their corresponding ciphertexts ¢ and cy.

a. The cryptanalyst computes E (i) for each possible key x and stores
each in a table. How many bits of memory does the table require?
How many time units does it take to compute the entry?

b. The cryptanalyst computes y = D, (c), where D is the decipherment
function corresponding to E, for each possible key x”, and then
checks the table to see if y is in it. If so, (x, x”) is a candidate for
the key pair. How should the table be organized to allow the
cryptographer to find a match for y in time O(1)? How many time
units will pass before a match must occur?

c. How can the cryptographer confirm that (x, x”) is in fact the desired
key pair?

d. What are the maximum amounts of time and memory needed for the
attack? What are the expected amounts of time and memory?
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4. A network consists of n hosts. Assuming that cryptographic keys are

distributed on a per-host-pair basis, compute how many different keys are
required.

. One cryptographic checksum is computed by applying the DES in CBC

mode to the message or file and using the last n bits of the final enciphered
block as the checksum. (This is a keyed hash; the parties must agree on the
key and the initalization vector used.) Analyze this hash function. In
particular, how difficult is it to find two different messages that hash to the
same value? How difficult is it to generate a second message that produces
the same hash value as the first message?

. A variant of the autokey cipher is to pick a well-known book and use its

text, starting at some agreed-upon location. For example, the plaintext
THEBO YHAST HECAT might be enciphered as the phrase AVART ANTOF
THEAU, with the sender and recipient agreeing that the first sentence in
Exercise 6 in Chapter 10 in this book is the initial key. Describe a problem
with this approach that could lead to a successful decipherment.

. Unlike PEM, PGP requires the user to set a flag to indicate whether the file

being protected is text or binary data. Explain why such a flag is necessary.
Why does PEM not require such a flag?

. Redraw Figure 10-5 assuming that the SA between frauds and equity is a

transport mode SA rather than a tunnel mode SA.

. When the IVC for the AH protocol is computed, why are mutable fields set

to O rather than omitted?
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Authentication

ANTIPHOLUS OF SYRACUSE: To me she speaks; she moves me for her theme!
What, was I married to her in my dream?

Or sleep I now and think I hear all this?

What error drives our eyes and ears amiss?

Until I know this sure uncertainty,

I’1l entertain the offer’d fallacy

—The Comedy of Errors, 11, ii, 185-190.

Authentication is the binding of an identity to a principal. Network-based authentica-
tion mechanisms require a principal to authenticate to a single system, either local or
remote. The authentication is then propagated. This chapter explores the question of
authentication to a single system.

11.1 Authentication Basics

Subjects act on behalf of some other, external entity. The identity of that entity con-
trols the actions that its associated subjects may take. Hence, the subjects must bind
to the identity of that external entity.

Definition 11-1. Authentication is the binding of an identity to a subject.

The external entity must provide information to enable the system to confirm
its identity. This information comes from one (or more) of the following.

What the entity knows (such as passwords or secret information)
What the entity has (such as a badge or card)
What the entity is (such as fingerprints or retinal characteristics)

el NS

Where the entity is (such as in front of a particular terminal)
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The authentication process consists of obtaining the authentication informa-
tion from an entity, analyzing the data, and determining if it is associated with that
entity. This means that the computer must store some information about the entity. It
also suggests that mechanisms for managing the data are required. We represent
these requirements in an authentication system [106] consisting of five components.

1. The set A of authentication information is the set of specific information
with which entities prove their identities.

2. The set C of complementary information is the set of information that the
system stores and uses to validate the authentication information.

3. The set F of complementation functions that generate the complementary
information from the authentication information. That is, for f € F,
ffA—>C.

4. The set L of authentication functions that verify identity. That is, for/ € L,
[: A X C—{ true, false }.

5. The set S of selection functions that enable an entity to create or alter the
authentication and complementary information.

EXAMPLE: A user authenticates himself by entering a password, which the system
compares with the cleartext passwords stored online. Here, A is the set of strings
making up acceptable passwords, C=A, F={ 1}, and L = { eq }, where [ is the
identity function and eq is true if its arguments are the same and false if they are not.

11.2 Passwords

Passwords are an example of an authentication mechanism based on what people
know: the user supplies a password, and the computer validates it. If the password is
the one associated with the user, that user’s identity is authenticated. If not, the pass-
word is rejected and the authentication fails.

Definition 11-2. A password is information associated with an entity that
confirms the entity’s identity.

The simplest password is some sequence of characters. In this case, the pass-
word space is the set of all sequences of characters that can be passwords.

EXAMPLE: One installation requires each user to choose a sequence of 10 digits as a
password. Then A has 10'0 elements (from “0000000000” to “9999999999).

The set of complementary information may contain more, or fewer, elements
than A, depending on the nature of the complementation function. Originally, most
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systems stored passwords in protected files. However, the contents of such files
might be accidentally exposed. Morris and Thompson [651] recount an amusing
example in which a Multics system editor swapped pointers to the temporary files
being used to edit the password file and the message of the day file (printed whenever
a user logged in); the result was that whenever a user logged in, the cleartext pass-
word file was printed.

The solution is to use a one-way hash function to hash the password into a
complement [943].

EXAMPLE: The original UNIX password mechanism does not store the passwords
online in the clear. Instead, one of 4,096 functions hashes the password into an
11-character string, and two characters identifying the function used are prepended
[651]. The 13-character string is then stored in a file.

A UNIX password is composed of up to eight ASCII characters; for imple-
mentation reasons, the ASCII NUL (0) character is disallowed. Hence, A is the set of
strings of up to eight characters, each chosen from a set of 127 possible characters. !
A contains approximately 6.9 x 1016 passwords. However, the set C contains strings
of exactly 13 characters chosen from an alphabet of 64 characters. C contains
approximately 3.0 x 1023 strings. The subset of C corresponding to selected pass-
words may or may not be readable. Many UNIX systems store these strings in the
file /etc/passwd, which all users can read. Many other versions of the UNIX system,
however, store these strings in shadow password files that only the superuser can
read [347, 406].

The UNIX hashing functions f e F are based upon a permutation of the Data
Encryption Standard. F consists of 4,096 such functions f;, 0 <i < 4,096.

The UNIX authentication functions are login, su, and other programs that
confirm a user’s password during execution. This system supplies the proper element
of C; that information may not be available to the user. Some of these functions may
be accessible over a network—for example, through the telnet or FTP protocols.

Finally, the selection functions are programs such as passwd and nispasswd,
which change the password associated with an entity.

The goal of an authentication system is to ensure that entities are correctly
identified. If one entity can guess another’s password, then the guesser can imperson-
ate the other. The authentication model provides a systematic way to analyze this
problem. The goal is to find an a € A such that, for fe F, fla) = c € C and c is asso-
ciated with a particular entity (or any entity). Because one can determine whether a
is associated with an entity only by computing f(a) or by authenticating via l(a), we
have two approaches for protecting the passwords, used simultaneously.

'In practice, some characters (such as the erase character) have special meanings and are rarely
used.
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1. Hide enough information so that one of a, ¢, or f cannot be found.

EXAMPLE: Many UNIX systems make the files containing complementation infor-
mation readable only by root. These schemes, which use shadow password files,
make the set of complements c in actual use unknown. Hence, there is insufficient
information to determine whether or not f(a) is associated with a user. Similarly,
other systems make the set of complementation functions F unknown; again, the
computation of the value f{a) is not possible.

2. Prevent access to the authentication functions L.

EXAMPLE: One site does not allow the root user to log in from a network. The login
functions exist but always fail. Hence, one cannot test authentication of root with
access to these functions over a network.

Each of these approaches leads to different types of attacks and defenses.

11.2.1 Attacking a Password System
The simplest attack against a password-based system is to guess passwords.

Definition 11-3. A dictionary attack is the guessing of a password by
repeated trial and error.

The name of this attack comes from the list of words (a “dictionary’) used for
guesses. The dictionary may be a set of strings in random order or (more usually) a
set of strings in decreasing order of probability of selection.

If the complementary information and complementation functions are avail-
able, the dictionary attack takes each guess g and computes f(g) for each fe F If f(g)
corresponds to the complementary information for entity E, then g authenticates E
under f. This is a dictionary attack type 1. If either the complementary information or
the complementation functions are unavailable, the authentication functions / € L
may be used. If the guess g results in / returning true, g is the correct password. This
is a dictionary attack type 2.

EXAMPLE: Attackers often obtain a UNIX system’s password file and use the (known)
complementation function to test guesses. (Many programs such as crack automate this
process.) This is a type 1 attack. But the attackers need access to the system to obtain
the complementation data in the password file. To gain access, they may try to guess a
password using the authentication function. They use a known account name (such as
root) and guess possible passwords by trying to log in. This is a type 2 attack.

The issue of efficiency controls how well an authentication system withstands
dictionary attacks.



11.2 Passwords 175

11.2.2 Countering Password Guessing

Password guessing requires either the set of complementation functions and comple-
mentary information or access to the authentication functions. In both approaches,
the goal of the defenders is to maximize the time needed to guess the password. A
generalization of Anderson’s Formula [24] provides the fundamental basis.

Let P be the probability that an attacker guesses a password in a specified
period of time. Let G be the number of guesses that can be tested in one time unit.
Let T be the number of time units during which guessing occurs. Let N be the num-

ber of possible passwords. Then P> — TG

EXAMPLE: Let R be the number of bytes per minute that can be sent over a commu-
nication line, let £ be the number of characters exchanged when logging in, let S be
the length of the password, and let A be the number of characters in the alphabet
from which the characters of the password are drawn. The number of possible pass-

words is N = A%, and the number of guesses per minute is G = R/E. If the period of
guessing extends M months, this time in minutes is 7 = 4.32 X 10* M. Then

432 % 104M(5) A
E S 432%10* MR

P>————— or A~ >2—="——— the original statement of Anderson’s
AS PE

Formula.

EXAMPLE: Let passwords be composed of characters drawn from an alphabet of 96
characters. Assume that 10 guesses can be tested each second. We wish the proba—
bility of a successful guess to be 0.5 over a 365-day period. What is the minimum
password length that will give us this probability?

From the formulas above, we want N> P - (365 24)66,5())( 60)10
S
11 . i 11
6.31 x 10 . Thus, we must choose an integer S such that 2 96 >N = 6.31x10
i=0

This holds when S > 6. So, to meet the desired conditions, passwords of at least
length 6 must be required.

Several assumptions underlie these examples. First, the time required to test a
password is constant. Second, all passwords are equally likely to be selected. The
first assumption is reasonable, because the algorithms used to validate passwords are
fixed, and either the algorithms are independent of the password’s length or the vari-
ation is negligible. The second assumption is a function of the password selection
mechanism. We will now elaborate on these mechanisms.
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11.2.2.1 Random Selection of Passwords

The following theorem from probability theory states a maximum on the expected
time to guess a password.

Theorem 11-1. Let the expected time required to guess a password be T.
Then T is a maximum when the selection of any of a set of possible passwords
is equiprobable.

Proof See Exercise 1.

Theorem 11-1 guides selection of passwords in the abstract. In practice, sev-
eral other factors mediate the result. For example, passwords selected at random
include very short passwords. Attackers try short passwords as initial guesses
(because there are few enough of them so that all can be tried). This suggests that
certain classes of passwords should be eliminated from the space of legal passwords
P. The danger, of course, is that by eliminating those classes, the size of P becomes
small enough for an exhaustive search.

Complicating these considerations is the quality of the random (or pseudoran-
dom) number generator. If the period of the password generator is too small, the size
of P allows every potential password to be tested. This situation can be obvious,
although more often it is not.

EXAMPLE: Morris and Thompson [651] tell about a PDP-11 system that randomly
generated passwords composed of eight capital letters and digits, so to all appear-
ances, [Pl = (26 + 10)8 = 368, Taking 0.00156 second per encryption meant that try-
ing all possible passwords would require 140 years. The attacker noticed that the
pseudorandom number generator was run on the PDP-11, and it had a period of 216
(because the PDP-11 is a 16-bit machine). This meant that there were 216 _ 1 or
65,535, possible passwords, requiring 102 seconds to try them all. It actually took
less than 41 seconds to find all the passwords.

Human factors also play a role in this problem. Psychological studies have
shown that humans can repeat with perfect accuracy about eight meaningful items,
such as digits, letters, or words [206]. If random passwords are eight characters long,
humans can remember one such password. So a person who is assigned two random
passwords must write them down. Although most authorities consider this to be poor
practice, the vulnerabilities of written passwords depend on where a written pass-
word is kept. If it is kept in a visible or easily accessed place (such as taped to a ter-
minal or a keyboard or pinned to a bulletin board), writing down the password indeed
compromises system security. However, if wallets and purses are rarely stolen by
thieves with access to the computer systems, writing a password down and keeping it
in a wallet or purse is often acceptable.

Michele Crabb describes a clever method of obscuring the written password
[218]. Let X be the set of all strings over some alphabet. A site chooses some simple
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transformation algorithm #: X — A. Elements of X are distributed on pieces of paper.
Before being used as passwords, they must be transformed by applying 7. Typically, ¢
is very simple; it must be memorized, and it must be changed periodically.

EXAMPLE: The transformation algorithm is: “Capitalize the third letter in the word,
and append the digit 2.” The word on the paper is “Swqgle3”. The password will be
“SwQgle32”.

This scheme is most often used when system administrators need to remem-
ber many different passwords to access many different systems. Then, even if the
paper is lost, the systems will not be compromised.

11.2.2.2 Pronounceable and Other Computer-Generated Passwords

A compromise between using random, unmemorizable passwords and writing pass-
words down is to use pronounceable passwords. Gasser [350] did a detailed study of
such passwords for the Multics system and concluded that they were viable on that
system.

Pronounceable passwords are based on the unit of sound called a phoneme. In
English, phonemes for constructing passwords are represented by the character
sequences cv, vc, cve, or vev, where v is a vowel and ¢ a consonant.

EXAMPLE: The passwords “helgoret” and “juttelon” are pronounceable passwords;
“przbgxdf” and “zxrptglfn” are not.

The advantage of pronounceable passwords is that fewer phonemes need to be
used to reach some limit, so that the user must memorize “chunks” of characters
rather than the individual characters themselves. In effect, each phoneme is mapped
into a distinct character, and the number of such characters is the number of legal
phonemes. In general, this means that the number of pronounceable passwords of
length n is considerably lower than the number of random passwords of length 7.
Hence, a type 1 dictionary attack is expected to take less time for pronounceable
passwords than for random passwords.

Assume that passwords are to be at most eight characters long. Were these
passwords generated at random from a set of 96 printable characters, there would be
7.3 % 101 p0551ble passwords. But if there are 440 possible phonemes, generating pass-
words with up to six phonemes produces approximately the same number of possible
passwords. One can easily generalize this from phonemes to words, with similar results.

One way to alleviate this problem is through key crunching [373].

Definition 11-4. Let n and k be two integers, with n > k. Key crunching is the
hashing of a string of length n or less to another string of length k or less.

Conventional hash functions, such as MD5 and SHA-1, are used for key
crunching.
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11.2.2.3 User Selection of Passwords

Rather than selecting passwords for users, one can constrain what passwords users
are allowed to select. This technique, called proactive password selection [107],
enables users to propose passwords they can remember, but rejects any that are
deemed too easy to guess.

The set of passwords that are easy to guess is derived from experience cou-
pled with specific site information and prior studies [423, 651, 656, 859]. Klein’s
study [512] is very comprehensive. He took 15,000 password hashes and used a set
of dictionaries to guess passwords. Figure 11-1 summarizes his results. Some cate-
gories of passwords that researchers have found easy to guess are as follows.

1. Passwords based on account names

a. Account name followed by a number
b. Account name surrounded by delimiters
2. Passwords based on user names

a. Initials repeated O or more times
b. All letters lower- or uppercase
c. Name reversed

d. First initial followed by last name reversed

Passwords based on computer names

Dictionary words

Reversed dictionary words

Dictionary words with some or all letters capitalized

AN

Type of password Percent Length Percent
Dictionary words 8%

Common names 4% 1 0.03%
User/account names 3% 2 0.03%
Phrases, patterns 2% 3 0.48%
Male names 1% 4 1.36%
Female names 1% 5 2.30%
Uncommon names 1% 6 8.41%
Machine names 1% 7 5.89%
Place names 1% 8 5.65%
King James Bible 1%

Figure 11-1 Results of Klein’s password guessing experiments. The
percentages are from 15,000 potential passwords selected from approximately
50 different sites.
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7. Reversed dictionary words with some or all letters capitalized
8. Dictionary words with arbitrary letters turned into control characters

9. Dictionary words with any of the following changes: a =2 or4,e — 3,
h—4i1i—=1,1-1,020,s—=>50r$,z—5.

10. Conjugations or declensions of dictionary words
11. Patterns from the keyboard

12. Passwords shorter than six characters

13. Passwords containing only digits

14. Passwords containing only uppercase or lowercase letters, or letters and
numbers, or letters and punctuation

15. Passwords that look like license plate numbers

16. Acronyms (such as “DPMA,” “IFIPTC11,” “ACM,” “IEEE,” “USA,” and
SO on)

17. Passwords used in the past
18. Concatenations of dictionary words

19. Dictionary words preceded or followed by digits, punctuation marks, or
spaces

20. Dictionary words with all vowels deleted
21. Dictionary words with white spaces deleted

22. Passwords with too many characters in common with the previous
(current) password

EXAMPLE: The strings “hello” and “mycomputer” are poor passwords because they
violate criteria 4 and 18, respectively. The strings “1PLK107” and “311t3$p32k” are
also poor (the first is a California licence plate number and violates criterion 15, and
the second is the word “elitespeak™ modified as in criterion 9).

Good passwords can be constructed in several ways. A password containing at
least one digit, one letter, one punctuation symbol, and one control character is usu-
ally quite strong. A second technique is to pick a verse from an obscure poem (or an
obscure verse from a well-known poem) and pick the characters for the string from
its letters.

EXAMPLE: The string “LIMm*22Ap” (where "A represents control-a) is a good pass-
word. The letters are chosen from the names of various members of two families, and
the combination of characters is unlikely to be guessed even by those who know
the families. As a more complex example, few people can recite the third verse of
“The Star-Spangled Banner” (the national anthem of the United States of America):

And where is that band who so vauntingly swore
That the havoc of war and the battle’s confusion
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A home and a country should leave us no more?

Their blood has wiped out their foul footsteps’ pollution.
No refuge could save the hireling and slave

From the terror of flight, or the gloom of the grave:

And the star-spangled banner in triumph doth wave

O'er the land of the free and the home of the brave

Choose the second letter of each word of length 4 or greater in the third line, alternating
case, and add a “/” followed by the initials of the author of the poem: “OoHeO/FSK.”
This is also a password that is hard to guess. But see Exercise 5.

Definition 11-5. A proactive password checker is software that enforces spe-
cific restrictions on the selection of new passwords.

Proactive password checkers must meet several criteria [111]:

1.

It must always be invoked. Otherwise, users could bypass the proactive
mechanism.

. It must be able to reject any password in a set of easily guessed passwords

(such as in the list above).

. It must discriminate on a per-user basis. For example, “*AHeidiu’” (*A

being control-a) is a reasonable password (modulo Exercise 5) for most
people, but not for the author, whose oldest daughter is named “Heidi
Tindviel.”

. It must discriminate on a per-site basis. For example, “"DHMC*DCNH” is

a reasonable password at most places, but not at the Dartmouth Hitchcock
Medical Center at Dartmouth College, New Hampshire.

. It should have a pattern-matching facility. Many common passwords, such

as “aaaaa,” are not in dictionaries but are easily guessed. A pattern-
matching language makes detecting these patterns simple. For example, in
one pattern-matching language, the pattern “\(\)\1*$” will detect all
strings composed of a single character repeated one or more times.

. It should be able to execute subprograms and accept or reject passwords

based on the results. This allows the program to handle spellings that are
not in dictionaries. For example, most computer dictionaries do not
contain the word “waters” (because it is the plural of a word, “water,” in
that dictionary). A spelling checker would recognize “waters” as a word.
Hence, the program should be able to run a spelling checker on proposed
passwords, to detect conjugations and declensions of words in the
dictionary.

. The tests should be easy to set up, so administrators do not erroneously

allow easily guessed passwords to be accepted.
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EXAMPLE: The proactive password checker OPUS [860] addresses the sizes of dic-
tionaries. Its goal is to find a compact representation for very large dictionaries.
Bloom filters provide the mechanism. Each word in the dictionary is run through a
hash function that produces an integer A; of size less than some parameter n. This is
repeated for k different hash functions, producing k integers %y, ..., hy. The OPUS
dictionary is represented as a bit vector of length n. To put the word into the OPUS
dictionary, bits &y, ..., h, are set.

When a user proposes a new password, that word is run through the same hash
functions. Call the output £;7, ..., h;". If any of the bits h;”, ..., h;” are not set in the
OPUS dictionary, the word is not in the OPUS dictionary and is accepted. If all are
set, then to some degree of probability the word is in a dictionary fed to OPUS and
should be rejected.

EXAMPLE: Ganesan and Davies [345] propose a similar approach. They generate a
Markov model of the dictionary, extract information about trigrams, and normalize
the results. Given a proposed password, they test to see if the word was generated by
the Markov model extracted from the dictionary. If so, it is deemed too easy to guess
and is rejected.

Both these methods are excellent techniques for reducing the space required
to represent a dictionary. However, they do not meet all the requirements of a proac-
tive password checker and should be seen as part of such a program rather than as
sufficient on their own.

EXAMPLE: A “little language” designed for proactive password checking [108] was
based on these requirements. The language includes functions for checking whether
or not words are in a dictionary (a task that could easily use the techniques of OPUS
or Ganesan and Davies). It also included pattern matching and the ability to run sub-
programs, as well as the ability to compare passwords against previously chosen
passwords.

The keyword set sets the values of variables. For example,

set gecos “Matt Bishop, 3085 EU-II”

assigns the variable gecos to the value Matt Bishop, 3085 EU-II. Pattern assign-
ment is available through setpat:

setpat “$gecos” “A\([A,1\), \(.*\)$” name office

This matches the pattern with the value of gecos (obtained by prefixing a “$” to the
variable name). The strings matched by the subpatterns in “\(” and “\)” are assigned
to the variables name and office (so name is Matt Bishop and office is 3085 EU-TT).
Equality and inequality operators work as string operators. All integers are translated
to strings before any operations take place. Other functions are available; see Figure
11-2 for some examples.
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Function Action Example

length($p) Length of value length(“gueSS/This1!”) = 12

alpha($p) Number of letters alpha(“gueSS/This1!”) =9
substr($p,2,3) Return substring substr(“gueSS/This1!”,2,3) = “ue”
Icase($p) Make all letters lowercase lcase(*‘gueSS/This1!”) = “guess/this1!”
rev($p) Reverse the string rev(“gueSS/This1!”) = “!1sihT/SSeug”
reflect($p) Reflect the string reflect(“hello”) = “hellolleh”

trans($p, a, b) Change all a’s to b’s trans(“ax-ya”) = “bx-yb”

Figure 11-2 Examples of functions.

The basic component of the little language is the password test block:

test Tength(“$p”) < 6
true “Your password contains fewer than 6 characters.”
endtest

This block says to compare the length of the proposed password, stored in the vari-
able p earlier, and compare it with 6 (the test). If the test is true (that is, if the pass-
word is less than six characters long), the message in the second line is printed and
the password is rejected. As another example, the test

infile("/usr/dict/words”, “$p”)
is true if the value of p is a string in the file “/usr/dict/words.” The test
!_inpr‘og(llspe']']”’ “$p”’ (($p”)

is true if the output of the program spell, given the value of p as input, produces that
same value as output. Because spell prints all misspelled input words, if the input and
output match, then the value of p is not a correctly spelled word.

The language contains many other functions, including one for testing for cat-
enated words and another for hashing passwords using the UNIX password hashing
function.

11.2.2.4 Reusable Passwords and Dictionary Attacks

As discussed earlier, reusable passwords are quite susceptible to dictionary attacks of
type 1. The goal of random passwords, pronounceable passwords, and proactive
password checking is to maximize the time needed to guess passwords.

If a type 1 dictionary attack is aimed at finding any user’s password (as
opposed to a particular user’s password), a technique known as salting increases the
amount of work required [651]. Salting makes the choice of complementation func-
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tion a function of randomly selected data. Ideally, the random data is different for
each user. Then, to determine if the string s is the password for any of a set of n users,
the attacker must perform n complementations, each of which generates a different
complement. Thus, salting increases the work by the order of the number of users.

EXAMPLE: Most versions of the UNIX system use salts. The salt is chosen ran-
domly, when the password is set, and is an integer from O to 4,095, inclusive. The
specific complementatlon function depends on the salt Specifically, the E table in
the DES is perturbed in one of 4,096 possible ways, 2 and the message of all 0 bits is
enciphered using the password as a key. The resulting 64 bits are mapped into 11
characters chosen from a set of 64 characters. The salt is split into two sets of six
bits, and those sets are mapped to printable characters using the same alphabet. The
11-character representation of output is appended to the two-character representation
of the salt. The authentication function is chosen on the basis of the salt also; hence,
the salt must be available to all programs that need to verify passwords.

11.2.2.5 Guessing Through Authentication Functions

If the actual complements, or the complementation functions, are not publicly avail-
able, the only way to try to guess a password is to use the authentication function
systems provide for authorized users to log in. Although this sounds difficult, the
patience of some attackers is amazing. One group of attackers guessed passwords in
this manner for more than two weeks before gaining access to one target system.

Unlike a type 1 dictionary attack, this attack cannot be prevented, because the
authentication functions must be available to enable legitimate users to access the
system. The computer has no way of distinguishing between authorized and unau-
thorized users except by knowledge of the password.

Defending against such attacks requires that the authentication functions be
made difficult for attackers to use, or that the authentication functions be made to
react in unusual ways. Four types of techniques are common.

Techniques of the first type are collectively called backoff techniques. The most
common, exponential backoff, begins when a user attempts to authenticate and fails.
Let x be a parameter selected by the system administrator. The system waits x0=1 sec-
ond before reprompting for the name and authentication data. If the user fails agam the
system reprompts after x! = x seconds. After n failures, the system waits ¥~ seconds.
Other backoff techniques use arithmetic series rather than geometric series (reprompt-
ing immediately, then waiting x seconds, then waiting 2x seconds, and so forth).

Techniques of the second type involve disconnection. After some number of
failed authentication attempts, the connection is broken and the user must reestablish
it. This technique is most effective when connection setup requires a substantial
amount of time, such as redialing a telephone number. It is less effective when con-
nections are quick, such as over a network.

2 Specifically, if bit i in the salt is set, table entries i and i + 24 are exchanged [651].
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EXAMPLE: If a user fails to supply a valid name and the corresponding password in
three tries, FreeBSD (a variant of the UNIX operating system) breaks the connection.

Techniques of the third type use disabling. If n consecutive attempts to log in
to an account fail, the account is disabled until a security manager can reenable it.
This prevents an attacker from trying too many passwords. It also alerts security per-
sonnel to an attempted attack. They can take appropriate action to counter the threat.

One should consider carefully whether to disable accounts and which
accounts to disable. A (possibly apocryphal) story concerns one of the first UNIX
vendors to implement account disabling. No accounts were exempt. An attacker
broke into a user account, and then attempted to log in as root three times. The sys-
tem disabled that account. The system administrators had to reboot the system to
regain root access.

EXAMPLE: Both UNIX systems and Windows NT systems have the ability to disable
accounts after failed logins. Typically, the UNIX root account cannot be disabled.
The Windows administrator account can be locked out (the equivalent of “disabled”
in this context) from network logins, but not from local logins.

The final, fourth type of technique is called jailing. The unauthenticated user
is given access to a limited part of the system and is gulled into believing that he or
she has full access. The jail then records the attacker’s actions. This technique is used
to determine what the attacker wants or simply to waste the attacker’s time.

EXAMPLE: An attacker was breaking into the computers of AT&T Bell Laboratories.
Bill Cheswick detected the attack and simulated a slow computer system. He fed the
attacker bogus files and watched what the attacker did. He concluded that keeping
the jail was not an effective way to discover the attacker’s goals [171].

One form of the jailing technique is to plant bogus data on a running system,
so that after breaking in the attacker will grab the data. (This technique, called honey-
pots, is often used in intrusion detection. See Section 22.6.2.1, “Containment
Phase.”) Clifford Stoll used this technique to help trap an attacker who penetrated
computers at the Lawrence Berkeley Laboratory. The time required to download the
bogus file was sufficient to allow an international team to trace the attacker through
the international telephone system [878, 880].

11.2.3 Password Aging

Guessing of passwords requires that access to the complement, the complementation
functions, and the authentication functions be obtained. If none of these have
changed by the time the password is guessed, then the attacker can use the password
to access the system.
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Consider the last sentence’s conditional clause. The techniques discussed in
Section 11.2 attempt to negate the part saying “the password is guessed” by making
that task difficult. The other part of the conditional clause, “if none of these have
changed,” provides a different approach: ensure that, by the time a password is
guessed, it is no longer valid.

Definition 11-6. Password aging is the requirement that a password be
changed after some period of time has passed or after some event has
occurred.

Assume that the expected time to guess a password is 180 days. Then changing
the password more frequently than every 180 days will, in theory, reduce the probabil-
ity that an attacker can guess a password that is still being used. In practice, aging by
itself ensures little, because the estimated time to guess a password is an average; it bal-
ances those passwords that can be easily guessed against those that cannot. If users can
choose passwords that are easy to guess, the estimation of the expected time must look
for a minimum, not an average. Hence, password aging works best in conjunction with
other mechanisms such as the ones discussed in this chapter.

There are problems involved in implementing password aging. The first is
forcing users to change to a different password. The second is providing notice of the
need to change and a user-friendly method of changing passwords.

Password aging is useless if a user can simply change the current password to
the same thing. One technique to prevent this is to record the n previous passwords.
When a user changes a password, the proposed password is compared with these n pre-
vious ones. If there is a match, the proposed password is rejected. The problem with
this mechanism is that users can change passwords n times very quickly, and then
change them back to the original passwords. This defeats the goal of password aging.

An alternative approach is based on time. In this implementation, the user
must change the password to one other than the current password. The password can-
not be changed for a minimum period of time. This prevents the rapid cycling of
passwords. However, it also prevents the user from changing the password should it
be compromised within that time period.

EXAMPLE: UNIX systems use the time period method to age passwords (when pass-
word aging is turned on). They record the time of the last change, the minimum time
before which the password can be changed again, and the time by which the pass-
word must be changed. Different systems use different formats. System V UNIX sys-
tems record the information in terms of weeks since January 1, 1970; HP/UX
systems running in trusted mode record it in terms of seconds since midnight of that
epoch.

If passwords are selected by users, the manner in which users are reminded to
change their passwords is crucial. Users must be given time to think of good pass-
words or must have their password choices checked. Grampp and Morris [371] point
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out that, although there is no formal statistical evidence to support it, they have found
that the easiest passwords to guess are on systems that do not give adequate notice of
upcoming password expirations.

EXAMPLE: Most System V-based UNIX systems give no warnings or reminders
before passwords expire. Instead, when users try to log in, they are told that their
passwords have expired. Before they can complete the logins, they must change their
passwords as part of the login process. Trusted HP/UX, on the other hand, gives
warning messages every time a user logs in within some period of time before the
password expires. The specific period of time is set by the system administrator.

11.3 Challenge-Response

Passwords have the fundamental problem that they are reusable. If an attacker sees a
password, she can later replay the password. The system cannot distinguish between
the attacker and the legitimate user, and allows access. An alternative is to authenti-
cate in such a way that the transmitted password changes each time. Then, if an
attacker replays a previously used password, the system will reject it.

Definition 11-7. Let user U desire to authenticate himself to system S. Let U
and S have an agreed-on secret function f. A challenge-response authentica-
tion system is one in which § sends a random message m (the challenge) to U,
and U replies with the transformation r = f(m) (the response). S validates r by
computing it separately.

Challenge-response algorithms are similar to the IFF (identification—friend
or foe) techniques that military airplanes use to identify allies and enemies.

11.3.1 Pass Algorithms

Definition 11-8. Let there be a challenge-response authentication system in
which the function f'is the secret. Then fis called a pass algorithm.

Under this definition, no cryptographic keys or other secret information may
be input to f. The algorithm computing f'is itself the secret.

EXAMPLE: Haskett [405] suggests using this scheme in combination with a standard
password scheme. After the user supplies a reusable password, a second prompt is
given (Haskett points out that this could be the same as the system’s standard
prompt, to confuse attackers). At this point, the user must enter some string based on
an algorithm. For example, if the prompt “abcdefg” were given, the appropriate
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response could be “bdf”; if the prompt were “ageksido,” the appropriate response
could be “gkio” (the algorithm is every other letter beginning with the second). Or, to
use Haskett’s example, the pass algorithm can alter a fixed password. In this case, at
the prompt, the user would enter “wucsmfxymap” if the terminal were on a dial-in
line, “acdflmq” if it were in a semisecure area, and “cfm” if it were in a secure area.
Here, “cfm” is the expected password; the location dictates how many random char-
acters surround each of the letters.

11.3.2 One-Time Passwords

The ultimate form of password aging occurs when a password is valid for exactly
one use. In some sense, challenge-response mechanisms use one-time passwords.
Think of the response as the password. As the challenges for successive authentica-
tions differ, the responses differ. Hence, the acceptability of each response (pass-
word) is invalidated after each use.

Definition 11-9. A one-time password is a password that is invalidated as
soon as it is used.

A mechanism that uses one-time passwords is also a challenge-response
mechanism. The challenge is the number of the authentication attempt; the response
is the one-time password.

The problems in any one-time password scheme are the generation of random
passwords and the synchronization of the user and the system. The former problem is
solved by using a cryptographic hash function or enciphering function such as the
DES, and the latter by having the system inform the user which password it
expects—for example, by having all the user’s passwords numbered and the system
providing the number of the one-time password it expects.

EXAMPLE: S/Key [390] implements a one-time password scheme. It uses a tech-
nique first suggested by Lamport [542] to generate the passwords. Let & be a one-
way hash function (S/Key uses MD4 or MDS5, depending on the version). Then the
user chooses an initial seed k, and the key generator calculates

(k) = ky, h(ky) = ky, ..., h(k,_;) =k,
The passwords, in the order they are used, are
P1= Ky P2 = k15 wos Py = ko Py = Ky
Suppose an attacker intercepts p;. Because p; = k,,_;, 1, pis1 = k,_j» and h(k,_)) = k,,_j, 1,

the attacker would need to invert &, or launch a dictionary attack on A, in order to
determine the next password. Because / is a one-way function, it cannot be inverted.
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Furthermore, for MD4 and MD5, dictionary attacks are not a threat provided the
seeds are chosen randomly, an assumption we (and the authors of S/Key) make
implicitly.

The S/Key system takes the seed the user enters and generates a list of n pass-
words. The implementation presents each password as a sequence of six short words
(but the internal representation is an integer). The user can generate a numbered list
of these sequences. S/Key initializes a database, called the skeykeys file, with the
number of the next password to be supplied and the hexadecimal representation of
the last password correctly supplied.

The protocol proceeds as follows.

User Matt supplies his name to the server.
The server replies with the number i stored in the skeykeys file.
Matt supplies the corresponding password p;.

Ll

The server computes h(p;) = h(k,_;11) = k,_;+2 = p;_1 and compares the
result with the stored password. If they match, the authentication succeeds.
S/Key updates the number in the skeykeys file to i — 1 and stores p; in the
file. If the authentication fails, the skeykeys file is left unchanged.

When a user has used all passwords of a particular sequence of passwords, that user’s
entry in the skeykeys file must be reinitialized. This requires the user to reregister
with the S/Key program.

One-time passwords are considerably simpler with hardware support because
the passwords need not be printed on paper or some other medium.

11.3.3 Hardware-Supported Challenge-Response Procedures

Hardware support comes in two forms: a program for a general-purpose computer
and special-purpose hardware support. Both perform the same functions.

The first type of hardware device, informally called a token, provides mecha-
nisms for hashing or enciphering information. With this type of device, the system
sends a challenge. The user enters it into the device. The device returns the appropri-
ate response. Some devices require the user to enter a personal identification number
or password, which is used as a cryptographic key or is combined with the challenge
to produce the response.

The second type of hardware device is temporally based. Every 60 seconds, it
displays a different number. The numbers range from 0 to 10" — 1, inclusive. A simi-
lar device is attached to the computer. It knows what number the device for each reg-
istered user should display. To authenticate, the user provides his login name. The
system requests a password. The user then enters the number shown on the hardware
device, followed by a fixed (reusable) password. The system validates that the num-
ber is the one expected for the user at that time and that the reusable portion of the
password is correct.



11.3 Challenge-Response 189

EXAMPLE: The RSA SecurelD card uses a system based on time. In addition to the
features described above, the password is invalidated once a login succeeds. (See
Exercise 12.)

11.34 Challenge-Response and Dictionary Attacks

Whether or not a challenge-response technique is vulnerable to a dictionary attack of
type 1 depends on the nature of the challenge and the response. In general, if the
attacker knows the challenge and the response, a dictionary attack proceeds as for a
reusable password system.

EXAMPLE: Suppose a user is authenticating herself using a challenge-response sys-
tem. The system generates a random challenge r, and the user returns the value E(r)
of r enciphered using the key k. Then the attacker knows both r and E;(r) and can try
different values of & until the encipherment of r matches E(r).

In practice, it is not necessary to know the value of . Most challenges are
composed of random data combined with public data that an attacker can determine.

EXAMPLE: In the authentication system Kerberos [872], an authentication server
enciphers data consisting of a name, a timestamp, some random data, and a crypto-
graphic key. An attacker does not see the original data sent to the server. By knowing
the form and contents of part of the data sent back, the attacker can try cryptographic
keys until the known parts of the enciphered data decipher correctly. From this, she
can derive the cryptographic key to be used in future communications. Researchers
at Purdue University combined this with a weakness in key generation to compro-
mise Kerberos Version 4 [277].

Bellovin and Merritt [73] propose a technique, called encrypted key exchange,
that defeats dictionary attacks of type 1. Basically, it ensures that random challenges
are never sent in the clear. Because the challenges are random, and unknown to the
attacker, the attacker cannot verify when she has correctly deciphered them. Hence,
the dictionary attack is infeasible.

The protocol assumes that Alice shares a secret password with Bob.

1. Alice uses the shared password s to encipher a randomly selected public
key p for a public key system. Alice then forwards this key, along with her
name, to Bob.

2. Bob determines the public key using the shared password, generates a
random secret key k, enciphers it with p, enciphers the result with s, and
sends it to Alice.

3. Alice deciphers the message to get k. Now both Bob and Alice share a

randomly generated secret key. At this point, the challenge-response phase
of the protocol begins.
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Alice generates a random challenge Ry, enciphers it using &, and sends E(R,)
to Bob.

4. Bob uses k to decipher R4. He then generates a random challenge Rp and
enciphers both with k to produce E;(R4Rp). He sends this to Alice.

5. Alice deciphers the message, validates R, and determines Rg. She
enciphers it using k and sends the message E(Rp) back to Bob.

6. Bob deciphers the message and verifies Rp.

At this point, both Alice and Bob know that they are sharing the same random key k.
To see that this system is immune to dictionary attacks of type 1, look at each
exchange. Because the data sent in each exchange is randomly selected and never
visible to the attacker in plaintext form, the attacker cannot know when she has cor-
rectly deciphered the message.

11.4 Biometrics

Identification by physical characteristics is as old as humanity. Recognizing people
by their voices or appearance, and impersonating people by assuming their appear-
ance, was widely known in classical times. Efforts to find physical characteristics
that uniquely identify people include the Bertillion cranial maps, fingerprints, and
DNA sampling. Using such a feature to identify people for a computer would ideally
eliminate errors in authentication.

Biometrics is the automated measurement of biological or behavioral features
that identify a person [635]. When a user is given an account, the system administra-
tion takes a set of measurements that identify that user to an acceptable degree of
error. Whenever the user accesses the system, the biometric authentication mecha-
nism verifies the identity. Lawton [553] points out that this is considerably easier
than identifying the user because no searching is required. A comparison to the
known data for the claimed user’s identity will either verify or reject the claim. Com-
mon characteristics are fingerprints, voice characteristics, eyes, facial features, and
keystroke dynamics.

11.4.1 Fingerprints

Fingerprints can be scanned optically, but the cameras needed are bulky. A capacita-
tive technique uses the differences in electrical charges of the whorls on the finger to
detect those parts of the finger touching a chip and those raised. The data is converted
into a graph in which ridges are represented by vertices and vertices corresponding to
adjacent ridges are connected. Each vertex has a number approximating the length of
the corresponding ridge. At this point, determining matches becomes a problem of
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graph matching [463]. This problem is similar to the classical graph isomorphism
problem, but because of imprecision in measurements, the graph generated from the
fingerprint may have different numbers of edges and vertices. Thus, the matching
algorithm is an approximation.

11.4.2 Voices

Authentication by voice, also called speaker verification or speaker recognition,
involves recognition of a speaker’s voice characteristics [151] or verbal information
verification [561, 562]. The former uses statistical techniques to test the hypothesis
that the speaker’s identity is as claimed. The system is first trained on fixed pass-
phrases or phonemes that can be combined. To authenticate, either the speaker says
the pass-phrase or repeats a word (or set of words) composed of the learned pho-
nemes. Verbal information verification deals with the contents of utterances. The sys-
tem asks a set of questions such as “What is your mother’s maiden name?” and “In
which city were you born?” It then checks that the answers spoken are the same as
the answers recorded in its database. The key difference is that speaker verification
techniques are speaker-dependent, but verbal information verification techniques are
speaker-independent, relying only on the content of the answers [563].

11.4.3 Eyes

Authentication by eye characteristics uses the iris and the retina. Patterns within the
iris are unique for each person. Hence, one verification approach is to compare the
patterns statistically and ask whether the differences are random [231]. A second
approach is to correlate the images using statistical tests to see if they match [942].
Retinal scans rely on the uniqueness of the patterns made by blood vessels at the
back of the eye. This requires a laser beaming onto the retina, which is highly intru-
sive. This method is typically used only in the most secure facilities [553].

11.4.4 Faces

Face recognition consists of several steps. First, the face is located. If the user places
her face in a predetermined position (for example, by resting her chin on a support),
the problem becomes somewhat easier. However, facial features such as hair and
glasses may make the recognition harder. Techniques for doing this include the use
of neural networks [716] and templates [962]. The resulting image is then compared
with the relevant image in the database. The correlation is affected by the differences
in the lighting between the current image and the reference image, by distortion, by
“noise,” and by the view of the face. The correlation mechanism must be “trained.”
Several different methods of correlation have been used, with varying degrees of
success [647]. An alternative approach is to focus on the facial features such as the
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distance between the nose and the chin, and the angle of the line drawn from one to
the other [775].

11.4.5 Keystrokes

Keystroke dynamics requires a signature based on keystroke intervals, keystroke
pressure, keystroke duration, and where the key is struck (on the edge or in the mid-
dle). This signature is believed to be unique in the same way that written signatures
are unique [477]. Keystroke recognition can be both static and dynamic. Static rec-
ognition is done once, at authentication time, and usually involves typing of a fixed
or known string [139, 648]. Once authentication has been completed, an attacker can
capture the connection (or take over the terminal) without detection. Dynamic recog-
nition is done throughout the session, so the aforementioned attack is not feasible.
However, the signature must be chosen so that variations within an individual’s ses-
sion do not cause the authentication to fail. For example, keystroke intervals may
vary widely, and the dynamic recognition mechanism must take this into account.
The statistics gathered from a user’s typing are then run through statistical tests
(which may discard some data as invalid, depending on the technique used) that
account for acceptable variance in the data.

11.4.6 Combinations

Several researchers have combined some of the techniques decribed above to
improve the accuracy of biometric authentication. Dieckmann, Plankensteiner, and
Wagner [264] combined voice sounds and lip motion with the facial image. Duc,
Bigun, Bigun, Maire, and Fischer [281] describe a “supervisor module” for melding
voice and face recognition with a success rate of 99.5%. The results indicate that a
higher degree of accuracy can be attained than when only a single characteristic is
used.

11.4.7 Caution

Because biometrics measures characteristics of the individual, people are tempted to
believe that attackers cannot pose as authorized users on systems that use biometrics.
Two assumptions underlie this belief. The first is that the biometric device is accurate
in the environment in which it is used. For example, if a fingerprint scanner is under
observation, having it scan a mask of another person’s finger would be detected. But
if it is not under observation, such a trick might not be detected and the unauthorized
user might gain access. The second assumption is that the transmission from the bio-
metric device to the computer’s analysis process is tamperproof. Otherwise, one
could record a legitimate authentication and replay it later to gain access. Exercise 13
explores this in more detail.
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11.5 Location

Denning and MacDoran [249] suggest an innovative approach to authentication.
They reason that if a user claims to be Anna, who is at that moment working in a
bank in California but is also logging in from Russia at the same time, the user is
impersonating Anna. Their scheme is based on the Global Positioning System
(GPS), which can pinpoint a location to within a few meters. The physical location of
an entity is described by a location signature derived from the GPS satellites. Each
location (to within a few meters) and time (to within a few milliseconds) is unique,
and hence form a location signature. This signature is transmitted to authenticate the
user. The host also has a location signature sensor (LSS) and obtains a similar signa-
ture for the user. If the signatures disagree, the authentication fails.

This technique relies on special-purpose hardware. If the LSS is stolen, the thief
would have to log in from an authorized geographic location. Because the signature is
generated from GPS data, which changes with respect to time, location, and a variety
of vagaries resulting from the nature of the electromagnetic waves used to establish
position, any such signature would be unique and could not be forged. Moreover, if
intercepted, it could not be replayed except within the window of temporal uniqueness.

This technique can also restrict the locations from which an authorized user
can access the system.

EXAMPLE: Suppose Anna is an employee of a bank in California. The bank uses
location-based authentication to verify logins. Anna’s LSS is stolen, and the thief
takes it to New York. From there, the thief tries to access the bank’s computer.

Anna’s LSS generates a signature and transmits it to the bank. The bank’s LSS
determines that Anna’s LSS is in New York and is supplying a correct signature.
However, Anna is not authorized to access the bank’s computer from New York, so
the authentication is rejected. If the thief tries to forge a message indicating that
Anna is connecting from inside California, the host’s LSS would report that Anna
was at a different location and would reject the connection.

An interesting point is that the authentication can be done continuously. The
LSS simply intermingles signature data with the transmitted data, and the host
checks it. If the connection were hijacked, the data from the LSS would be lost.

11.6  Multiple Methods

Authentication methods can be combined, or multiple methods can be used.

EXAMPLE: Authenticating by location generally uses special-purpose hardware.
Although the key feature of this technique is physical location, without the LSS it
will not work. It combines location with a token or with what one possesses.
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EXAMPLE: Most challenge-response schemes require the use of a computer or smart
card as well as a key or password. They combine what you know (password) with
what you have (computer or smart card).

Techniques using multiple methods assign one or more authentication meth-
ods to each entity. The entity must authenticate using the specific method, or meth-
ods, chosen. The specific authentication methods vary from system to system, but in
all cases the multiple layers of authentication require an attacker to know more, or
possess more, than is required to spoof a single layer.

EXAMPLE: Some versions of the UNIX operating system provide a mechanism
called pluggable authentication modules (PAM) [776]. When a program authenti-
cates a user, it invokes a library routine, pam_authenticate, that accesses a set of con-
figuration files. These files are in the directory /efc/pam.d. Each file in that directory
has the same name as the program to which it applies. For example, the library rou-
tine will access the file /etc/pam.d/ftpd when called from the program ftpd. That file
contains a sequence of lines describing the authentication modules to be invoked and
how their results are to be handled.

auth sufficient /usr/Tlib/security/pam_ftp.so

auth required /usr/Tib/security/pam_unix_auth.so \
use_first_pass
auth required /usr/Tib/security/pam_listfile.so \

onerr=succeed item=user sense=deny \
file=/etc/ftpusers

The first field describes the nature of the line. All checks that the PAM library
function will make relate to authentication of a user. The first entry invokes the
module /usr/lib/security/pam_ftp.so. This module obtains the user’s name and pass-
word. If the name is “anonymous,” the password is assumed to be the user’s e-mail
address. In this case, the module succeeds. If the user’s name is not “anonymous,”
the variable PAM_AUTHTOK is set to the entered password, the variable
PAM_RUSER is set to the entered user name, and the module fails.

If the module succeeds, the library returns to the caller, indicating success
(because of the “sufficient” in the second field). If it fails, the next two entries will be
used (because of the “required” in their second fields). The second entry invokes a
module that performs the standard UNIX password authentication. The argument
“use_first_pass” means that the password is in the variable PAM_AUTHTOK. If the
module fails, the failure is recorded, but the next line is invoked anyway. Then the
third entry is invoked. Its module looks in the file /etc/ftpusers for the user name in
the variable PAM_RUSER (because of “item=user”). If found, the module fails
(“sense=deny”). If an error occurs (for example, because the file does not exist), the
module succeeds (“onerr=succeed”). If both of the modules in the last two lines suc-
ceed, the user is authenticated. If not, the user’s authentication fails.
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The second field controls the calling of the modules. The entries are processed
in the order in which they appear. If the second field is “sufficient” and the module
succeeds, authentication is completed. If the second field is “required,” failure of the
module makes authentication fail, but al/l required modules are invoked before the
failure is reported. To make the PAM library routine return immediately after the fail-
ure of a module, the second field must be set to “requisite.” Finally, an “optional”
field indicates that if all other modules fail (whether they precede or follow this
entry), the module in t